
INTEGRATED MANAGEMENT AND VISUALIZATION OF STATIC AND DYNAMIC
PROPERTIES OF SEMANTIC 3D CITY MODELS

K. Chaturvedi1,∗, Zhihang Yao2, T. H. Kolbe1

1 Technische Universität München, Chair of Geoinformatics, 80333 Munich, Germany -
(kanishk.chaturvedi,thomas.kolbe)@tum.de

2 virtualcitySYSTEMS GmbH, 85567 Grafing bei München, Germany -
zyao@virtualcitysystems.de

Commission VI, WG VI/4

KEY WORDS: Semantic 3D City Models, CityGML, Dynamizers, 3D City Database, Visualization, Timeseries

ABSTRACT:

CityGML is an international standard issued by the Open Geospatial Consortium (OGC) for representing and exchanging Semantic
3D City Models. Due to their large scale and deeply nested structures, the management and visualization of CityGML based models
require sophisticated solutions such as the 3D City Database (3DCityDB). The research work presented in this article proposes a high
level architecture for extending the 3D City Database to store and manage dynamic properties encoded within a new Application
Domain Extension (ADE) of CityGML called Dynamizer ADE. The implementation employs the 3DCityDB 4.2 ADE Plugin
Manager, which provides an automatic way for dynamically extending the 3DCityDB to support the storage and management of
CityGML models with ADEs. The paper introduces a relational database model for storing and managing the Dynamizer ADE
within the 3DCityDB. Further, the research work includes the extension of the 3DCityDB Importer/Exporter in order to import
and export CityGML documents including Dynamizer ADE data. 3DCityDB already comes with a Web Feature Service (WFS)
interface allowing CityGML features to be requested in standardized ways. The proposed framework enables CityGML Viewers to
access static data (using OGC WFS interface) and dynamic data (using the OGC SWE interfaces) in an integrated fashion.

1. INTRODUCTION AND MOTIVATION

CityGML (Gröger et al., 2012) is an international standard
issued by the Open Geospatial Consortium (OGC), which
allows representing and exchanging Semantic 3D City Models.
This standard facilitates the integration of heterogeneous data
from multiple sources and allows the representation of the
geometrical and semantic attributes of the city level objects
(such as buildings, streets, vegetation, and water bodies) along
with their interrelationship to other objects. CityGML allows
to further decompose complex objects like buildings into their
parts like walls, stairs, etc. and these may again consist of
parts like windows or doors. Since CityGML objects can
have attributes and relations on all levels of this aggregation
hierarchy, the exploration of, querying on and interaction with
such a 3D city model must also take into account these deeply
nested structures. Due to their large scale and deeply nested
structures, the management and visualization of CityGML
based models require sophisticated solutions.

Numerous software systems have been developed and used for
processing and visualizing CityGML data, for example, (FME,
2019), (InfraWorks, 2019), ESRI 3D Cities (Reitz, Schubiger-
Banz, 2014), and (azul, 2016). 3D City Database (also known
as 3DCityDB) (Yao et al., 2018) is an Open Source software
suite, which allows storing, representing, and managing
large CityGML datasets on top of spatial relational database
management systems (SRDBMS) such as Oracle Spatial and
PostgreSQL. It includes a Java front-end application named
’3DCityDB Importer/Exporter’ for importing and exporting
CityGML datasets with arbitrary file sizes. It also allows
exporting CityGML objects in the form of 3D visualization

∗Corresponding author

formats (such as KML, COLLADA, and glTF) enabling them
to be viewed and interactively explored in web applications
such as the 3DCityDB Web Map Client or Google Earth.
For integration into an OGC Web Service environment, the
3DCityDB provides a Web Feature Service (WFS) interface,
using which CityGML objects can be requested in standardized
ways. Such software systems and applications allow end users
to interact and query with large CityGML datasets in simple
and easy ways. For this reason, many cities worldwide such
as Berlin, Helsinki, New York, and Singapore are developing
and using their city models according to the CityGML standard.
There are also numerous applications and simulations benefited
using CityGML data (Biljecki et al., 2015).

With its increasing adoption worldwide, CityGML is also
being further developed for many new functionalities and
extensions. One such extension is the support of time-dynamic
properties within CityGML objects. This requirement arises
from the fact that many application and simulation scenarios
(e.g. environmental simulations, disaster management, traffic
simulators) require dealing with dynamic variations of object
properties, e.g. variations of (i) thematic attributes such as
changes of physical quantities (energy demands, temperature,
solar irradiation levels), (ii) spatial properties such as change
of a feature’s geometry, with respect to shape and location
(moving objects), (iii) real-time observations from sensors and
IoT devices like Smart Meters. In order to support such time-
varying properties within city objects, there have been recent
extensions of the CityGML in the form of Application Domain
Extensions (ADEs) such as the Energy ADE (Agugiaro et al.,
2018) and the Dynamizer ADE (Chaturvedi, Kolbe, 2016).
From the application point of view, it is important that existing
solutions (databases and visualization applications) dealing

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W17, 2019
4th International Conference on Smart Data and Smart Cities, 1–3 October 2019, Kuala Lumpur, Malaysia

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W17-7-2019 | © Authors 2019. CC BY 4.0 License.

7

with CityGML data support managing and visualizing dynamic
properties. However, they only support static properties so far.

This research work provides a novel approach for extending
databases and visualization applications for managing and
visualizing dynamic properties along with static properties of
city objects. The paper proposes a high-level architecture for
extending the 3DCityDB to support storage and management
of CityGML datasets with a slightly modified Dynamizer ADE
(c.f. section 2.1) as a first step. However, a similar approach
can also be applied for managing timeseries properties used
in other ADEs such as the Energy ADE in the future.
The implementation is based on the ADE Plugin Manager
(c.f. section 2.2), which provides an automatic way for
dynamically extending the 3DCityDB to support storage and
management of CityGML models with arbitrary ADEs. The
paper introduces a relational database model for storing and
managing the Dynamizer ADE within the 3DCityDB. Further,
the research work includes the extension of the 3DCityDB
Importer/Exporter in order to import and export CityGML
documents including Dynamizer ADE data. This enables
managing dynamic data (such as time points within timeseries)
associated with city objects, which can further be queried and
used with standard SQL operations. The high-level architecture
also allows accessing and retrieving static and dynamic data
in an integrated way. 3DCityDB already contains a Web
Feature Service (WFS) interface allowing CityGML features to
be requested in standardized ways. The proposed architecture
also enables CityGML applications to query and visualize static
data (using OGC WFS interface) and dynamic data (using
standardized interfaces) in an integrated fashion. For this
purpose, the Open Source InterSensor Service (c.f. section 2.3)
has been extended to connect to the Dynamizer ADE stored in
the 3DCityDB and encode the respective dynamic properties
according to the open and international standards.

2. BACKGROUND

2.1 CityGML Dynamizer ADE

Dynamizer (Chaturvedi, Kolbe, 2016) is a new concept, which
extends static 3D city models by supporting variations of
individual feature properties and associations over time. It
provides a data structure to represent dynamic values in
different and generic ways. Such dynamic values may be given
by (i) tabulation of time/-value pairs using its AtomicTimeseries
class, (ii) patterns of time/value pairs based on statistical
rules using its CompositeTimeseries class, and (iii) retrieving
observations directly from external sensor/IoT services using
its SensorConnection class. In addition, Dynamizer delivers
a method to enhance static city models by dynamic property
values. It references a specific attribute (e.g. geometry,
thematic data or appearance) of an object within a 3D city
model providing dynamic values overriding the static value of
the referenced object attribute. Dynamizers have already been
implemented as an Application Domain Extension (ADE) for
CityGML 2.0 and are planned to become a part of the next
version of CityGML (version 3.0).

The conceptual UML model and XML Instance Schema are
already made available for Dynamizer ADE (Chaturvedi,
Kolbe, 2017). However, there have been a few recent additions
in the Dynamizer UML model which is going to be proposed
to the CityGML Working Group. Within Dynamizers, the
dynamic data is already modeled as AbstractTimeseries,

which is responsible for representing time-variant or dynamic
values in different and generic ways. The timeseries may
be modeled in two ways: (i) AtomicTimeseries, and (ii)
CompositeTimeseries. AtomicTimeseries consists of either
dynamicDataDR, dynamicDataTVP, or observationData.
It allows different representations of timeseries according
to the OGC TimeseriesML 1.0 (Tomkins, Lowe, 2016)
encodings (interleaved time/value pair and domain-
range), and observations encoded according to the
Observations&Measurements (O&M) standard (Cox,
2013). O&M is one of the core standards for the
response models of OGC Sensor Web Enablement (SWE)
(Bröring et al., 2011) based standards such as Sensor
Observation Service (SOS) (Bröring et al., 2012) and
SensorThings API (Liang et al., 2015). Apart from these
two representations, AtomicTimeseries now includes two
more classes (as shown in figure 1): (i) GenericTimeseries,
and (ii) BasicFileTimeseries. GenericTimeseries provides a
very basic data structure to represent timeseries data. The
advantage with GenericTimeseries is that it does not require
databases to support complex standards such as TimeseriesML
1.0. However, unlike TimeseriesML, GenericTimeseries is
not capable to map missing values or multiple values in
timeseries using interpolation and aggregation functions.
BasicFileTimeseries class allows retrieving timeseries from
basic external files such as CSV and Excel sheets. Such
functionality is helpful in working with scenarios where
timeseries data is stored in basic files (e.g. by simulation
software). The BasicFileTimeseries class provides appropriate
metadata for reading/writing timeseries from/to an external
file.

2.2 3DCityDB and ADE Plugin Manager

The current release of 3DCityDB (version 4.2) (3DCityDB,
2019) includes a new ADE Plugin Manager for its
Importer/Exporter. It allows to dynamically extend a
3DCityDB instance to facilitate the storage and management
of arbitrary CityGML ADEs (Yao, Kolbe, 2017). It is
implemented based on the Open Source Attributed Graph
Grammar (AGG) transformation engine for realizing the
automatic transformation from an XML application schema
(XSD) to a compact relational database schema (including
tables, indexes, and constraints etc.) for a given CityGML
ADE. In addition, an XML-based schema mapping file can also
be automatically generated which contains the relevant meta-
information about the derived database schema as well as the
explicit mapping relationships between the source and target
schemas and allows developers to implement applications for
managing and processing the ADE data contents stored in a
3DCityDB instance. The ADE Plugin Manager has been tested
successfully with well-known CityGML ADEs like Energy
ADE, Noise ADE, and UtilityNetwork ADE.

2.3 InterSensor Service

InterSensor Service (Chaturvedi, Kolbe, 2019) is an Open
Source application, which establishes interoperability over
heterogeneous sensor and IoT platforms and other timeseries
data in standardized ways. It allows making connections to
multiple data sources by using data adapters. These data
adapters can be developed to connect to not only different
IoT platforms, but also to external databases, CSV files,
Cloud-based spreadsheets, GPS feeds, and real-time Twitter
feeds. While querying, the service opens a data source

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W17, 2019
4th International Conference on Smart Data and Smart Cities, 1–3 October 2019, Kuala Lumpur, Malaysia

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W17-7-2019 | © Authors 2019. CC BY 4.0 License.

8

Figure 1. Modified UML Model of the Dynamizer ADE. The AtomicTimeseries includes two new classes: GenericTimeseries and
BasicFileTimeseries. The other classes are shown in (Chaturvedi, Kolbe, 2016).

connection and retrieves the observations based on querying
parameters directly from the data source. The service encodes
these observations “on-the-fly” according to internationally
standardized interfaces such as the OGC Sensor Observation
Service and OGC SensorThings API. In this way, applications
and tools can be developed based on these standards without
worrying about what different kinds of sensor platforms they
use. Multiple sensors can be attached to these infrastructures
and their interfaces will always be common for different
applications.

3. EXTENDING THE 3DCITYDB FOR SUPPORTING
STATIC AND DYNAMIC PROPERTIES

This section proposes a high level architecture for managing
and visualizing the time-dynamic properties along with static
properties of Semantic 3D City Models. The architecture
extends the 3D City Database (3DCityDB) to store and manage
dynamic properties encoded within the CityGML Dynamizer
ADE. As shown in figure 2, the 3DCityDB is extended for
supporting the Dynamizer ADE. The implementation employs
the 3DCityDB ADE Plugin Manager, which provides an
automatic way for dynamically extending the 3DCityDB to
support the storage and management of CityGML models with
ADEs. However, in order to improve querying performance,
the relational database model of Dynamizer ADE has been
developed by defining three separate modules: (i) Dynamizer
core module for storing the core attributes of Dynamizers,
(ii) Timeseries Metadata Module (for storing the metadata
of Timeseries), and (iii) Timeseries module (for storing time
point values). The advantage of keeping the Timeseries
module separate from the Dynamizer module is that this

approach allows making the Timeseries module re-usable, for
example, by storing timeseries from other ADEs such as the
Energy ADE. Furthermore, the 3DCityDB Importer/Exporter
is extended to facilitate import and export of CityGML
documents with Dynamizer ADE data. This enables managing
dynamic data (such as time points within timeseries) associated
with city objects, which can further be queried and used
using standard SQL operations. The framework also allows
accessing and retrieving static and dynamic data in an integrated
way. 3DCityDB already comes with a Web Feature Service
(WFS) interface allowing CityGML features to be requested
in standardized ways. However, the WFS is not suitable to
query dynamic/timeseries data. The Sensor Web Enablement
(SWE) standards provide comprehensive interface models and
web services such as the Sensor Observation Service (SOS)
and SensorThings API for retrieval of sensor descriptions and
observations (i.e. timeseries data) with the help of standardized
requests. In comparison to SOS, SensorThings API is a
relatively new standard, which is REST-ful, lightweight, and
using JSON data encodings. This paper further explains
ways to request dynamic data according to the OGC SOS and
SensorThings API using the Open Source InterSensor Service.
In this way, heterogeneous observations can be analyzed and
visualized in a unified way.

3.1 Relational Data Model for Dynamizer ADE

Figure 3 shows the relational database model for the Dynamizer
ADE. The following sub sections descrobe the different
modules of the relational data model.

3.1.1 Dynamizer Core Module The class Dynamizer from
the UML model consists of the following core attributes:

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W17, 2019
4th International Conference on Smart Data and Smart Cities, 1–3 October 2019, Kuala Lumpur, Malaysia

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W17-7-2019 | © Authors 2019. CC BY 4.0 License.

9

Figure 2. High Level Overview of Managing and Visualizing Static and Dynamic data using CityGML Dynamizers

(i) Dynamizer id, (ii) attributeRef, (iii) startTime, and (iv)
endTime. attributeRef refers to a specific attribute of a specific
city object by using an XPath expression. This is the static
property that should be overridden by timeseries data. startTime
and endTime are absolute time points denoting the time span
for which the Dynamizer provides dynamic values. These
core attributes are stored in the table DYN DYNAMIZER. In
addition, Dynamizer can also provide direct explicit links to
external sensor and IoT based services by using the class
SensorConnection. It includes the following attributes (i)
sensorId - a unique identification of the sensor/IoT device, (ii)
serviceType - the type of service such as SOS and SensorThings
API, (iii) sensorLocation - association with a specific city
object that hosts the sensor or to which it is attached, (iv)
linkToObservation - link to observation response (timeseries),
(v) linkToSensorDescription - link to the description/metadata
of the sensor/IoT device. For example, OGC SOS involves
different requests for retrieving sensor descriptions and
observations. DescribeSensor is used to retrieve the sensor
description in the SensorML format. GetObservation is used
to retrieve sensor observations encoded in the O&M format.
The request parameter also allows to include the specification
of spatial and temporal filters. Such links can directly be used
as a part of the Dynamizer SensorConnection without having
the need to store the timeseries observations within CityGML.
The attributes of the SensorConnection class are also stored in
the table DYN DYNAMIZER.

3.1.2 Timeseries Metadata Module Dynamizers also
support having timeseries in-line within city objects. The
in-line timeseries within Dynamizers can be modeled in two
ways: (i) AtomicTimeseries, and (ii) CompositeTimeseries.
As mentioned in section 2.1, AtomicTimeseries can be

represented according to (i) TimeseriesML Time Value
Pair encoding, (ii) TimeseriesML Domain Range encoding,
(iii) Observations&Measurements, (iv) Dynamizer Generic
Timeseries, and (v) Dynamizer Basic File Timeseries. Based
on the type of atomic timeseries, the respective metadata of
the timeseries are mapped onto the table DYN TIMESERIES.
For example, if the timeseries is represented according to the
TimeseriesML standard and it contains a specific interpolation
type, this is stored in the attribute INTERPOLATION TYPE.
Similarly, if the timeseries is being retrieved from an external
CSV file, its location is stored in the attribute FILE LOCATION.
The flag IS ATOMIC is used to determine whether the
timeseries is atomic or composite.

In order to manage CompositeTimeseries, the database structure
is inspired from the existing SURFACE GEOMETRY table
in the 3DCityDB. Since CompositeTimeseries compose of
an ordered list of AbstractTimeseries, several Atomic or
Composite Timeseries can be aggregated to form a Composite
Timeseries. Each nested timeseries references to its root using
the ROOT ID attribute. This information has a big influence
on the query performance, as it allows to avoid recursive
queries. If e.g. the retrieval of all timeseries forming a
specific composite timeseries is of importance, simply those
IDs have to be selected which contain the related PARENT ID
and ROOT ID. For instance, in energy applications, an Atomic
timeseries may be defined for a working day, a Saturday,
and a Sunday (represented by A, B, and C respectively).
Now, in order to reflect a pattern of energy consumption of
an entire week (represented as Wx), a Composite timeseries
may contain five repetitions of Atomic timeseries A followed
by single representations of timeseries B and C (represented
as AAAAABC). Similarly, for reflecting a pattern of the

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W17, 2019
4th International Conference on Smart Data and Smart Cities, 1–3 October 2019, Kuala Lumpur, Malaysia

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W17-7-2019 | © Authors 2019. CC BY 4.0 License.

10

Figure 3. Relational Database Model of Dynamizer ADE. The figure shows individual tables of Dynamizer along with their columns
and primary and foreign keys.

entire month (Mx), the Composite Timeseries may contain
four representations of the timeseries W (represented as
W1,W2,W3,W4). And lastly, for reflecting a pattern of the
entire year (Yx), the Composite Timeseries may contain 12
repetitions of the timeseries M (represented as M1,M2,...M12).
Hence, in this case, the Timeseries Y would have ID = 1 and
ROOT ID = 1; Timeseries M1 would have ID = 2, PARENT ID
= 1, and ROOT ID = 1; Timeseries W1 would have ID = 3,
PARENT ID = 2, and ROOT ID = 1; and so on.

3.1.3 Timeseries Module This modules is responsible for
storing the raw timeseries values (time-value pairs). Depending
on the source and type, timeseries can be represented according
to different data types. For example, a timeseries generated
by a weather station for temperature recordings is of datatype
double, a timeseries from a traffic camera for counting number
of cars at a junction is an integer, and another timeseries
retrieved from a moving GPS a point object.

In order to manage timeseries of different types,

3DCityDB is extended by individual tables: DYN TS INT
(Timeseries Integer), DYN TS DOUBLE (Timeseries Double),
DYN TS STRING (Timeseries String), DYN TS GEOM
(Timeseries Geometry), DYN TS URI (Timeseries External
Link), and DYN TS BOOL (Timeseries Boolean),

3.2 Import and Export of the Dynamizer ADE within the
3DCityDB

Once the relational database model is developed, the next step is
to extend the Import and Export functionality of the 3DCityDB
to map the CityGML documents with the Dynamizer ADE
onto the appropriate tables. In order to support the CityGML
Dynamizer ADE with the 3DCityDB, three major steps are
required to be performed:

1. Mapping the XML Schema definition of the ADE to a
relational schema that integrates with the 3DCityDB core
schema

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W17, 2019
4th International Conference on Smart Data and Smart Cities, 1–3 October 2019, Kuala Lumpur, Malaysia

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W17-7-2019 | © Authors 2019. CC BY 4.0 License.

11

2. Creating an XML-based schema mapping file that captures
the mapping between elements of the XML schema and
elements of the relational schema

3. Registering the ADE with the metadata tables of the
3DCityDB

The recent version of 3DCityDB (v4.2) already provides an
ADE Plugin Manager in order to automate these steps. It
reads the XML schema and applies a rule-based transformation
to derive a relational schema for the ADE that seamlessly
integrates with the 3DCityDB. In other words, the ADE Plugin
Manager automatically creates the tables and joins based on the
classes and their relations defined in the UML model. Users
can redefine default rules or even add new rules, and thus have
full control over the mapping result. However, as mentioned
in section 3.1, in order to improve querying efficiency, the
relational database model of the Dynamizer ADE involves
only three independent modules: Dynamizer Core Module,
Timeseries Metadata Module and Timeseries Module. This
approach gives flexibility to re-use existing timeseries modules
with other ADEs such as Energy ADE and UtilityNetwork
ADE. Hence, the structure of the relational database model is
different from the UML model. For this reason, it is proposed to
include the Timeseries and Metadata modules as an integrated
part of 3DCityDB. However, in the future, the ADE Plugin
Manager will be extended to map the Dynamizer UML model
in such a way that the Dynamizer core attributes are mapped
onto the Dynamizer core table and the associated timeseries are
mapped onto the Timeseries and Metadata modules.

Once the ADE is registered with the 3DCityDB by performing
the above steps, the 3DCityDB Importer/Exporter tool requires
extensions to (i) import timeseries data from Dynamizer
ADE to the new Dynamizer ADE tables, and (ii) export
timeseries data from Dynamizer ADE tables to the CityGML
documents. For this purpose, the 3DCityDB provides the
Importer/Exporter tool. Since the Importer/Exporter does
not provide generic ADE support yet, the Dynamizer ADE
extension is required to be developed against the ADE API of
the Importer/Exporter. The Dynamizer ADE extension can be
developed by performing the following steps:

1. Creating an ADE module for citygml4j for parsing and
writing CityGML with Dynamizer ADE.

2. Implementing the ADEExtension interface of the ADE
API and providing Java code for reading and writing data
into the ADE tables.

By performing these steps, the functionalities of the
Importer/Exporter can be extended for importing and exporting
the timeseries data from the CityGML Dynamizer ADE.

3.3 InterSensor Service for Dynamizer ADE

3DCityDB already comes with a Web feature Service
implementation for accessing and querying the CityGML
features and attributes. However, a WFS is not suitable for
querying time-varying data. For that purpose, the Open Source
InterSensor Service is utilized to query timeseries values from
Dynamizers. The InterSensor Service requires developing a
data adapter for 3DCityDB. This data adapter is responsible
for establishing a connection to the 3DCityDB tables for the
respective Dynamizer IDs using the following parameters:

{
d a t a s o u r c e−c o n n e c t i o n :

name : ” Dynamize rConnec t ion ”
d e s c r i p t i o n : ””
c o n n e c t i o n T y p e : ” Dynamizer ”
d a t a b a s e T y p e : ” PostgreSQL ”
i p A d d r e s s : ” 1 2 7 . 0 . 0 . 1 ”
p o r t : 5432
databaseName : ”3 DCityDB”
username : ” u s e r ”
password : ”∗∗∗∗∗∗”
d y n a m i z e r I d : ” dyn 01 WS 1 globa lRad ”

}

Using the above parameters, the InterSensor Service forms the
appropriate JDBC request and establishes connection to the
running 3DCityDB. Based on the provided Dynamizer ID, the
InterSensor Service queries the timeseries metadata (such as
observation type, unit of measurement etc.) and timeseries
data (timestamps and values) can be queried from the respective
tables.

In addition, the InterSensor Service also provides external
standardized interfaces using which the timeseries data can
be queried and visualized using the OGC Sensor Observation
Service and SensorThings API. For example, if the InterSensor
Service is deployed on the server 127.0.0.1 with port 8080, the
Dynamizer timeseries values between a specific time range can
be accessed using the SensorThings API standard as follows:

h t t p : / / 1 2 7 . 0 . 0 . 1 : 8 0 8 0 / OGCSensorThingsApi /
v1 . 0 / D a t a s t r e a m s (1) / O b s e r v a t i o n s ?
$ f i l t e r = d u r i n g
(phenomenonTime ,2019−01−01T00 : 0 0 : 0 0 /

2019−07−01T00 : 0 0 : 0 0)

Similarly, the same query on the Dynamizer timeseries can
also be performed using the Sensor Observation Service
GetObservation request as follows:

h t t p : / / 1 2 7 . 0 . 0 . 1 : 8 0 8 0 / ogc−sos−webapp / s e r v i c e ?
s e r v i c e =SOS&v e r s i o n =2.0 .0&
r e q u e s t = G e t O b s e r v a t i o n&
t e m p o r a l F i l t e r =om : phenomenonTime ,

2019−01−01T00 : 0 0 : 0 0 /
2019−07−01T00 : 0 0 : 0 0

Such queries establish connections to the 3DCityDB
Dynamizer ADE based on the connection parameters provided
in the InterSensor Service. The observations are retrieved
directly from the 3DCityDB based on the temporal filter
provided in the query. In this way, the timeseries data from
Dynamizers can be queried and visualized using the OGC
standards.

4. QUERYING AND VISUALIZATION OF DYNAMIC
AND STATIC PROPERTIES

Dynamizers have already been implemented as an Application
Domain Extension (ADE) within the OGC Future City Pilot
Phase 1 (Chaturvedi, Kolbe, 2017). The results are focused
on two scenarios: (i) integrating real-time sensor stream with
CityGML building models, and (ii) enriching 3D building wall
and roof surfaces by time-dependent solar potential simulation

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W17, 2019
4th International Conference on Smart Data and Smart Cities, 1–3 October 2019, Kuala Lumpur, Malaysia

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W17-7-2019 | © Authors 2019. CC BY 4.0 License.

12

Figure 4. Illustration of an integrated visualization of a building’s static thematic attributes and dynamic properties being retrieved
from Dynamizer A (solar potential simulation results stored in-line with the Building object) and Dynamizer B (explicit links to the

real-time sensor stream).

results. For the first scenario, a real-time temperature and
humidity sensor stream is linked explicitly with the CityGML
Building object using the Dynamizer SensorConnection class.
It associates a specific Building property (e.g. a generic
attribute called ’temperature’) directly with the sensor stream
measuring the temperature property for that building and allows
overriding the generic attribute according to the result of sensor
stream at a specific time. The sensor stream can base on the (i)
OGC Sensor Web Enablement standards (such as SensorThings
API or Sensor Observation Service), (ii) any IoT platform
(such as Thingspeak, OpenSensors, TheThingsNetwork), or
some other (proprietary) service. For the second scenario, a
CityGML Building object is enriched by performing a solar
potential simulation in order to estimate monthly solar energy
production for roofs and wall surfaces of buildings. In this
scenario, the monthly solar irradiation values are stored using
the Dynamizer AtomicTimeseries class. The irradiation values
are represented as interleaved time-value pairs according to
the TimeseriesML standard. Using this approach, one single
generic attribute (e.g. directRadiation) of the building wall
surface can be overridden according to the monthly values
represented within the AtomicTimeseries. Moreover, it allows
modeling the precise description of timeseries data with its
metadata details within the CityGML object. As a result,
it makes cross-domain exchanging of simulation results with
city objects possible allowing performing detailed realistic
simulations. The instance files are available in the Future City
Pilot Phase 1 Engineering Report (Chaturvedi, Kolbe, 2017).

The proposed architecture allows importing resulting CityGML

Dynamizer datasets into the 3DCityDB. For the scenario
1, the Dynamizer attributes are imported into the table
DYN DYNAMIZER with information about the sensor stream
such as its unique ID, links to the sensor description and
real-time observations. In this case, since there is no in-
line timeseries involved, there is no data import to the
Timeseries related tables. For the second scenario, the
AtomicTimeseries with solar potential simulation results are
imported into the Timeseries tables. The metadata such as
type of observations and Unit of Measurement are imported
into the table DYN TIMESERIES. Since the simulation results
are integer values, the timeseries values are imported into
the table DYN TS INT. Such management allows performing
temporal queries within the database, for example, generating a
timeseries graph for direct irradiation values of a building wall
surface between March and September of a specific year.

Furthermore, the extensions of the InterSensor Service
allow establishing connections to the specific Dynamizers
stored in the 3DCityDB and querying and visualizing the
dynamic properties using international standards such as OGC
SensorThings API and OGC SOS. As shown in figure 4, the
static attributes (such as Building geometry and its thematic
attributes) can be retrieved and visualized using the Web
Feature Service. The dynamic attributes of the same buildings
(i) Dynamizer A for direct links to the temperature and
humidity sensor, and (ii) Dynamizer B for representing solar
potential simulation results of its wall surface, can be retrieved
and visualized according to the OGC SWE standards with the
help of the InterSensor Service.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W17, 2019
4th International Conference on Smart Data and Smart Cities, 1–3 October 2019, Kuala Lumpur, Malaysia

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W17-7-2019 | © Authors 2019. CC BY 4.0 License.

13

5. CONCLUSIONS AND FUTURE WORK

The research work presented in this article extends the
3D City Database to store and manage dynamic properties
encoded within the CityGML Dynamizer ADE. However, a
similar approach can also be applied for managing timeseries
properties within other ADEs such as the Energy ADE in the
future. A relational database model for the Dynamizer ADE
has been proposed in the paper by defining three separate
modules: (i) Dynamizer core module for storing the core
attributes of Dynamizers, (ii) Timeseries Metadata Module (for
storing the metadata of Timeseries), and (iii) Timeseries module
(for storing time point values). The advantage of keeping the
Timeseries module separate from the Dynamizer module is that
this approach allows making the Timeseries module re-usable,
for example, by storing timeseries from other ADEs such as the
Energy ADE.

The implementation employs the 3DCityDB 4.2 ADE Plugin
Manager, which provides an automatic way for dynamically
extending the 3DCityDB to support the storage and
management of CityGML models with Application Domain
Extensions. Furthermore, the 3DCityDB Importer/Exporter
has been extended in order to facilitate the import and export
of CityGML documents with Dynamizer ADE data. This
enables managing dynamic data (such as time points within
timeseries) associated with city objects, which can further be
queried and used using standard SQL operations. In the future,
the developments will include the creation of Dynamizer ADE
module for the citygml4j library.

The framework allows accessing and retrieving static and
dynamic data in an integrated way. 3DCityDB already comes
with a Web Feature Service (WFS) interface allowing CityGML
features to be requested in standardized ways. The proposed
framework enables CityGML Viewers to access static data
(using OGC WFS interface) and dynamic data (using the OGC
SWE interfaces such as SOS and SensorThings API) in an
integrated fashion with the help of the InterSensor Service.

REFERENCES

3DCityDB, 2019. 3D City Database for CityGML Version 4.2.
https://www.3dcitydb.org/3dcitydb/documentation/ (21 March
2019).

Agugiaro, G., Benner, J., Cipriano, P., Nouvel, R., 2018.
The Energy Application Domain Extension for CityGML:
enhancing interoperability for urban energy simulations. Open
Geospatial Data, Software and Standards, 3(1), 2.

azul, 2016. 3D City Model Viewer for MacOS developed by
TU Delft. https://github.com/tudelft3d/azul (21 July 2019).

Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., Çöltekin, A.,
2015. Applications of 3D City Models: State of the Art Review.
ISPRS International Journal of Geo-Information, 4(4), 2842–
2889.

Bröring, A., Echterhoff, J., Jirka, S., Simonis, I., Everding, T.,
Stasch, C., Liang, S., Lemmens, R., 2011. New Generation
Sensor Web Enablement. Sensors, 11(3), 2652–2699.

Bröring, A., Stasch, C., Echterhoff, J., 2012. Sensor
Observation Service Interface Standard, OGC Doc. No. 12-006.
http://www.opengeospatial.org/standards/sos (11 April 2019).

Chaturvedi, K., Kolbe, T. H., 2016. Integrating Dynamic Data
and Sensors with Semantic 3D City Models in the context of
Smart Cities. Proceedings of the 11th International 3D Geoinfo
Conference, ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, IV-2/W1, Athens,
Greece.

Chaturvedi, K., Kolbe, T. H., 2017. Future City
Pilot 1 Engineering Report, OGC Doc. No. 19-098.
http://docs.opengeospatial.org/per/16-098.html (11 April
2019).

Chaturvedi, K., Kolbe, T. H., 2019. Towards Establishing
Cross-Platform Interoperability for Sensors in Smart Cities.
Sensors, 19(3).

Cox, S., 2013. Observations and measurements
(O&M) | OGC Document No. 10-004r3.
http://www.opengeospatial.org/standards/om (21 March
2019).

FME, 2019. Feature Manipulation Engine by Safe Software.
https://www.safe.com/ (21 July 2019).

Gröger, G., Kolbe, T. H., Nagel, C., Häfele, K.-H., 2012. City
Geography Markup Language (CityGML) v 2.0, OGC Doc.
No. 12-019. http://www.opengeospatial.org/standards/citygml
(08 March 2019).

InfraWorks, 2019. Infrastructure Design Software by Autodesk.
https://www.autodesk.com/products/infraworks/overview (21
July 2019).

Liang, S., Huang, C.-Y., Khalafbeigi, T., 2015. SensorThings
API Part 1: Sensing, OGC Doc. No. 15-078r6.
https://www.opengeospatial.org/standards/sensorthings (11
April 2019).

Reitz, T., Schubiger-Banz, S., 2014. The Esri 3D city
information model. IOP Conference Series: Earth and
Environmental Science, 18, 012172.

Tomkins, J., Lowe, D., 2016. Timeseries Profile of
Observations and Measurements, OGC Document No.
15-043r3. http://www.opengeospatial.org/standards/tsml (15
March 2019).

Yao, Z., Kolbe, T. H., 2017. Dynamically Extending
Spatial Databases to support CityGML Application Domain
Extensions using Graph Transformations. T. P. Kersten
(ed.), Kulturelles Erbe erfassen und bewahren - Von der
Dokumentation zum virtuellen Rundgang, 37. Wissenschaftlich-
Technische Jahrestagung der DGPF, Publikationen der
Deutschen Gesellschaft für Photogrammetrie, Fernerkundung
und Geoinformation (DGPF) e.V., 26, Deutsche Gesellschaft
für Photogrammetrie, Fernerkundung und Geoinformation e.V.,
Würzburg, 316–331.

Yao, Z., Nagel, C., Kunde, F., Hudra, G., Willkomm, P.,
Donaubauer, A., Adolphi, T., Kolbe, T. H., 2018. 3DCityDB
- a 3D geodatabase solution for the management, analysis, and
visualization of semantic 3D city models based on CityGML.
Open Geospatial Data, Software and Standards, 3(1), 5.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W17, 2019
4th International Conference on Smart Data and Smart Cities, 1–3 October 2019, Kuala Lumpur, Malaysia

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W17-7-2019 | © Authors 2019. CC BY 4.0 License.

14

