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ABSTRACT:  

 

Urbanization has played an important part in the development of the society, yet it is accompanied by environmental concerns 

including the increase of local temperature compared to its immediate surroundings. The latter is known as Urban Heat Islands 

(UHI). This research aims to model UHI in Quezon City based on Land Surface Temperature (LST) estimated from Landsat 8 data. 

Geospatial processing and analyses were performed using Google Earth Engine, ArcGIS, GeoDa, and SAGA GIS. Based on Urban 

Thermal Field Variance Index (UTFVI) and the normalized mean per barangay (village), areas with strong UHI intensities were 

mapped and characterized. high intensity UHIs are observed mostly in areas with high Normalized Difference Built-up Index 

(NDBI) like the residential regions while the weak intensity UHIs are noticed in areas with high Normalized Difference Vegetation 

Index (NDVI) near the La Mesa Reservoir. In the OLS regression model, around 69% of LST variability is explained by Surface 

Albedo (SA), Sky View Factor (SVF), Surface Area to Volume Ratio (SVR), Solar Radiation (SR), NDBI and NDVI. OLS yield 

relatively high residuals (RMSE = 1.67) and the residuals are not normally distributed. Since LST is non-stationary, Geographically 

Weighted Regression (GWR) regression was conducted, proving normally and randomly distributed residuals (average RMSE = 

0.26).  

 

 

 1. INTRODUCTION 

 

There has been a drastic increase in the world population in 

recent years; new megacities are born, and existing megacities 

become more populated (Mirzaei, 2015). The increase in 

population tends to affect the environmental situations not only 

globally but also locally. According to the United Nations, 55% 

of the current population around the world lives in urban areas. 

Urban land is predicted to cover 31% of the total land surface by 

2027 according to Myronidis and Iannou (2018).  

 

One of the key environmental climate variables defined and 

accepted by the Global Climate Observing System (GCOS) is 

land surface temperature (LST), which is used to determine 

Surface UHI. LST can be derived from thermal infrared (TIR) 

data that is used in surface energy balance models involving 

drought, evapotranspiration, hydrological cycles and climate 

research. It is also used in studying heat-related issues, impact 

of heat stress on the urban population and outbreak and 

propagation of vector-borne diseases (Malakar, 2018).  

 

Urban heat island (UHI) is a worldwide phenomenon commonly 

observed describing urban areas with relatively higher 

temperatures than its surroundings (Lettenmaier, Mishra, 

Ganguly & Nijssen, 2014). UHI is known to affect local weather 

and climate and impacts urban development and human living 

environments (Zhang & Liu, 2011). Aside from the effect on 

temperature, UHIs can produce secondary effects on local 

meteorology, including the altering of local wind patterns, the 

development of clouds and fog, the humidity, and the rates of 

precipitation. (Trishita, 2017)  

 

UHI has the potential to directly influence the health and 

welfare of urban residents. Increased temperatures have been 

reported to cause heat stroke, heat exhaustion, and heat cramps. 

Individuals with cognitive health issues are more at risk when 

faced with high temperatures. Also, people with other health 

problems like diabetes, obesity, have sleep deprivation, or have 

cardiovascular/cerebrovascular conditions should avoid too 

much heat exposure (Schneider & Breitner, n.d.).  

 

Another consequence of UHI is the increased energy required 

for air conditioning and refrigeration in cities that are in 

comparatively hot climates. The results of this research will 

provide the local government units some useful information 

about the critical factors that causes the formation of urban heat 

islands and its effects to human health.  These factors shall be 

monitored and shall be properly considered in urban planning 

and development and reduce the effect of urban heat islands. 

(Lodi et al., 2014)  

 

1.1 Research objectives  

 

This research aims to assess the development of urban heat 

islands in rapidly urbanizing and highly urbanized cities in the 

Philippines and develop models for estimating land surface 

temperatures (LST) and predicting UHIs by relating LST with 

environmental factors, including land use land cover 

distribution, using regression modelling.   

 

1.2 Significance of the study  

 

The study on the assessment and modelling of urban heat island 

will help us determine the areas that are significantly affected by 
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the phenomenon through the use of geographically available 

data. The methodologies presented in this research shall be 

helpful in determining or measuring land surface temperature 

and other factors using automated tools such as the Google 

Earth Engine without downloading big data.    

 

1.3 Study area  

 

Quezon City is a highly urbanized area located in the mid to 

northern part of the National Capital Region (NCR); it extends 

from 14.589 to 14.76 latitude and 120.986 to 121.131 longitude. 

The city covers the largest land area of 161.12 sq. km within the 

region or 25% or the total area of the region. Also has the 

largest total population of over 2.9 million according as of 2015 

Census of Population. It is composed of 142 barangays 

separated within 6 legislative districts. The city is mostly 

composed of residential areas and commercial to industrial areas 

that makes the city to be highly urbanized and a suitable area of 

our study. As per World Population Review 2019, the city has 

an average population density of approximately 18,000 residents 

per square km. Also, it has a recent annual population growth 

rate of more than 2% making the city‟s population to grow over 

the years with approximately over 3 million in 2020.  

 

 

 2. REVIEW OF RELATED LITERATURE 

 

2.1 Causes of UHI  

 

One of the crucial topics in urban climatology studies is the UHI 

phenomenon. It is a complex feature which is described by the 

combination of green vegetation, water surfaces, impervious 

surface materials and exposed soils, resulting in a temporally 

and spatially varying LST. The characteristics of the city are 

probable causes of the heat island effect (Zhou & Rbyski, 2017). 

These characteristics can be described by built-up index, 

vegetation index, surface albedo, sky view factor, and surface 

area to volume ratio.  

 

2.1.1 Sky View Factor (SVF)  

 

The sky view factor (SVF) is a dimensionless value which 

represents the ratio at a point in space between the visible sky 

and a hemisphere (Oke, 1981) which ranges between 0 and 1, 

representing totally obstructed and open spaces, respectively 

(Oke, 1988). SVF was found to be a strong causation factor for 

UHI which affects the temperature by analyzing the heat island 

intensities in the four typical areas in Montreal (Wang & 

Akbari, 2014).  Another study by Hammerle et al. (2009) 

concludes that the urban surface geometry described as SVF is a 

significant factor of the air temperature distribution inside the 

city.   

 

2.1.2 Surface Area-to-Volume Ratio (SVR)  

One important factor in determining heat loss and gain is the 

surface area-to-volume ratio (SVR). Heat loss/gain through a 

surface is directly proportional to its area. Small SVR imply 

minimum heat gain and minimum heat loss (CLEAR, n.d.).   

 

2.1.3 Surface Albedo (SA)  

 

Surface albedo (SA) is the fraction of incoming solar radiation 

at a surface (i.e. land, cloud top) that is effectively reflected by 

that surface. (American Meteorological Society, n.d.)  

2.1.4 Solar Radiation (SR)  

 

Solar radiation (SR) or solar resource is a term which refers to 

the electromagnetic radiation emitted by the sun. The magnitude 

of surface urban heat islands varies with seasons, due to changes 

in the sun‟s intensity as well as ground cover and weather. As a 

result of such variation, surface UHI are typically largest in the 

summer (Reducing Urban Heat Islands, n.d.). This means that 

temperature is also dependent on SR.  

 

2.1.5 Normalized Difference Built-up Index & Normalized 

Difference Vegetation Index (NDBI & NDVI)  

 

The normalized difference built-up index (NDBI) is used to 

extract built-up features which ranges from -1 to 1. The 

normalized difference vegetation index (NDVI) is used to 

monitor the condition of vegetation and is the most commonly 

used vegetation index globally. A study from Malik, Shukla & 

Mishra (2018) shows that the positive relationship found 

between NDBI and LST indicates that the built-up areas are 

generating much surface temperature variations and is the key 

contributor in the UHI. On the other hand, healthy vegetative 

cover plays a key role in lowering LST.   

 

 

 3. METHODOLOGY  

 

The methodology for the geospatial assessment and modelling 

of urban heat islands (UHI) in Quezon City is shown in Fig. 1.   

 

Figure 1. General Methodology Flowchart  

Data preparation includes data acquisition and processing of 

satellite images. The Landsat 8 satellite images are processed 

using Google Earth Engine. The spatial and temporal resolution 

for the Landsat data for deriving LST data is 100m and once 

every 16 days, respectively. The dates used for modelling is 

chosen by least cloud cover that dates February 5, 2019 and 

August 10, 2017. The months were chosen in order to compare 

the wet and dry seasons of the year.  

 

The data are then examined in order to determine the UHIs in 

Quezon City. Clusters of high-temperature pixels would be one 

of the main bases for classifying an area as a UHI. Different 

characteristics (e.g., surface albedo, sky-view factor, surface 

area-to-volume ratio) are considered by determining their 

relationships with the intensity of the UHI in a given area. 

Regression analyses were conducted in order to model the UHI 

using different variables. Each of the six factors, namely, SR, 

SVR, SVF, SA, NDBI and NDVI, are used as explanatory 

variables to describe the variations of LST.   
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3.1 Image Pre-processing & LST Calculation  

 

 

 

Figure 2. Image Pre-processing Workflow 

LST based on Landsat 8 data can be calculated (Jeevalakshmi et 

al., 2018) using formula 1:  

  (1)  

Where:  Ts = LST in degrees Celsius   

BT = brightness temperature 

λ=avg. wavelength of band 10 = 

10.89 Ԑλ = Land Surface Emissivity  

ρ = [h × (c/σ)] = 1.438 x 10-2 mK  

h = 6.62607004 × 10-34 m2 kg / s 

(Planck's constant) 

c = speed of light ~ 3.00×108 m/s 

σ = 1.38064852 × 10-23 m2 kg s-2 K-1 

(Boltzmann Constant) 

 

3.2 Surface Albedo (SA) Calculation  

 

Surface albedo based on Landsat 8 data can be calculated  

(Baldinelli et al., 2017) using equation 2 

(2)  

Where:  SA = Surface Albedo  

Bi are band values.    

 
Table 1. Coefficients used for SA calculation  

3.3 Urban thermal field variance index (UTFVI)  

 

Urban thermal field variance index is a quantitative measure 

that defines how severe UHI is on an area. Equation 3 shows 

how to calculate UTFVI.  

  (3)  

Where:  

UTFVI = Urban thermal field variance index      

Ts = LST of a certain point in Kelvin       

Tmean = Mean LST of the subject area  

The measures can be categorized as follows to determine the 

intensity and qualify the values derived according to the strength 

of UHI in the area, as determined by Zhang (2009), and is 

summarized in Table 2.  

 

 
Table 2. UHI Strength based of UTFVI  

3.4 Feature data extraction from DSM, DTM and shapefiles  

 

Building geometry measurements were calculated in 

ArcGIS. This is necessary for estimating the factors in UHI-

LST model such as the SVR, SVF and SR.   

 

Figure 3. Feature data extraction workflow  

The feature datasets are validated for accuracy and 

completeness. A common reference system is be used to project 

them, and satellite images from Google Earth are used as 

reference.   

 

The sky view factor (SVF) was calculated using the built-in tool 

in the SAGA GIS open source software by using the DSM raster 

as input. The solar radiation (SR) also uses the DSM raster as 

input for the spatial analyst tool for solar radiation in ArcGIS. 

Cumulative SR was computed from 6:00 AM to 10:30 AM, 

which close to the Landsat 8 acquisition time.   

 

Surface-Area-to-Volume Ratio (SVR) was derived from the 

multipatch features created by using the Extrude Between tool 

(3D analyst) of ArcGIS, for which the input features are two 

triangulated irregular networks (TINs) generated from DSM and 

DTM datasets. The multipatch features were converted back to 

2D polygon feature and the SVR raster was created.   

 

The data, including the raster data sets and the DTM and DSM 

files are integrated in ArcGIS. A fishnet is created with a pixel 

size of 30 by 30 m. resolution to match the spatial resolution of 

the initial Landsat 8 data. Zonal statistics is performed for all the 

raster variables after they have the same resolution to generate a 

table of attributes which contains the height, LST, albedo and 

other factors related to UHI.  

 

3.5 Ordinary Least Squares (OLS) Regression  

 

OLS model describing LST variations using NDVI, NDBI, SR, 

SVR, SVF and surface albedo. The model is examined using R2, 

Adjusted R2, and RMSE to evaluate the overall model 

performance. The significance of the Koenker (BP) statistic and 

the Jarque-Bera statistic are evaluated to determine 

nonstationarity of the model and the non-normality in the 

distribution of residuals, respectively.  

 

3.6 Geographically Weighted Regression (GWR)  

 

If the process is nonstationary as indicated by the significance of 

the Koenker (BP) statistics, GWR analysis is performed to 

create numerous local models of LST variations. GWR enables 

the coefficients of factors to vary in space to account for 

nonstationarity. Three models at different bandwidth distances 

were developed in order to determine the best parameters that 

would create the best fit. The parameters of each model are 

stated below:   

     Dependent Variable: LST  
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     Explanatory Variables: SVF, SR, SVR, SA, NDBI, NDVI  

     Kernel type: Adaptive  

     Bandwidth Method: Bandwidth Parameter  

     Distance (m): 30, 100, and 200  

 

 

 4. RESULTS AND DISCUSSION 

 

4.1 Urban Thermal Characteristics and Patterns  

 

In order to characterize the thermal characteristics and patterns 

in Quezon City, analysis of LST in relation to land use was 

conducted. As can be seen in Figs 4 and 5, industrial, 

commercial, and residential areas are relatively hotter with 

average temperature of around 33.5 ºC. This is in contrast to 

lower average surface temperatures of parks (30.5 ºC), 

agriculture and water areas (26 ºC), and even institutional areas 

(32 ºC). Within each land use types, LST can be seen to vary 

greatly.  

 
Figure 4. Land surface temperature (LST) distribution in Quezon City 

on 5 February 2019  

 

Figure 5. Minimum, maximum, and average land surface temperature 

per land use type in Quezon City on 5 February 2019  

4.2 UHI Analysis  

 

Urban Heat island has been categorized in terms of intensities 

using the Urban Thermal Field Variance Index (UFTVI) (Fig. 

6). UFTVI as described by Table 2 shows the different strengths 

or intensities of UHI. Evidently, stronger UHIs are found in 

residential, commercial and industrial areas. These areas are 

typically dominated by impervious surfaces and have less 

vegetation compared to other areas. Variations of UHI intensity 

in these areas can also be attributed to the density and sizes of 

houses and buildings.  

The barangays (villages) are classified and ranked based on UHI 

strength detected in the locality; the zonal mean of UTFVI were 

computed per barangay. In Fig. 7, the northeastern and central 

eastern barangays have the lowest UHI strength. Barangays with 

higher UHI strength can be found in the southwestern and 

southeastern parts. These observations are consistent with the 

LST distribution.  

 
Figure 6. Spatial variation of UTFVI-based UHI intensity in Quezon 

City on 5 February 2019  

 

 
Figure 7. Mean UTFVI per barangay in Quezon City for 5 February  

2019  
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The top 10 identified barangays all lie on the southern half of 

Quezon City while the bottom 10 lie on the extreme 

northeastern, extreme southeastern and central northern parts. 

The normalized mean for the UTFVI, SR, SVF, SVR, SA, 

NDBI & NDVI were computed for the whole of QC, top 10 & 

bottom 10 barangays, with normalization based from the 

maximum values for each factor for the entire city (see Fig. 8). 

Each mean value is shown in percentage relative to the 

maximum of each variable for better visualization.  

 

Figure 8. Normalized mean of UTFVI, SR, SVF, SVR, SA, NDBI & 

NDVI for Quezon City, the top 10, and bottom 10 barangays based 

mean UTFVI in Quezon City for 5 February 2019 

 

The mean UTFVI for the top 10 barangays (52%) is much 

higher compared to the mean UTFVI of QC (0) and mean 

UTFVI of the bottom 10 (18). The SR & SVF mean values for 

the three categories does not have a significant difference when 

normalized using the maximum value for Quezon City. The 

difference of 0.395 between the top & bottom 10 SR values is 

insignificant compared to their mean magnitudes of above 259. 

The difference of 0.006 for the SVF of the top & bottom is very 

small compared to their average magnitude of 0.961. The values 

for SVR decreases from top 10 to mean to bottom 10. The SVR 

for the top 10 barangays is higher than the average SVR of QC 

by 3%, while the bottom 10 is lower than 2% from the average.  

 

The SA for the bottom 10 and the top 10 barangays are the 

same, having a value of 0.002 lower than the average of the 

whole of QC. The NDBI, like the SVR, also decreases from top 

10 to bottom 10, making a huge difference from the average of 

29%. The NDBI of the bottom 10 when compared to the 

average makes a difference of almost 9% lower than the 

average. The difference between the top and the bottom 10 is 

almost 38%, making the largest difference between all the 

factors excluding UTFVI. Unlike the trends for the SVR and 

NDBI which decreases, the NDVI increases from the top 10 to 

the bottom 10, showing an inverse trend when compared to the 

UTFVI or UHI strength. The difference between the NDVI 

values for the top 10 is 11% lower than the average while for the 

bottom 10, it is 7% higher than the average. The difference 

between the top 10 and the bottom 10 is 28%, making the 2nd 

largest difference between all factors excluding the UTFVI next 

to the NDBI.  

 

4.3 OLS Regression Model for LST  

 

All the variables, namely, SR, SVF, SV, SA, NDVI and NDBI, 

have significant (p < .01) correlation with LST (Fig. 9). The 

variable with the most linear fit is the NDBI, with an R2 value of 

0.65, therefore explaining 65% of the variability of LST. NDVI 

has a negative slope, which explains 41% of the variability of 

LST. The other factors might not indicate strong linear 

relationship with LST, but they can be significant in modelling 

LST. All six factors were therefore used in order to model LST 

using OLS regression. Results are shown in Tables 3 and 4. 

There is no global multicollineary as indicate by the variance 

inflation factor (VIF) values, which are all less than 7.5. All 

variables are significant components of the model as indicated 

by the robust probability (Robust_Pr). It should be noted that the 

Koenker (BP) and the Jarque-Bera statistic are both significant. 

When the Koeker BP is significant, it means that the modeled 

relationships are not consistent either due to nonstationatity or 

heteroskedasticity. When Jarque-Bera is significant, model 

predictions are biased and the residuals are not normally 

distributed.  

 

Variable Coefficient StdError t-Statistic Probability 

 Robust_SE Robust_t Robust_Pr  VIF   

Table 3. Summary of ordinary least squares results - model variables 

for LST regression model in Quezon City for 5 February 2019 

 
Number of 

Observations:  
194869  Akaike's Information Criterion (AICc):  754376.9  

Multiple R-Squared:  0.69097  Adjusted R-Squared:  0.69096  

Joint F-Statistic:  72616.35  Prob(>F), (6,194862) degrees of freedom:  0.000000*  

Joint Wald Statistic:  321523.1  Prob(>chi-squared), (6) degrees of freedom:  0.000000*  

Koenker (BP) 

Statistic:  
6220.422  Prob(>chi-squared), (6) degrees of freedom:  0.000000*  

Jarque-Bera 

Statistic:  
37296.66  Prob(>chi-squared), (2) degrees of freedom:  0.000000*  

Table 4. Ordinary least squares diagnostics for LST regression model 

in Quezon City for 5 February 2019  

 

 
Figure 9. Scatter plot diagrams (left to right) for LST vs. SR, SVF, 

SVR, SA, NDBI, and NDVI. The lines show the linear relationship 

between the variables listed. 

 

Intercept 

SR  

SVF  
SVR  

32.098  0.119  268.777  0.0000*  0.123  260.094  0.0000*  -------

-  
-0.001  0.000  -6.707  0.0000*  0.000  -6.674  0.0000*  1.430  
0.869  0.144  6.053  0.0000*  0.149  5.846  0.0000*  1.477  
1.066  0.009  114.741  0.0000*  0.014  75.150  0.0000*  1.348  

SA 

NDBI  

NDVI  

1.092  0.152  7.170  0.0000*  0.210  5.187  0.0000*  1.211  
11.969  0.039  310.199  0.0000*  0.109  110.144  0.0000*  2.410  

-2.299  0.024  -96.203  0.0000*  0.055  -41.927  0.0000*  2.101  

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W16, 2019 
6th International Conference on Geomatics and Geospatial Technology (GGT 2019), 1–3 October 2019, Kuala Lumpur, Malaysia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W16-85-2019 | © Authors 2019. CC BY 4.0 License.

 
89



 
Figure 10. Ordinary least squares predicted values (left) and  

Standard Residuals (right) for LST regression model in Quezon City 

for 5 February 2019  

The Root Mean Squared Error of the model is also computed 

with a value of 1.67. The standard deviations of the residuals are 

mapped to determine how much the predicted values differ from 

the „Observed‟ values. According to the map, red areas show 

high positive values of error or overprediction and blue areas 

show negative values of error or underprediction. The residuals 

exhibit clustering in space. The OLS regression residuals are 

large and does not strictly follow a normal distribution (Fig.11). 

This is a violation of the assumption of normality in OLS. This 

means that the model does not fully represent or explain the 

whole data set. The solution is to find a model that would 

generate a residual plot that has a bell-shaped curve. The 

significance of the Koenker (BP) indicates the need to proceed 

to spatial regression (e.g., GWR) to address non-stationarity.  

 

 
Figure 11. Histogram of OLS Regression Residuals 

 

4.4 Geographically Weighted Regression Model for LST  

 

The GWR model is an outgrowth of the OLS, which accounts 

for its variation by locality. Since the model is non-stationary, 

application of GWR is fit because it is a technique that accounts 

for non-stationary variables and takes them into consideration 

(Charlton & Fotheringham, 2009).  After checking the statistical 

results of the OLS regression model, and passing the tests, the 

next step is to proceed to the GWR model. Similar to the OLS 

model for LST, only the February 5 LST map was predicted by 

the model because of the aforementioned reasons. To acquire 

the best model for the LST using GWR, three maps were 

generated each having unique parameters in ArcMap.     

 

 

Figure 12. From left to right, LST map and Predicted LST using 

GWR (200); GWR (100); GWR (30).  

 
Figure 13. Histogram of GWR 30 Residuals  

 

As compared with the residual plot of the OLS regression, the 

residuals of the GWR model displays a normal distribution 

(Fig. 13). The GWR models explains LST better judging from 

the low residuals.  

 

To further understand the results, a report was generated in 

ArcMap, as shown in Table 4. Bandwidth Parameter dictates 

how many neighbors are going to be considered by the GWR 

model in its calculations. The values considered for the models 

are 30 (GWR_30), 100 (GWR_100), and 200 (GWR_200) as 

previously mentioned.  

 

 GWR 30 GWR 100 GWR 200 

Bandwidth  

Parameter 

30 

Neighbors 

100 

Neighbors 

200 

Neighbors 

Residual Squares 0.452 9.519 18.144 

Sigma 0.295 0.547 1.632 

AICc 35.647 75.611 35.15 

Ave. of Local R2 0.5517 0.4183 0.3942 

RMSE 0.14 0.26 0.39 
 

Table 5. GWR Diagnostics for LST models in QC for Feb. 5, 

2019  
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Residual Squares is the sum of the squared residuals generated 

in the model. Better resulting model are observed when this 

value is closer to 0. The GWR_30 has the least value for the 

residual squares with a value of 0.452 which is significantly 

better compared to the other 2 models. Sigma is the standard 

deviation of the residuals. A small deviation of the residuals 

signifies that the prediction is close to the observed values. 

GWR_30 gives the best value of sigma of 0.295, this means that 

1 standard deviation within the model is equal to 0.295ºC of 

difference from the observed LST.  

 

AICc determines the relative performance of the model. The 

model with the significantly lower AICc value provides a better 

fit to the observed data. GWR_200 has the least AICc value 

however it is almost equivalent to the AICc of GWR_30. In 

terms of AICc, GWR_30 and GWR_200 are equal in model 

performance. Upon trials of the neighbors beyond 200, the 

AICc‟s of the models tend to grow bigger continuously. The 

Local R2 measures the goodness of the fit with a range of values 

from 0.0 to 1.0. If the value is closer to 1, the model represents 

the real values more accurately. The measure is local because it 

only computes its fit depending on the number of neighbors it 

encloses. GWR_30 produced the highest average Local R2 at 

0.5517. The RMSE is the square root of the average of the 

squares of all residuals in each model and gives more weight to 

larger residuals. GWR_30 yields the lowest RMSE with 0.14.  

The variation of GWR variable coefficients vis-à-vis index 

values is worth looking into. Figure 14 shows a sample of NDBI 

coefficients, NDBI values and corresponding true color image.  

 
Figure 14. Sample GWR NDBI coefficients, true color image 

and NDBI values  

The negative values of NDBI Coefficient are typically seen in 

the regions where there are fewer buildings. Positive values of 

NDBI Coefficients are seen on the areas where there are high 

number or density of buildings and houses thus yielding a more 

positive value for the equation, therefore increasing the total 

value of LST for that specific area.    

 

NDVI on the other hand, decreases the total LST of a point or an 

area depending on how much trees or vegetation therein. This 

implies that the total LST will decrease by the value that was 

obtained by crossing the negative NDVI coefficient and the high 

positive NDVI value for areas that are rich in vegetation.  

 

4.5 LST Calculations  

 

From the same region as above, one representative pixel value 

for each highly vegetated area and not vegetated area is selected 

for the sample LST calculations.  

 
Figure 15. Sample stacked true color image and LST image of 

tree pixel (left, FID = 72220) and road pixel (right, FID = 

73559) 

 

 
Table 6. Pixel values and its computed coefficients for LST 

GWR models for tree pixel  

 

 
Table 7. Computed contribution of variables to LST in ºC of 

tree pixel (values in ºC)  

 

 

Table 8. Pixel values and its computed coefficients for LST  

GWR models for road pixel  
 

 

 
Table 9. Computed contribution of variables to LST in ºC of 

road pixel (values in ºC)  

The values of the GWR coefficients of the variables were 

multiplied to the values of the variables in order to determine 

the actual contribution of each variable to the LST in ºC. Each 

model has a different intensity of coefficient for each variable. 

For the highly vegetated area, (72220 pixel), SVF and NDVI 

has the most contribution to the LST (-3.8 and -1.3 ºC 

respectively) for GWR30. Note that these values are negative 

meaning, that the LST will be lower by increasing the NDVI 

and SVF.  

 

Surface Albedo on the other hand, has the contributed most (-1.3 

and -2.7 ºC) for the GWR 100 and GWR 200. For the road 

pixel, the most significant factor, using the GWR30 model, is 

the SA and NDBI with values of 0.25 and .15 ºC respectively. 

Using GWR100 and GWR200, highest values are found in the 

SR with values 1.58 and 1.63 ºC respectively. The SVR has a 0 

value because of the absence of a building in the actual pixel. 

NDVI also has almost no significance to the total LST in the 

said pixel.  
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 5. CONCLUSIONS AND RECOMMENDATIONS 

 

A methodology was developed and implemented to compute 

LST and model the UHI in Quezon City. The LST, NDVI, 

NDBI and SA bands were derived from Landsat 8 images. 

UTFVI was used to classify the strength of UHI in an area based 

on the mean temperature of the whole city. The factors 

considered in analysis are SR, SVF, SVR, SA, NDBI, and 

NDVI.  The top 10 barangays according to UHI strength and the 

bottom 10 were analyzed.  Significant differences between the 

top 10 and bottom 10 include a 38% discrepancy in their mean 

normalized NDBI, -28% in their mean normalized NDBI, and 

5% in their mean normalized SVR. The differences for the 

standardized mean of the remaining factors were insignificant.  

 

The northeastern areas of Q.C. contain lower LST than the 

southwestern parts. Similar patterns for low to high values for 

NDBI were observed, while for the NDVI, the values appear in 

reverse, from high to low. Industrial and commercial land uses 

have the highest mean LST among all land use classes, 

partnered with a low minimum SVF and SR, high mean SVR, 

high mean NDBI and low mean NDVI and high max SA; while 

the agricultural and water classes have lowest mean LST 

partnered with an average minimum SR, high minimum SVF, 

low mean SVR, low mean NDBI, high mean NDVI and low 

maximum SA. The relationships established that are directly 

proportional to LST are SVR and NDBI, while the relationship 

for NDVI is inversely proportional, which is consistent with 

other studies.  

 

Regression models were made for LST, considering all the six 

factors as explanatory variables. The first model was made 

using ordinary least squares technique. The explanatory 

variables explain 69% of the variability of LST based on the R2 

value. Tests show that the factors are all significant and are not 

redundant. The scatter plot shows that NDBI has the best linear 

fit with the LST compared to all other factors. The spatial 

autocorrelation report for the residuals of this model shows a 

significant clustering, meaning that the residuals are not 

random, thus, to account for spatial autocorrelation and non-

stationarity of values, a second model was produced using the 

geographically weighted regression technique. Three models 

with 30, 100 and 200 bandwidth parameters were produced 

using an adaptive kernel. The general pattern and appearance of 

the observed values for LST was captured by all three models. 

The deviations are more random using GWR. The best model 

which fits the observed LST is the one with 30 as bandwidth 

parameter.  
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