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ABSTRACT: 

 

Dense stereo processing requires a critical step that called cost aggregation or cost optimization. Most of the cost aggregation 

methods are evaluated on close range stereo images from Middlebury or KITTI datasets. While the effect of cost aggregation on high 

resolution satellite stereo processing has not yet been sufficiently evaluated. In this paper, three typical cost aggregation methods 

together with another approach which is a combination of these methods are evaluated on high resolution satellite stereo images and 

then are compared with LiDAR ground truth. These methods including Semi-Global Matching (SGM), Guided Filtering (GF), 

iterative GF (IGF), and SGM followed by GF (SGM-GF) with Census and Zero Normalized Cross Correlation (ZNCC) cost 

functions. Although the Census cost function has a good performance on the border of the objects and low blurring effects, the 

results of both cost functions, i.e. Census and ZNCC, have same treatment on all stereo methods. Also, in order to make an impartial 

assessment, for all stereo methods, we do not perform any disparity map refinement. The bad-pixel criteria with an absolute 

difference height error greater than 2 meters for SGM, GF, IGF, and SGM-GF methods is 36.7%, 34.8%, 33.8%, and 28.6% 

respectively. Also, the Normalized Median Absolute Difference (NMAD) error for SGM, GF, IGF, and SGM-GF is 1.29, 1.15, 1.06, 

and 0.94 meters, respectively. Overall, the experimental results on WV III stereo images demonstrate that the SGM method has 

lower accuracy and SGM-GF method is accurate than other methods. 

 

 

1. INTRODUCTION 

Dense stereo matching is one of the most significant steps for 

generating 3D point cloud from satellite stereo images. 

Automatic stereo matching procedure for high resolution aerial 

and satellite stereo images containing the shadow effects, 

geometric and radiometric changes increase the complication of 

stereo matching (Zhang and Gruen, 2006). Although numerous 

stereo matching algorithms have been developed in digital 

photogrammetry and computer vision, however, these 

difficulties have not still been solved completely (Hamzah and 

Ibrahim, 2016; Remondino et al., 2014; Tippetts et al., 2016). 

The common stereo matching methods comprise four main 

steps: matching cost computation, cost aggregation (or 

optimization), disparity computation and disparity map 

refinement (Scharstein and Szeliski, 2002).  In the matching 

cost computation step, a cost function is employed to measure 

the similarity of matching between two pixels. In general, 

matching costs contain an ambiguity due to the radiometric and 

geometric distortions, repetitive patterns, as well as textureless 

areas (Boykov et al., 2001; Scharstein and Szeliski, 2002). 

There are exist two strategies available to solve the ambiguity of 

matching costs through the connectivity of the neighbouring 

pixels, including local cost aggregation and global cost 

optimization (Scharstein and Szeliski, 2002). 

Usually, the local algorithms aggregate matching costs around a 

certain area according to the constant weight or radiometric and 

geometric weights. For local cost aggregation, various methods 

have been developed such as multiple windows, adaptive 

support weight, cross-based local stereo matching, and guided 

filtering (He et al., 2013; Hosni et al., 2013; Yoon and Kweon, 

2006; Zhang et al., 2009). Often the weakness of the local 

matching algorithms is appearing in textureless areas, occlusion, 

and radiometric changes. However, the global cost optimization 

algorithms are formulated as minimizing a global energy or 

probability function, which includes data and smoothness terms 

(Boykov et al., 2001). Typically, global stereo matching 

methods do not perform local cost aggregation and they 

optimize matching costs directly. Until now, many global stereo 

matching methods have been proposed in computer vision 

society, such as Graph Cuts (GC), dynamic programming, and 

Belief Propagation (Boykov et al., 2001; Pierrot-Deseilligny 

and Paparoditis, 2006; Scharstein and Szeliski, 2002; Sun et al., 

2003). On the other hand, as alternative to the global methods, 

Semi-Global Matching (SGM) algorithm (Hirschmüller, 2008) 

is faster than global algorithms and also popular for top view 

stereo images due to the higher efficiency compared with other 

stereo matching methods (Alobeid, 2011; Rothermel et al., 

2012). However, the SGM or other global stereo matching 

methods usually require large amounts of temporal memory and 

computational resources. 

Finally, the disparity map is computed using winner takes all 

(WTA) by selecting the disparity of lowest optimized matching 

costs or aggregated costs. Although, cost aggregation or 

optimization reduce the ambiguity of matching costs, in some 

cases such as large textureless areas, the border of occlusions 

and shadow areas the disparity map should be refined (Hamzah 

and Ibrahim, 2016; Tatar et al., 2017).  

Cost aggregation methods for stereo matching has been found to 

be talented in earlier photogrammetric methods but has not yet 

been sufficiently evaluated and still holds potential for more 

investigations on satellite stereo images. In this paper, three 

well known cost aggregation methods are evaluated on high 

resolution satellite stereo images, including SGM, Guided 

Filtering (GF), and iterative GF (IGF). In addition, an approach 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W18, 2019 
GeoSpatial Conference 2019 – Joint Conferences of SMPR and GI Research, 12–14 October 2019, Karaj, Iran

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W18-1045-2019 | © Authors 2019. CC BY 4.0 License.

 
1045



 

with combination of SGM and GF methods are proposed to be 

evaluated with other methods. In the following section, the cost 

aggregation methods are described briefly and then the result of 

experiments is presented. The paper will end with the 

discussion and conclusions. 

 

2. COST AGGREGATION METHODS 

In this section, we compare four cost aggregation methods 

including SGM, GF, IGF, and SGM followed by GF for high 

resolution satellite stereo processing. However, the cost 

aggregation methods are distinguished from the methods that 

use these cost aggregations. These methods are popular in 

computer vision due to their accuracy, reliability or fastening 

for runtime. However, the performance of these stereo methods 

has not been evaluated on high resolution satellite stereo 

images. 

Before presenting the evaluation procedure, it is important to 

note that the epipolar images are inputs for stereo methods. The 

epipolar images are resampled along the epipolar geometry to 

omit the vertical disparity; so that each row of the left image 

corresponds to the same row at the right image (i.e. parallax y is 

equal to zero). Unlike the images with perspective geometry, the 

epipolar geometry of satellite stereo images could not be 

considered as a straight line. Recently, for linear consideration 

of epipolar geometry in satellite stereo images, an image tiling 

strategy has been proposed to produce epipolar images from 

high resolution satellite stereo image (de Franchis et al., 2014; 

Tatar and Arefi, 2019). In this paper, the high resolution 

satellite stereo images are also rectified based on these 

approaches. 

Matching cost computation is a critical step in dense stereo 

matching. However, we select the Census and Zero Normalized 

Cross Correlation (ZNCC) with 9×9 kernel size due to their 

good results on satellite stereo images (Zhu et al., 2011). On the 

other hand, in order to avoid the unfair comparison there not 

exist a disparity map refinement step. Also, to estimate the 

disparity in sub-pixel level, after obtaining minimum aggregated 

cost, a quadratic curve is fitted to the neighbouring of lowest 

aggregated costs, and the position of the minimum is obtained 

as final disparity. The disparity map also requires uniqueness 

constraints and therefore similar to the original SGM, a left-

right check consistency is applied after computing left and right 

disparity maps. However, the details of each method is 

described in the following sub sections. 

2.1 Semi-Global Matching 

Generally, the capability of computed matching costs to find 

correspondences has an ambiguity due to equal matching cost 

for neighbouring pixels. So, the aggregation of matching costs 

from 8 or 16 paths has been proposed in SGM Method 

(Hirschmüller, 2008). To this end, matching costs are 

aggregated based on matching costs and their disparities. 

Equation 1 is used to aggregate the matching costs in each path 

and then using equation 2 the costs are aggregated in all paths. 
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Where; p, d, Lr(p, d), C(p, d), r, and k are location of the 

interest pixel, disparity value, cost path toward the actual 

path, pixel-wise matching cost, actual path, and pixels in 

each path, respectively. moreover, P1 and P2 are two 

penalties for penalizing disparity changes between 

neighboring pixels of one pixel and more than one pixel, 

respectively. 
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2.2 Guided Filtering (GF) 

One of the major cost aggregation methods is guided image 

filtering (He et al., 2013; Hosni et al., 2013). This method uses 

image content to preserve the edges and increases the 

efficiency, however it is considered as a local stereo method. 

The grayscale (left or right epipolar) image is selected as the 

guidance for filtering. The kernel of this filter is obtained as 

follows: 
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where, Ip and Iq represent the image intensity of interest pixel 

and neighbouring pixel respectively. Also I ,  , and N are 

mean, standard deviation, and number of intensities in the 

support window respectively. The  is a smoothness parameter 

(He et al., 2013). The matching costs are aggregated based on 

equation 5 as follows: 
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(4) 

2.3 Iterative GF (IGF) 

It is important to note that the GF cannot completely reduce or 

remove noises from matching costs. Hence, an iterative GF 

(IGF) has been proposed to compensate the noises from 

aggregated costs (Hamzah et al., 2017). This method aggregates 

matching costs or aggregated costs in an iterative solution. The 

aggregated costs in kth iteration are obtained as following: 
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2.4 SGM followed by GF (SGM-GF) 

Simply applying GF or IGF cannot truncates the low entropy 

pixels from matching costs or aggregated costs. However, the 

SGM is adaptive to the noises due to its nature for selecting 

minimum costs. The SGM method also couldn’t find the correct 

matching in large low entropy areas. Hence, some post 

processing on disparity map is performed to solve this problem 

in the previous methods (Hirschmüller, 2008). On the other 

hand, performing SGM in an iterative framework requires a lot 

of time which is not efficient pleasant. In this paper, after 

solving the matching costs ambiguities by SGM method, the GF 

is also applied (SGM-GF). This procedure helps to find more 

precise corresponding pixels and preserve the edges that is very 

important in photogrammetric mapping. The GF could be 

implemented in a fast way on GPU and it helps to save 

runtimes. This procedure is mathematically expressed as 

follows: 

,( , ) ( , )SGM GF p q SGM

q W

S p d W S q d



  
(6) 

3. EXPERIMENTS AND ANALYSIS 

This section presents the datasets and the result of the 

assessment of the above mentioned stereo methods on satellite 

stereo images. All stereo methods and tests have been coded by 
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MATLAB and C++, on Z500 Lenovo notebook with five-core 

2.6 GHz processor. In particular, the computed matching costs 

by ZNCC are normalized between 0 to 100. Hence, the same 

penalties could be used for both Census and ZNCC in SGM 

method. The small and large penalties for SGM method are 

selected as 12 and 30, respectively. The parameter of GF is 

fixed due to their recommendations on original papers (He et 

al., 2013; Hosni et al., 2013). However, the effect of support 

windows is analysed. 

3.1 Evaluation procedure and dataset 

High resolution satellite stereo images from WV III are used in 

the experiments. The stereo images are selected from a public 

benchmark dataset for multi-view satellite images (Bosch et al., 

2016). The Ground Sampling Distance (GSD) of images is 0.3 

meter and they are captured over an urban area in San-Fernando 

city in Argentina. Most of the images were taken at the different 

dates, however we select the images with the different looking 

angles which could be considered as stereo images (cf. Figure 

1). The first image captured on 1 September 2015 and the 

second one captured on 3 October 2015. Also, airborne LiDAR 

ground truth with GSD of 0.2 m has been prepared for 

evaluation of stereo methods. 

After stereo matching, the corresponding points are projected 

into UTM Zone 21 South in order to compare the results with 

LiDAR Digital Surface Model (DSM).  Therefore, due to the 

existence of rational polynomial coefficients (RPCs) for satellite 

stereo images, the corresponding points are intersected by RPCs 

(Grodecki and Dial, 2003) and the point cloud is generated 

accordingly.  

The generated point cloud by RPCs has a small 3D shift from 

the ground truth due to the error of the independent RPCs for 

each satellite image (Afsharnia et al., 2017). To compensate this 

error and subsequently perform an accurate assessment, the 

generated point cloud is aligned with ground truth. In this paper 

a simple 3D alignment strategy is employed similar to previous 

methods (Facciolo et al., 2017). The 3D alignment strategy uses 

the ZNCC cost function to measure the similarity between DSM 

and the generated point cloud. To estimate a robust 3D shift, the 

outliers are removed using a dual rank filter (Zhang et al., 

2003).  

The results are evaluated by measuring the Euclidian distance 

between generated point cloud and ground truth DSM. As 

described in section 2, the disparity map is generated without 

the disparity map refinement step, therefore there may be 

several outliers in final point cloud. Hence, the Normalized 

Median Absolute Difference (NMAD) (Höhle and Höhle, 2009) 

is selected as a robust metric. The NMAD is computed as 

following: 

 

1.4826 ( ( ) )NMAD median Z median Z     (7) 

 
Another criterion for evaluation of results is the percentage of 

bad-pixels with an absolute difference height error greater than 

2 meters. This criterion is computed using following equation: 

 

hT Z
Bad pixels

N

     


 (9) 

 

where, N is the number of all corresponding points, h  is a 

threshold that we select it 2 meters, and T is a logical operator 

which is 1 if its argument is true and 0 otherwise. 

3.2 Experimental results 

In the pre-processing step, the stereo images are resampled 

along the epipolar geometry. Due to the small size of the 

selected stereo image tiles, the epipolar images are generated 

using a fundamental matrix (Tatar and Arefi, 2019). The 

evaluation of epipolar resampling show that the epipolar images 

are generated with sub-pixel accuracy. The generated epipolar 

images are shown in Figure 1. 

 

  

Figure 1: The epipolar image from WV III images. The left 

image captured on 1 September 2015 and the right image 

captured on 3 October 2015. 

Before comparing the cost aggregation, we should select the 

optimum support window size for GF method. For this purpose, 

the point cloud is generated and subsequently, the NMAD and 

Bad-pixels are computed for all support windows with the range 

of 11×11 to 31×31. The result of this procedure for both ZNCC 

and Census is illustrated in Figure 2. Both NMAD and Bad-

pixels criteria show that the optimum support window for GF 

method is 31×31. Therefore, we select this window size for all 

comparisons in the following. Figure 3 shows the result of GF 

method by Census cost function with different support 

windows. 
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Figure 2: Evaluation of GF method by selecting different 

support windows. The vertical axis of the figure (a) denotes the 

percentage of Bad-pixels and the figure (b) represents the metric 

of NMAD. 

 

(a) 

(b) 
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Figure 3: The effect on different support windows on the 

generated disparity maps by GF method with Census cost 

function. a) left epipolar image; b) LiDAR ground truth; c) and 

d) disparity maps by GF method with 13×13 and 31×31 support 

windows respectively. 

 

 

 

Figure 4. Evaluation of IGF method with different iteration 

 
Another parameter which should be tuned is the number of 

iterations in IGF method. We evaluated the IGF method in 5 

iterations as shown in Figure 4. The NMAD and Bad-pixels are 

computed according to the ground truth and this evaluation 

shows that the IGF does not improve the GF significantly. 

However, we selected the result of the IGF method with 3 

iterations for further comparison. 

The reference data and the generated disparity maps by 

compared stereo methods are shown in Figure 5. These results 

show that the large textureless areas in satellite stereo images 

cannot be matched successfully using the SGM method. 

However, the result of SGM-GF is more appropriate.  Also, 

Table 1 presents the evaluation for these results. Both NMAD 

and Bad-pixels criteria demonstrate that the SGM-GF method 

with census cost function provides good performance in the 

case of satellite stereo processing. 

 

Methods 

Census cost function ZNCC cost function 

NMAD 

(meter) 

Bad-pixels 

(%) 

NMAD 

(meter) 

Bad-pixels 

(%) 

GF 1.15 34.8 1.24 36.1 

iGF 1.06 33.8 1.12 34.7 

SGM 1.29 36.7 1.31 38.6 

SGM-GF 0.94 28.4 1.03 31.3 

Table 1: statistical evaluation of cost aggregation methods on 

satellite stereo images 

 

4. DISCUSSION 

The spectral similarity between neighbouring objects is a 

challenging issue in high resolution satellite stereo processing. 

In this paper, three selected cost aggregation methods and a 

combination of these methods have been evaluated on satellite 

stereo images in order to find the best cost aggregation method 

in this task. In the experiments, the NMAD and Bad-pixels were 

used to evaluate the results due to available LiDAR ground 

truth.  

It is important to note that the high resolution satellite stereo 

processing depends on many factors such as radiometric 

resolution, study area, variation of object sizes and minimum 

size of smaller objects. Among the different study areas, the 

urban areas have a big challenge, therefore a stereo pair from 

the high resolution WV III images over an urban area has been 

selected to evaluate the cost aggregation methods. The study 

area includes different buildings with different shapes and sizes. 

 Although, the Census cost function has a good performance on 

the border of objects and low blurring effects; however, the 

results of both cost functions have same behavior on all cost 

aggregation methods.  

Figure 2. presents the effect of different support windows on GF 

method. Due to the higher accuracy for larger windows, the 

main reason is the lower noise percentage in large areas. Also, 

blurring the border of objects for large windows demonstrates 

that the spectral information plays an important role in GF 

method. This is mainly because the GF method has a constant 

geometric weight for all elements. Hence, focusing on 

geometric weight such as dissimilarity between disparities for 

GF method could be developed in the future.  

The effectiveness of more than one iteration has been examined 

in IGF method. Although increasing the number of iteration in 

IGF method reduces the noises, it also increases the blurring 

effects around the border of the objects. Generally, the IGF 

method is similar to GF method when GF method uses the large 

support windows. 

Comparing the stereo methods, the SGM-GF method provide 

good matching results. The SGM method has low accuracy 

which might be because of the lack of parameter optimization in 

its original paper. The satellite images were taken on different 

dates, and consequently there are some radiometric changes in 

stereo images which might be as another reason for low 

accuracy of SGM method. 

One of the problems of compared stereo methods on satellite 

stereo images is that the blurring effect occurs around the 

border of the objects which may be solved by some post 

processing or disparity map refinement techniques. Therefore, 

(a) (b) 

(c) (d) 
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investigation of disparity map refinement on satellite stereo 

matching and proposing new methods could be considered in 

the future. Due to the urban study area, the selected methods do 

not examine in a mountainous or forest areas. So, the evaluation 

of stereo methods for forest inventory or point cloud generation 

in mountainous areas can be evaluated in the future. 

 

     
Fist image Census by GF Census by IGF Census by SGM Census by SGM-GF 

     

LiDAR ground truth ZNCC by GF  ZNCC by IGF ZNCC by SGM  ZNCC by SGM-GF 

Figure 5: The comparison of the generated disparity maps from the selected cost aggregation methods. First and second raw include the 

result for Census and ZNCC cost functions, respectively. 

 

 

5. CONCLUSION 

In this paper, we have evaluated three typical cost aggregation 

methods on urban satellite stereo images with airborne LiDAR 

ground truth. Also, a combination of these methods has been 

proposed due to their strongest properties. All stereo methods 

use of Census and ZNCC as matching cost function. The cost 

aggregation methods including GF, IGF, SGM, and SGM-GF 

have the same behaviour for both cost functions. The compared 

methods do not perform any disparity map refinement and 

therefore, it causes the evaluation of stereo methods to be an 

impartial assessment.  

The results of IGF and SGM-GF methods have taken on best 

performance due to their parameter optimization in this paper. 

Among the compared stereo methods, the SGM-GF method 

have good performance and the original SGM method has lower 

accuracy. The result of experiments also demonstrates that the 

combination of SGM and GF methods improves the result of 

the original SGM algorithm in case of high resolution satellite 

stereo processing. 
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