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ABSTRACT:

3D representation of the environment is a piece of vital information for most of the engineering sciences. However, providing
such information in classical surveying approaches demands a considerable amount of time for localizing the sensor in a desired
coordinate frame to map the environment. Simultaneous Localization And Mapping (SLAM) algorithm is capable of localizing
the sensor and do the mapping while the sensor is moving through the environment. In this paper, SLAM will be applied on the
data of a lightweight 3D laser scanner in which we call semi-sparse point cloud, because of the unique specifications of the point
cloud which comes from various resolutions in vertical and horizontal directions. In contrast to most of the SLAM algorithms,
there is no aiding sensor to provide prior information of motion. The output of the algorithm would be a high-density full geometry
detailed map in a short time. The accuracy of the algorithm has been estimated in a medium scale simulated outdoor environments
in Gazebo and Robot Operating System (ROS). Considering Velodyne Puck accuracy which is 3cm, the map was generated with

approximately 6 cm accuracy.

1. INTRODUCTION

According to Cadena et al (Cadena et al., 2016) the first 20
years of the SLAM history which is from 1986 to 2004 is the
classical age of this problem. Researchers were mostly focused
on the main probabilistic formulations such as Extended Kal-
man Filters (EKF), Particle Filters (PF), etc. The subsequent
period has named as algorithmic-analysis age from 2004-2015
which was mainly focused on the study of the fundamental
properties of SLAM including observability, convergence, and
consistency. Table 1 gives information about researches and
developments in the second age of SLAM.

Year Topic
2006 | Probabilistic approaches and data association

2008 Filtering approaches

2011 SLAM back-end

2011 Observability, consistency and convergence
2012 Visual Odometry

2016 Multi robot SLAM

2016 SLAM in the Handbook of Robotics
2016 Theoretical aspects

Table 1. Researches of the second age
(Cadena et al., 2016)

Younes et al in (Younes et al., 2017) divided the SLAM al-
gorithms into two different categories which are filter-based
(before 2010) and keyframe-based (after 2010) architectures.
Keyframe-based algorithms are mostly based on the pose graph
optimization or Bundle Adjustment. Most of the SLAM al-
gorithms are based on the visual sensors as the main sensor. The
reason is that cameras are inexpensive, lighter and it is easier to
extract more information from images rather than laser scan-
ner data or RADAR information. Each kind of sensor has its
own pros and cons. For example, Cameras have some limita-
tion such as limited field of view (FOV), scale ambiguity, in-
trinsic calibration estimation, etc but also they will provide a
dense tensor of the environment which is very similar to the
visual information of the human. For those laser scanners such

as Velodyne or Hokuyo, it is possible to have 3D information
of the surrounding area as the output of the sensor however the
density of the points are not comparable with the cameras. As
another option, stereo cameras or RGB-D sensors like Kinect
can provide a dense 3D coordinate of the surrounding environ-
ment but the range of these kinds of sensors are not more than
a couple of meters.

Zhang and Singh (Zhang, Singh, 2014) have proposed a method
to estimate the odometry information by rotating a 2D line laser
scanner around its axis and matching the receiving points of
each scan. In order to reach that aim, they had to use an en-
coder in order to calculate the orientation of the laser scanner
according to the rotating axis and then register each consecutive
scan with respect to the previous one.

In all of the mentioned algorithms, the most important step of
the algorithm is to register the new coming data with respect to
the previous data. Therefore, using the best method of registra-
tion is crucial to achieving the best estimation.

According to Holz et al (Holz et al., 2015), to register a point
cloud with respect to another one, there are two main ap-
proaches. Iterative Closest Point (ICP) which is a well-known
approach for point cloud registration and key point extraction
and feature matching. However, not all the point clouds have
the same specifications to perform either one or both of those
approaches.

The most important application of the SLAM is in robotics sci-
ences. However, nowadays, it is used to generate the 3D model
from complex objects and/or environments such as archeolo-
gical sites/objects, forests and plants, real-time change detec-
tion, Building Information Modeling (BIM), As-built construc-
tion maps, and any other application which needs real-time or
post-processed High Density maps (HD Maps). This study is
about applying the SLAM on a mobile system in real time, us-
ing a specific type of point cloud which in this paper named as
the semi-sparse point cloud.
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2. METHODS

SLAM does the localization by comparing some features which
are available on the map with those which have found by the al-
gorithm. As a matter of fact, the final step of the localization
is actually solving a transformation problem, which means, we
have two sets of points in different coordinate systems and by
knowing the relations between the points, transformation prob-
lem is solvable. Therefore we need a map for localization.
However, as discussed in the previous section, SLAM should be
able to generate the map. For map generation, we need trans-
formation parameters in order to move from the sensor coordin-
ate frame to the global coordinate frame. Considering these
explanations, we need a map for localization and we need loc-
alization to generate the map.

Map
Generation

Localization

Retnement SLAM

Motion
Estimation

Figure 1. SLAM big picture

Figure 1 shows four main steps of the SLAM, which are initial
motion estimation (Odometry), motion refinement, map gener-
ation and localization.

It is common to use aiding sensors such as Inertial Measure-
ment Unit IMU), Odometer, etc. to provide initial motion es-
timation. However, in this paper initial motion will be estimated
from the data itself. As a common approach to initialize the co-
ordinate system, local information of the sensor at time ¢y will
be a starting point.

C’globaltO = Tsenom,o (1)

In the above equation, Clgopa is the reference point of the
SLAM agorithm and T'sensor, is the transformation parameter
if the sensor at time to. It is common to select the T'sensor, as
Identity matrix like equation 2.

Tsem”g = Identity )

In any registration problem, in order to estimate the transform-
ation parameters, it is necessary to find common features or ob-
jects (In this study edge and planar points). Almost all avail-
able methods try to minimize the differences between common
features. However, finding correspondence feature and treating
them is not the same in different methods.
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In equations 3, T is transformation matrix, ¢; to ¢3 are transla-
tion parameters and R, to R33 are rotation parameters.

2.1 Initial estimation

A feature can be defined as a point which is being described by
a cluster of points (usually neighbor points) which can describe
some specifications of that position. Those specifications can
be normal vectors, curvatures, etc. In this paper, in order
to simplify the feature detection problem, points divided
into two different categories, edge and planar. In the raw
point clouds, each point has 4 dimensions such as X, Y, Z
coordinates and intensity. Intensity is highly dependant on
the surface texture, the incidence angle of the laser beam
and the distance. The surface texture is not likely to change
while data recording. However, because of using a mobile
system, distance and incidence angle will change in each
scan. Therefore, the intensity is not a reliable information.
Finding a correlation between data is the key to feature
detection. Equation 4 provide curvature value for each point by
comparing the position of each point according to its neighbors.

n

1
c= ——
n- |1 Xall 2

=—n,jl=1

X1 )

By applying a threshold to curvature value, it is possible to di-
vide the points into a potential edge and planar categories. It is
obvious that not all of the potential feature points are useful so,
we are going to use those potential edge points which have the
highest curvature and those planar points which have the lowest
curvature. Figure 2 shows edge points detected in a scan.

Figure 2. Detecting Edge points in semi-sparse point cloud

By assuming that we are confident that each point has a cor-
respondent and the position of each point in 3D space will not
change, using 3D to 3D transformation methods will be help-
full. In another word, we need be able to measure the same
point from different positions which is almost impossible in the
real world situation. 2D to 3D correspondences method used to
solve the problem.

As it is obvious, planar points will mostly appear on the ground
or flat (surface) shaped objects and also edge point can be found
on linear shaped objects. Therefore, 2D objects can be defined
as surfaces and lines and the aim is to find a line correspondence
for an edge point and/or a surface correspondence for a planar
point.

Rotary mobile laser scanners are scanning the surrounding en-
vironment in much more faster frequency rather than other
scanners in geomatics applications. The scanning rate is usu-
ally between 5 to 20 Hz. Therefore, the displacement between
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two consecutive scans should not exceed more than 1 meter if
the maximum speed limits is up to 70 Km/h. This specification
helps the algorithm to find the correspondences. The first step
is to iterate through each interest point and try to find closest
possible feature points which fulfill the neighbor selection con-
ditions. Figure 3 shows the big picture of the procedure.

Point Cloud ¢,
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ature High curvature
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Figure 3. Flowchart of Initial motion estimator

The Velodyne Puck Laser scanner which is used in this thesis
can provide 300000 points per second. Iterating through all of
the points and calculate the distance in order to compare the in-
terest point and select the closest ones is a time-consuming pro-
cedure. Therefore, using an optimal way to search for neighbor
points is highly important. Kd-tree search is one of the fast-
est algorithms in order to find K nearest neighbors according to
(W. Moore, 2004).

Edge Points:

On one hand, two points needed to create a line and on the other
hand, it is desired to select the points as far as possible regard-
ing each other. The further the points are the better the line
parameters can be estimated. To satisfy both cases, it is better
to select closest points which do not have the same lase ID that
the interesting point has. Then, Kd-tree will provide us sorted
closest potential neighbor points which are not further than a
certain radius threshold and after checking the laser ID of the
sorted points, 2 of them which have all criteria, will be selected
to form 2d correspondent feature. For Kd-tree radius threshold,
as we discussed before, displacement of the scanner is not going
to be more than 1 meter in two consecutive scans however, the
scanner may rotate according to each axis, the displacement can
increase relatively. The further the point from the scanner, the
more displacement according to the previous scan. Practically,
setting 5 meters as radius threshold of Kd-tree for this sensor
will provide enough inliers to form the features. Now there are
three points (One interest point and two neighbor points) avail-
able for calculating the point to line distance by using equations
5to7.
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In the above equation, P; is interest point, P, and P3 are first
closest and second closest points respectively. A, B and C are
3D vectors generated by subtracting the points as it is shown.
D is the distance between interest point to the correspondent
line.

Planar Points:

Planar points should be projected to a surface to estimate the
distance. Therefore, the minimum number of neighbor points
will be three. The selection procedure of the closest neigh-
bor planar points is the same as edge points and projecting the
planar point to the correspondent surface is as follow. First,
calculate the normal of the correspondent plane to estimate the
parameters of the plane which is fitted to the neighbor points as
described in equations 8 to 10.

P=[x; vi z]" ®)
A=Ps—P, B=P-P )
V=Ax B (10)

In the above equation, P, is the point of interest, P, to P4 are
the neighbor points, Aand B are two vectors on the plane and
N is the normal of the plane. N can provide 3 coefficients out
of four coefficients of the plane formula. By considering the
following equation as a surface equation, and using one of the
neighbors points coordinate, forth coefficient of the plane will
be calculated using equations 11 and 12.

ax +by+cz+d=20 (1
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By having all coefficients of the correspondent plane, calculat-
ing the difference between the interest point and correspondent
plane is just a simple multiplication as described in equation 13
and 14.

NN (13)
[l V]
D=P?xN+d (14)

Estimation:

With the correspondences of the feature points found, sensor
motion will be recovered by minimizing the overall distances of
the feature points. There are 6 unknown such as 3 orientation
parameters and 3 translation parameters which they should be
estimated from equation 15.

= (ATA)T'A"B (15)
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In the above equation, A is the coefficient matrix with the di-
mension of n by 6, B is the numeric term (n by one) and x is a
6 by 1 vector which is the estimated corrections of translations
and rotations parameters. Since just two consecutive scans are
comparing with each other, accumulation of the errors may af-
fect the registration results rapidly, therefore, the position and
orientation of the last scan should be corrected according to the
other scans also.

2.2 Refinement

Considering that accumulated errors may cause a considerable
drift in the final result, refining the estimated motion from the
previous part will be explained in this section.
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Figure 4. Flowchart of Refining algorithm

SLAM algorithm always updates the map by receiving new data
and we are going to use updated maps from previous scans in
order to refine the motion model of the new coming scan. The
first scan will remain in its coordinate system by this assump-
tion that there is no error in its pos (position and orientation)
information. The second scan also will register according to the
first one and since it is just the starting of the procedure, there
is no accumulated error. The initial pos of the third scan will be
estimated by the second scan and from this point, errors of the
second scan will be added to the error of the motion estimation
of the third scan. Figure 4 shows the steps in this section.

2.2.1 Point to Line Initial motion estimation transfer the
point cloud roughly close to its true pos in the global coordinate
system. And the algorithm finds closest edge neighbor points
that might be correspondent with new edge point. The aim is to
find the correspondent line to the selected edge point. One of
the ways is to estimate the distribution of the neighbors in 3D
space by calculating the covariance matrix (equation 16).
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Eigenvalues and eigenvectors of the covariance matrix will give
us the parameters of the corresponding line of the selected edge

point. Our interest is to have eigenvalues which have differ-
ent magnitudes to identify the direction of the edge line in 3D
space. So, if all of the eigenvalues approximately have the same
values it means that either there is no edge or we couldnt find a
reliable correspondent edge for the selected edge point.

2.2.2 Point to Plane It is the same approach to find the
neighbors for selected planar points. However, treating the
neighbors is different.

ax +by+cz+d=0ax+by+cz=—d a7)

By calculating the %,%,% from equation 17 it is possible to
form the Jacobian matrix and solve it to have an estimation of
plane coefficients. By applying a threshold on the residuals it is

possible to make sure if the surface is reliable or not.

2.2.3 Refining the motion estimation Previous two sub-
sections return the distance between each point and its 2D cor-
respondent. Now by having those distances, we can minimize
the distances to have a global pos estimation for each new scan
by solving the coefficient matrix.

3. DATA AND TEST AREA
3.1 Hardwares and softwares

Figure 5 shows the hardware configurations of the system
which is used in this study. The unit has an external battery
to power up the computer and laser scanner simultaneously.
ROS (Robotics Operating System) kinetic has selected as the
software operating system and Intel Nuc has selected as the
hardware processing platform which has intel core i7 CPU,
16GB RAM and 250GB SSD hard drive. Operating System
(OS) of the computer was Ubuntu 16.04 LT.

LIDAR
Unit «

USB Port for
Datarecording

On-board
Computer

Figure 5. Handheld laser scanner configuration

Velodyne sends its data via ethernet cable to the computer and
a driver was converting data to Ros messages format (O’Quin,
2018). The driver is available on github which is supporting all
models of Velodyne scanners.

On the other hand, in order to asses the accuracy, a small-
scale city environment has been created in Blender software
and feed to Gazebo simulator to simulate the VLP-16 data in
the modeled area.
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3.1.1 ROS ROS started as a project in Stanford University
in mid-2000. From May 2007 it became public and others also
starting to contribute to this project. In a short time, it became
one of the most popular platforms for the robotics. Right now
ROS consists of thousands of users all over the world.

3.2 Data collection

In order to tune the parameter of the algorithm scans were recor-
ded in "bag” format which is a ROS format to record any type
of information. Also by recording the bag file, it is also possible
to play the recorded file and simulate the real-time situation.

3.2.1 Simulation A small-scale city environment was
modeled in blender software in order to be used in Gazebo
simulator. Gazebo can communicate with ROS by publishing
the simulated data in ROS message formats. Therefore, in our
case, the output of Gazebo simulator would be PointCloud?2.
The laser scanner sensor was mounted on top of a car with 15
degrees inclination angle in Y-axis, so it can measure higher
elevation buildings. The car was guided through the path by
a user which was commanding the direction and speed using
simulator tools. The area of the modeled environment was 150
meters by 120 meters.

4. RESULTS

In this research, we prepared a complex environment, to
check for drifts in pose estimations. Since simulation and
scanned environment is not in a unique coordinate system, four
reference points were selected and measured in the simulation
software, in order to match the laser scanner data and simulated
data. The transformation was calculated using Singular Value
Decomposition (SVD) method which was implemented in PCL
C++. The result of the algorithm is presented in figure 6

Figure 6. Point cloud from simulation, isometric view

As a comparison between the two different estimators in this
algorithm, which are initial motion estimator and refinement,
the result of these estimators was visualized as below.

Figure 7. Results of two different estimators in the algorithm
isometric view

Figure 8. Results of two different estimators in the algorithm top
view

Figure 9. Error ellipses of the check points with scale factor of
50

Figure 7 and 8 visualizes the results of initial motion estimator
inred and the refinements in green. As itis obvious, the red path
is diverging according to the time since errors are accumulating.
In contrast, the green path which is using the red path data as
prior knowledge is stable enough to be used as the final pose of
the sensor.

To evaluate the accuracy, 62 points which were selected all over
the simulated data, also extracted from point clouds as well.
PointCab software is being used to vectorize the generated map.

Table 2 shows the mean error, Standard deviations, RMS and
variances of the check points which are shown in figure 9.

5. CONCLUSIONS

In this paper, a SLAM method was proposed for mobile
mapping systems using a lightweight laser scanner (VLP-16)
which can be used without any aiding sensor which is using
2D-3D registration method to minimize the drifting caused by
the error accumulation. The performance of the algorithm was
tested in a simulated outdoor environment which the sensor
was rigidly mounted on top of a car which was driving on a
path and it was so promising according to the accuracy of the
sensor. The algorithm may fail in such cases as it cannot see
the common feature from the previous map. In this case, using
aiding sensors may help the algorithm to recover itself.

Type Value (meter)
X mean Error 0.0166
Y mean Error 0.0451
X STD 0.0590
Y STD 0.0402
X RMS 0.0608
Y RMS 0.0602
X Variance m2 0.0035
Y Variance m2 0.0016

Table 2. Accuracy assessment of data
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