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ABSTRACT: 

 
Utility poles located along roads play a key role in road safety and planning as well as communications and electricity distribution. In 

this regard, new sensing technologies such as Mobile Terrestrial Laser Scanner (MTLS) could be an efficient method to detect utility 

poles and other planimetric objects along roads. However, due to the vast amount of data collected by MTLS in the form of a point 

cloud, automated techniques are required to extract objects from this data. This study proposes a novel method for automatic extraction 

of utility poles from the MTLS point clouds. The proposed algorithm is composed of three consecutive steps of pre-processing, cable 

area detection, and poles extraction. The point cloud is first pre-processed and then candidate areas for utility poles are specified based 

on Hough Transform (HT). Utility poles are extracted by applying horizontal and vertical density information to these areas. The 

performance of the method was evaluated on a sample point cloud and 98% accuracy was achieved in extracting utility poles using 

the proposed method. 

 

 

1. INTRODUCTION 

A utility distribution network is vital for transferring electricity 

from power plants to power consumables (Guan et al., 2016). 

Mapping a utility network including poles and cables is vital due 

to the importance of electricity in modern life. Various 

technologies and equipment such as optical cameras (Ye et al., 

2014), laser scanners (Bae et al., 2014), and satellite data (Yu et 

al., 2015a) have been proposed for mapping utility poles.  There 

are a number of considerations when choosing a method for 

utility pole mapping including accuracy, safety, cost, and time. 

(Baffour, 2002; Shams et al., 2018; Souleyrette et al., 2003). 

High resolution aerial images can be accurate data sources, but 

manual extraction of pole locations is time consuming and  

conventional ground control surveying is needed to achieve high 

accuracy (Wen et al., 2019). Further, weather conditions can 

affect accuracy (Holopainen et al., 2013). Conventional 

surveying is especially tedious for large areas and poses safety 

risks to personnel due to their proximity to traffic (Shams et al., 

2018; Souleyrette et al., 2003).  

 

Recently, the use of vehicle mounted MTLS systems has been 

growing for utility mapping studies (Li et al., 2019a). MTLS 

systems are capable of collecting dense point clouds that have 

many applications including transportation infrastructure 

mapping, asset management, Geographic Information System 

(GIS) data collection, and three dimensional (3D) modelling 

(Shams et al., 2018). An MTLS system includes a high accuracy 

Global Positioning System (GPS), an Inertial Measurement Unit 
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(IMU), one or more video logging cameras, and a Distance 

Measuring Instrument (DMI) that is used to dead reckon between 

GPS points. (see Figure 1)(Che et al., 2019; Cui et al., 2019).  

Transportation agencies are willing to use MTLS for a number 

of applications because collecting accurate point cloud data can 

be collected at highway speed. These applications include road 

surface modeling and collection of traffic signs, poles, trees, and 

other planimetric features in or near a roadway’s right-of-way. 

(Balado et al., 2017; Cabo et al., 2014; Chen et al., 2018; Riveiro 

et al., 2015; Serna and Marcotegui, 2014; Shams et al., 2018; Xu 

et al., 2018; Yadav and Chousalkar, 2017; Yang et al., 2015; 

Yang et al., 2012). In addition, ground based MTLS collection 

of utility poles adjacent to the roadway results in a denser dataset  

compared to Airborne Laser Scanning (ALS)(Li et al., 2019a). 

 

 
 

Figure 1. The MTLS technology with its sensors(Yu et al., 

2015b) 
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It is estimated that there billions of utility poles in use worldwide 

are more than 160 million utility poles in the United States alone.  

Many of these poles are adjacent to roads.  An accurate inventory 

of utility poles for asset management and roadside safety 

planning is beneficial to transportation and public works 

agencies. The primary objective of this research is the 

development of an efficient framework for the automatic 

extraction of an accurate utility pole inventory from an MTLS 

point cloud. In the next section, we discuss related studies and 

how they influence this research.  We follow with a discussion 

of the proposed method, experimental results, and conclusions. 

 

2. RELATED WORKS 

Utility pole mapping from point clouds can be categorized in two 

main groups: supervised and unsupervised classification. 

Supervised classification uses common classifiers such as linear 

discriminant analysis and Support Vector Machines (SVM) 

(Ordóñez et al., 2017; Wen et al., 2019) to extract interested 

objects. Although they can be accurate, their training processes 

are time consuming and require a large amount of manually 

collected training data to ensure accuracy (Che et al., 2019; 

Lehtomäki et al., 2019). Unsupervised classification methods 

usually focus on the cylindrical shape of poles (Hao et al., 2018; 

Landa and Ondroušek, 2016). These methods can potentially 

map pole-like objects located throughout diverse regions with no 

need for training data (Li et al., 2019b).  

 

Numerous studies have focused on unsupervised classification of 

pole-like objects from point clouds collected by different LiDAR 

platforms (Cabo et al., 2014; Yadav et al., 2016; Yokoyama et 

al., 2011). However, few studies have focused on extracting only 

utility poles. In this regard, Lehtomäki et al., (2010) presented a 

scan line-based algorithm to map pole-shape objects such as 

traffic signs, lampposts and trees. They first segmented 

consecutive points based on scan line information. Then, due to 

the fact that poles are circular, any clusters that followed a 

circular form were considered to be poles. Their method was 

tested on a point cloud of a road environment collected using 

MTLS with 81.0% accuracy. Similarly, Yokoyama et al., (2011) 

proposed an algorithm to extract pole-shape objects based on 

three phases: Laplacian smoothing, Principal Component 

analysis (PCA), and detecting the degree of the pole-shape 

objects. They achieved an accuracy of 97.4%.  In the last decade, 
voxels-based methods and PCA have been frequently used to 

recognize the poles (Cabo et al., 2014; Kang et al., 2018; Yang 

et al., 2015). Likewise, Li et al., (2018) used PCA in their pole-

like objects classification method.  

 

3. METHODOLOGY 

The literature review has indicated that there is a need for a 

framework that can efficiently extract specific pole types—in our 

case, utility poles. It is proposed that by leveraging cable 

information from a LiDAR point cloud, utility poles can be 

distinguished from other types of poles. The workflow of the 

proposed method is shown in Figure 2 and extracts utility poles 

in three main steps:  

1) Point cloud preprocessing including sectioning to reduce 

point cloud volume and speed-up implementation; noise 

removal; and low-height filtering to remove ground points 

and objects like bushes, and cars; 

2) Cable area detection using the Hough Transform (HT) 

algorithm to estimate the search area for utility poles. 

3) Extracting poles using horizontal and vertical density 

process. 

 

 
 

Figure 2. The flowchart of the proposed algorithm for poles 

extraction. 
 

3.1 Pre-Processing 

Dividing an MTLS point cloud into smaller sections will 

decrease overall processing time. The point cloud is divided into 

equal sections using the trajectory data (i.e. red lines in Figure 

3). After sectioning, all additional processing is implemented on 

each individual section.  

 

 
 

Figure 3. Presentation of the Pre-Processing step. 
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After dividing the point clouds into small sections (e.g. tiles), the 

noisy points with abnormal altitude are deleted (see Figure 4) 

using  the Sparse Outlier Removal method proposed by Rusu et 

al., (2008). 

 
 

Figure 4. Identifying noisy points with abnormal altitude. 
 

Using the Sparse Outlier Removal method, k-nearest neighbour 

(k-NN) points are selected around each single point. Then, the 

identifying elevation (z) for noisy points, mean (𝜇) and standard 

deviation (𝜎) as shown in Equation (1) and (2) are calculated. 

Finally, those points whose altitude falls within a specific range 

of the standard deviation (i.e. µ ± αS where α is a coefficient for 

increasing impact of standard deviation) are considered as not-

noisy (𝑁𝑅) points (Equation 3) and all other points are removed.

  

μ =  
(𝑧1 + 𝑧2 + ⋯ 𝑧𝑖)

𝑘
 (1) 

𝜎 =  (
[(𝑧1 − 𝜇)2 + (𝑧2 − 𝜇)2 + ⋯ + (𝑧𝑖 − 𝜇)2]

𝑘2 ) (2) 

𝑁𝑅 =  {
𝑁𝑜𝑛 − 𝑁𝑜𝑖𝑠𝑦 𝜇 − 𝛼 × 𝜎 ≤ 𝑧 ≤ 𝜇 + 𝛼 × 𝜎

𝑁𝑜𝑖𝑠𝑦 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} (3) 

 

After the noise removal, the area along X and Y axis are 

partitioned into an M×M grid as shown in Figure 5. The 

minimum elevation within each cell is detected and then all 

points in the cells are shifted along the Z axis in which the 

minimum elevation would be zero. After that, a predefined 

threshold is considered to filter low-height objects. 
 

 
Figure 5. Method of eliminating low-height objects using 

gridding. 

 

3.2 Cable Area Detection 

Although many outliers are removed in the preprocessing step, 

lots of redundant points still remain in the point cloud that 

represent objects other than poles such as trees and buildings. 

Thus, searching for poles objects may still be tedious. In this 

study, the HT algorithm is used to bound the search area for 

utility pole extraction by detecting the wire paths. This algorithm 

is capable of detecting linear objects on binary images (Guan et 

al., 2016). For this purpose, a raster image is first created from 

the remaining points, and the HT algorithm is performed on the 

extracted binary edge image using an edge detection method (i.e. 

canny). A significant concept for the HT method is the mapping 

of single edge pixels on the binary image space to a line in the 

Hough space using Equation 4. The regions in Hough space 

where most lines intersect can be interpreted as true lines in the 

binary image. 
 

𝑟 = 𝑥𝑐𝑜𝑠(𝜃) + 𝑦𝑠𝑖𝑛(𝜃) (4) 
 

In this research, the mathematical background of the HT 

algorithm is not discussed in detail and readers are referred to 

(Duda and Hart, 1972) for additional details of the HT algorithm. 
 

3.3 Poles Extraction  

After transferring the extracted lines from the image back to the 

point cloud space, candidate poles extraction (horizontal density 

process) and true poles identification (vertical density) are 

considered in order to detect poles. For the horizontal density 

process, resampled points are created on each extracted line. 

Afterwards, a rectangle with a length perpendicular to the line, is 

considered in order to calculate density. Using these densities for 

resampled points, a horizontal density diagram can be obtained. 

Next, the diagram is categorized into two groups of low- and 

high-density points using Otsu’s thresholding method (Otsu, 

1979). The high-density category is selected as the candidate for 

true poles identification.  
 

A major problem with the selected candidate points is that denser 

objects other than poles can be extracted (e.g. trees). Therefore, 

vertical density stage is designed to identify true poles. For this 

purpose, first of all, same as the horizontal density process but 

along the Z-axis the density profile is obtained. It is assumed that 

a diagram of poles follows linear status whereas non-pole objects 

such as trees have a disordered case. Here, the true poles are 

those that the density of the sampling points are greater than zero, 

and also the calculated standard deviation of the density for all 

sampling points are less than a pre-defined threshold. This 

threshold can be found based on a number of training data.  
 

4. EXPERIMENTS AND RESULTS 

4.1 Study Area 

This research was evaluated using MTLS data collected along a 

750m urban corridor in Anderson, South Carolina, USA. The 

study area includes various planimetric features such as utility 

poles, trees, traffic signs, and buildings. The yellow line in 

Figure 6-a displays the study area, and Figure 6-b shows the 

collected point cloud of this study area using the MTLS system. 
 

4.2 Results 

Due to the size of the point cloud (i.e. 1.4 Gigabytes), the 

sectioning step was done to generate smaller sections to reduce 

processing time. Figure 7 shows the resultant smaller sections 

using trajectory data with 60 m intervals. Figures 7-a and -b show 

two sample sections of the point cloud.  
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Figure 6. Study area: (a) Top view image of the study area; (b) 

Collected point clouds using the MTLS system. 

 

After dividing the point clouds into smaller sections, noisy points 

were removed considering 20 neighborhood points and a 

coefficient equal to 1. An elevation thematic map is shown in 

Figure 8-a where darker colors represent low altitude objects and 

brighter colors represent higher altitude objects. Figure 8-b, 

shows a maximum elevation change from 940 m to 840 m after 

removing noisy points. 
 

 
 

Figure 7. Sectioning of point cloud. (a) and (b) are two sample 

sections. 

 

In the low-height objects filtering, 5×5 sq. m. cell size and 7 m 

threshold was considered. Figure 9-b shows the remaining points 

from a sample section after eliminating the low-height objects. 

As can be seen from this figure, the remaining points are mostly 

utility poles and cables. 

 
Figure 8. Noise removal of the point clouds with abnormal 

elevation. (a) A sample section which includes noisy points; (b) 

Removing the noisy points from the considered section. 

 

 
Figure 9. Low-Height Filtering step in order to eliminate 

unneeded objects. (a) A sample of the created sections; (b) 

Eliminating unneeded objects such as ground points. 

(a) 

(b) 

(a) 

(b) 
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In the cable extraction step, the pixel size of 30 cm was 

considered to create raster images. Figure 10-a shows the 

obtained raster image for the sample section. The raster images 

were enhanced using the Closing morphological operator. The 

Canny algorithm was applied to extract the edges on the image. 

The step-by-step output of the HT algorithm on this binary image 

is presented by Figures 10-b, 10-c and 10-d. As can be seen from 

these figures, the HT algorithm has successfully detected the 

cable area detection. 

 

Figure 10. Cable area detection using the HT algorithm. (a) 

Creating a binary image from the remaining point cloud after 

low-height objects filtering; (b) Applying closing  

morphological operator to enhance the binary image; (c) Edge 

detection by canny algorithm; (d) Detected lines with the HT 

algorithm that are transferred back to the point cloud space. 

 

The interval space for point sampling in the horizontal density 

profiling was 0.1 m, and a 0.4m×2m rectangle perpendicular to 

the obtained cable area in each sampling point was considered as 

the neighboring window for calculating the density. Figure 11 

shows an example of the horizontal density profiling.  

 

 
 

Figure 11. Diagram of horizontal density of a line which 

located on a cable area. 

 

Also, the vertical density profile for each candidate pole was 

obtained with a 0.8 m sampling interval along the Z axis (Figure 

12). In this step, the first condition to accept the candidate pole 

as a true pole was that the density in of all cubes should be greater 

than zero. Also, the threshold for the standard deviation was 

considered 4.5.  

 

 
Figure 12. Illustrating diagram of vertical density of a pole and 

non-pole object. (a) Vertical density of a pole object. (b) 

Vertical density of a non-pole object. 

 

Finally, all the utility poles were extracted from the dataset. 

Figure 13 displays the final output from the proposed algorithm. 

In the study area a total of 50 utility poles were manually 

identified and the proposed method successfully and correctly 

extracted 49 poles with no false positives. 

 

 
Figure 13. Output of the proposed algorithm which identified 

by red color. The proposed method successfully extracted 49 

poles among 50 poles available at the urban area. 

 

4.3 Discussion 

The proposed method was evaluated in an urban area which the 

authors believe is more challenging in comparison to a non-

urban area used in most previous studies. This is because rural 

areas do not usually have pole like features (other than trees) 

such as light poles. The focus in this research was extracting only 

utility poles. An extracted accuracy of 98% was achieved and 

there were no non-utility poles included in the final output (false 

positives). It should be noted that the only information used in 

this method are density and trajectory data which shows the 

superiority of the proposed method compared with methods that 

(a) 

(d) 

(b) 

(c) 

(a) 

(b) 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W18, 2019 
GeoSpatial Conference 2019 – Joint Conferences of SMPR and GI Research, 12–14 October 2019, Karaj, Iran

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W18-1001-2019 | © Authors 2019. CC BY 4.0 License.

 
1005



 

require acquired images, intensity information, and scan angle 

(Zia et al., 2013; Yang et al., 2015; Yadav and Chousalkar, 2017) 

which may not be available. Moreover, in our method the 

manually collecting training data, which is a time-consuming 

process, is not necessary. The proposed method was 

implemented in MATLAB and tested on a laptop system with 

normal configuration of Intel (R) Core (TM) i5-3210M CPU 

@2.50GHz, 12GB RAM, DDR 3, NVidia GeForce 2.630 GB, 

and does not need a cloud computing system with 36-Cores, 

128GB DDR4 RAM which used in Yadav et al., (2016).  

 

 

5. CONCLUSION AND FUTURE WORKS 

This paper proposed a method for extracting utility poles from 

MTLS point clouds by initially dividing the data into smaller 

sections and eliminating noisy and unneeded pointes from each 

section. The HT algorithm is used to detect cable areas associated 

with utility poles, and then only utility poles are extracted based 

on density information.  The proposed method was tested on a 

sample point cloud data set from an urban corridor that includes 

vehicle traffic, signs, light poles, buildings, trees, and other 

planimetric features. The results showed 98% accuracy in 

detecting utility poles. High speed and easy-to-implement in 

addition to using only the trajectory and density information can 

be the most important strengths of the proposed method. 

Although the results were promising, testing the proposed 

method on other datasets is desirable. Applying the method to 

airborne LiDAR may allow collection of utility poles in locations 

where MTLS is not feasible.  Processing an airborne LiDAR set 

presents additional challenges because of the collection angle. 
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