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ABSTRACT: 

 

The estimation of biomass has been highly regarded for assessing carbon sources. In this paper, ALOS PALSAR, Sentinel-1, 

Sentinel-2 and ground data are used for estimating of above ground biomass (AGB) with SVM-genetic model Moreover Landsat 

satellite data was used to estimate land use change detection. The wide range of vegetation, textural and principal component 

analysis (PCA) indices (using optical images) and backscatter, decomposition and textural features (from radar images) are derived 

together with in situ collected AGB data into model to predict AGB. The results indicated that the coefficient of determination (R2) 

for ALOS PALSAR, Sentinel-1, Sentinel-2 were 0.51, 0.50 and 0.60 respectively. The best accuracy for combining all data was 

0.83. Afterwards, the carbon stock map was calculated.  Landsat series data were acquired to document the spatiotemporal dynamics 

of green spaces in the study area. By using a supervised classification algorithm, multi-temporal land use/cover data were extracted 

from a set of satellite images and the carbon stock time series simulated by using carbon stock maps and green space (urban forest) 

maps. 
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1. INTRODUCTION 

Carbon storage plays an important role in urban ecosystems. 

However, urban development leads to changes in urban 

ecosystems and hence menaces carbon storage. More than half 

of the global population now inhabits in urban areas, and this 

process will continue to increase at a rate of 4% a per decade by 

2050 (UN 2015). Carbon management is one of the most 

effective climate change activities at national and international 

level. Decrease and increase Carbon emissions as Effective 

carbon management approaches have been proposed to reduce 

the rising rate of air temperature. Urban trees affect local 

climate, carbon cycle and Climate change energy consumption.  

Urban green space especially trees provide many benefits that 

can improve the quality of the environment and human health in 

urban places. These benefits include improving weather quality, 

energy conservation, air temperature reduction, ultraviolet 

radiation and other environmental and social benefits. 

Although, those benefits are needed high potential costs  

(Pataki, Carreiro et al. 2011). Thus, more studies are needed to 

accurately assess each ecosystem service provided by urban 

forests and clearly communicate the scientific findings. Cities 

account for %75 of global anthropogenic carbon dioxide (CO2) 

emissions (Seto, Dhakal et al. 2014). Remote sensing combined 

with ground data and modelling has developed technique to 

estimate carbon (C) storage and sequestration by urban forests 

(Rao, Hutyra et al. 2013). But information about carbon storage 

in urban ecosystems is still rare and more research is required. 

Estimation of the carbon storage by trees in urban environments 

would be advantageous for evaluating environmental and 

economic benefits of these types of ecosystems. The AGB 

Forest Estimation techniques based on remote sensing data have 

supported to extrapolate AGB measurements from field data 

over entire landscape (Saatchi, Harris et al. 2011). Remote 

sensing techniques cause to estimate of AGB at various scales. 

It is the main source for biomass estimation. Estimation and 

monitoring of carbon stock with Remote sensing data can be 

fast and low cost and it is also providing information from 

inaccessible locations that cannot be sampled (Kwak, Lee et al. 

2010) Biomass estimation methods can be divided into two 

categories: parametric and non-parametric algorithms (Lu 

2006). Choosing a good modelling approach is a challenging 

issue because the modelling approach is as important as the 

remote sensing data type in estimating carbon storage 

(Fassnacht, Hartig et al. 2014). In this study, the potential of 

Sentinel-1, ALOS PALSAR and Sentinel-2 imagery for the 

retrieval and predictive mapping of forests AGB estimation was 

evaluated. The specific objectives included the following issues: 
(1) to determine and model the relationship between field-

measured forests AGB and Sentinel-based predictors, including 

Sentinel-1 and ALOS PALSAR SAR backscatter information 

and Sentinel-2 multispectral indices based; (2) to evaluate and 

compare the accuracy of the biomass prediction models, 

including SVM-Genetic models; and (3) to map forest AGB 

spatial distribution by four optimal models.  

Gaia Vaglio Laurin et al (2014) used lidar and hyperspectral 

data to estimate the AGB of an African tropical forest by using 

Multiplicative Power Model (MPM) and Partial Least Square 

Regression (PLSR) methods. PLSR had a better result than 

MPM. The result of integration of lidar and hyperspectral 

datawas best result that was R2 = 0.70 (Laurin, Chen et al. 

2014). 

Dirk Pflugmacher et al (2014) developed regression tree models 

to calculate forest aboveground biomass (AGB) for a mixed-

conifer region in eastern Oregon (USA) by using Landsat-

derived disturbance and recovery history (DR metrics) and 

lidar. the result of using DR metrics for improved predictions of 

AGB was RMSE = 30.3 Mg /ha and the result of models based 
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on single-date reflectance was RMSE = 39.6 Mg/ha 

(Pflugmacher, Cohen et al. 2014).  

Kaili Liu et al (2017) used three modeling methods (stepwise 

regression (SR), support vector regression (SVR) and random 

forest (RF)) to estimate AGB by using Geoscience Laser 

Altimeter System (GLAS) data and Thematic Mapper (TM) data 

in the Daxing’anling Mountains in northeastern China. The 

result of random forest Method was been the acceptable 

modeling accuracy (R2 = 0.95 RMSE = 17.73 Mg/ha) and it 

was also been to estimate AGB by cross validation (R2 = 0.71 

RMSE = 39.60 Mg/ha) (Liu, Wang et al. 2017). 

Tien Dat Pham et al (2018) used SVR model for mangrove 

biomass estimation from integration of ALOS-2 PALSAR-2 and 

Sentinel-2A data. the result of calculating AGB was with 

RMSE=0.187 Mg/ha and R2=0.596 (Pham, Yoshino et al. 

2018). 

Luodan Cao et al (2018) used Lidar and optical data for 

estimating AGB of forests in the upper Heihe River Basin in 

Northwest China by using Random Forest (RF), Support Vector 

Machines (SVM), Back Propagation Neural Networks (BPNN), 

K-Nearest Neighbor (KNN) and the Generalized Linear Mixed 

Model (GLMM). Using of the RF algorithm and integrated 

LiDAR and optical data had best result that was with R2 = 

0.913, RMSE = 13.352 t/ha (Cao, Pan et al. 2018). 

This study attempted to contribute to the development of remote 

sensing-based predictive mapping techniques for urban forest 

AGB and carbon stock using freely accessible multi-source 

remote sensing data with a relatively high spatial resolution. 

 

2. PROPOSED ALGORITHM 

2.1 Study area 

NUR is a city and located on the Caspian Sea in Mazandaran 

Province of northern Iran (36°34'32.70"N, 52° 1'35.65"E) 

(Figure 1). The study area is dominated by oriental beech 

(Fagus orientalis), European hornbeam (Carpinus betulus) 

mostly. 

Figure 1. Location of study area in Iran. Orange colour shows 

Nur city. Landsat image (bottom-right map) shows study area. 

 

2.2 Data 

2.2.1 Field Measurements 

A total of 65 field plots were laid out in this forest. Field 

measurements on the square sample plots with size of (45m × 

45m) were conducted during the summer (July) of 2014. In each 

plot, type of tree species and the diameter at breast height 

(DBH) of all trees were measured. Trees with DBH below 7.5 

cm were not included in the survey. The coordinates of all plot 

centers were measured using a Trimble real time kinematic 

(RTK) GPS. The AGB of each tree was calculated using the 

standard allometric equation (Eq.1) (Brown 1997) . AGB of 

each plot was calculated by summing AGB of each tree and 

divided by the plot. 

 

(1) 

    

Where the volume is volume of wood (m3/ha) and WD is the 

average critical wood density (ton/m3). 

 

2.2.2 Remote sensing data 

 Optical data 

Sentinel-2 is a satellite with Earth observation goal from 

the EU Copernicus Program. The satellite acquires optical 

imagery at high spatial resolution (from 10m to 60m) over land 

and coastal waters and has a constellation with two twin 

satellites that are Sentinel-2A and Sentinel-2B. The series of 

Landsat satellite is achievement between NASA and USGS 

(United States Geological Survey).The satellite acquires space-

based images over land surface and has a medium spatial-

resolution. In this study, the series of Landsat images (TM, 

ETM+, OLI) are used. 

 

 Radar data 

ALOS PALSAR is the large Japanese satellite developed by 

JAXA (Japan Aerospace Exploration Agency) with Earth 

observation goal. One of the most important characteristics of 

the satellite is high resolution and the major observation mode 

is ‘fine’ mode. 

Sentinel-1 is a satellite lead by European Space Agency (ESA) 

it is composed of two satellites, Sentinel-1A and Sentinel-1B, 

that carry a C-band SAR instrument. The satellite acquires data 

in all-weather and day or night. 

 

2.3 Biomass Estimation Approach  

To use the available satellite images and data, we must first 

correct the images from any errors in the process of receiving or 

sending images. After pre-processing of data, data indexes are 

extracted. After that, by the considered modelling method, the 

amount of biomass of plots and extraction index are 

communicated and total above ground biomass and carbon 

stock are estimated. Green spaces (urban forest) are extracted 

with support vector machine in time series of Landsat images. 

At the end, carbon stock maps in time series are simulated by 

using green space extraction map and total carbon stock map. 

 
2.3.1 Pre-processing  

 

Radiometric correction was worked by gray-scale pixel values 

Without attention of the location and geometric properties of 

the image components. The correction tries to improve gray 

scale pixel values. Radiometric corrections are used to reduce or 

eliminate two major errors (atmospheric errors and device 

errors). Images should be converted to the reference coordinate 

system then pixel values in different images should be 

compared, it is unimportant day or season of the acquired image 

and sun-sensor target geometry. Because of the change of 

viewing geometry in the path of the satellite, the reflection 

values for the same land cover feature are very different. 
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Radar signals should be pre-processed to account for geometric 

distortions such as layover, foreshortening, shadow and e.g. 

which disturb the structure of the images and for differences in 

illumination conditions due to topography.  The noises created 

by reflections from features should be removed. The noises 

are speckle noise and they are removed by speckle filtering. The  

speckle noise is main factor of disturbance of SAR image 

matching and reduces the radiometric quality of SAR images. In 

this part, the SAR and optical images are assumed that have 

been on the same projection and geographic coordinate system 

and they are co-registered at a sub pixel level (Chavez, Sides et 

al. 1991). 

After the pre-processing, the data is also resampled to 23 meters 

pixel sizes. The pre-processing steps in the study are shown 

(Figure2).  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2. Flowchart of steps used for urban forest carbon stock mapping using optic and radar imagery in this study.

2.3.2 Indexes extraction 

 Optical index 

Vegetation Index (VI) is a spectral transformation of bands that 

shows vegetation properties. The index depends on absorption 

active radiation of vegetation. VIs correspond to biomass and 

are used for determine of global carbon cycle. Texture is 

important feature for image analysis  (Haralick 1979). GLCM 

texture contains mean, variance, homogeneity, contrast, 

dissimilarity, entropy and correlation features. Principal 

component analysis (PCA) is used to remove redundant 

information in satellite data (Jolliffe and Cadima 2016). and 

Tasseled-Cap Transformation that is a conversion of the 

original bands of an image into a new set of bands with defined 

interpretations that are useful for vegetation mapping. 

 

 Radar index 

The backscatter of radar waves from the surfaces is influenced 

by two factors: (1) the roughness geometry and (2) the dielectric 

properties of the surface (Hajnsek 2001). The decomposition of 

Polarimetric Synthetic Aperture Radar (PolSAR) data is an 

important analysis step to characterize different types of 

backscatter and to derive higher level (beyond level 2.0) 

products for earth observation. Radar GLCM texture index, like 

optical texture index, contains mean, variance, homogeneity, 

contrast, dissimilarity, entropy, and correlation attributes. 

 

2.3.3 Green space extraction (urban forest) with Support 

Vector Machine (SVM) 

 

In this study, the classification of image objects the SVM 

technique  (Kotsiantis, Zaharakis et al. 2007) was performed. 

SVM is the new classification method that isn’t influenced by 

training data for remote sensing data with a large spectral 
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dimension. This method is directly generated through an 

optimization process, to create a separator plane between 

spectral classes. 

SVM separates the different classes by a hyper plane (Vapnik 

and Vapnik 1998, Karatzoglou, Meyer et al. 2005). This 

separator plane or boundary between classes is defined by using 

training data that has closest distance to a hyper plane and are 

known as support vectors. An optimum hyper plane is 

ascertained by using a training dataset, and its generalization 

ability is checked by using a validation dataset (Kavzoglu and 

Colkesen 2009). 

 

2.3.4 The GA-SVM method (AGB modelling) 

 

In the present study, a hybrid method, this method uses genetic 

algorithm to select tag, and support vector machine to predict 

the rest AGB. Parameters of support vector machine are 

optimized by particle swarm optimization algorithm. As 

mentioned above, this method is called as GA–SVM method 

with parameter optimization. Details about SVM regression can 

be found in literatures as in other multivariate statistical models, 

the performance of SVM regression depends on the 

combination of several parameters. In general, C is a 

regularization parameter that controls the trade off between 

training error and model complexity .if C is too large, the model 

will have a high penalty for no separable points and may store 

too many support vectors and get over fitting. If it is too small, 

the model may have under fitting. Parameter   controls the 

width of the  insensitive zone, used to fit the training data. 

The value of  can affect the number of the support vectors 

used to construct the regression function. The bigger  is, the 

fewer support vectors are selected. On the other hand, 

bigger  values result in more flat estimates. Hence, both C 

and  values affect model complexity (but in a different way). 

The kernel type is another important parameter. In SVM 

regression, radial basis function (RBF) was the most commonly 

used kernel function for its better generalization ability, less 

number of parameters, and less numerical difficulties  and was 

used in this study. Parameter Y in RBF controls the amplitude 

of the RBF kernel and therefore controls the generalization 

ability of SVM regression. The LIBSVM package (version 

2.81) was used in this study for SVM regression calculation, 

taking the form 

 

 (2) 

          

Where xi and xj are training vectors and Y is kernel parameter 

(Chang and Lin 2001). 

Genetic algorithms (GA) are stochastic optimization and search 

method that mimics biological evolution as a problem-solving 

strategy. They are very flexible and attractive for optimization 

problems. 

Given a specific problem to solve, the input to the GA is a set of 

potential solutions to that problem, encoded in some fashion, 

and a fitness function that allows each candidate to be 

quantitatively evaluated. Selection, mating, and mutation just 

mimic the natural process. For each generation, individuals are 

selected for reproduction according to their fitness values. 

Favourable individuals have a better chance to be selected for 

reproduction and the offspring have chance to mutate to keep 

diversity, while the unfavourable individuals are less likely to  

Survive. After each generation, whether the evolution is 

converged or the termination criteria are met is checked; if yes, 

job is done; if not, the evolution goes into next generation. 

After many generations, good individuals will dominate the 

population, and we will get solutions that are good enough for 

our problem. 

 

2.3.5 Carbon stock 

 

The biomass estimate is converted to carbon by the scaling 

factor. For tree vegetation, use the Carbon scaling factor 0.47 t 

C t-1 dry matter. 

 

3. RESULTS 

3.1 Change detection 

In this study, four classes (water, agriculture, urban forest, 

urban) are regarded for classification (Figure 2). The urban 

forests are extracted from classification map of each considered 

year. The change of urban forest and manmade area (urban) 

acquire for each considered year. 
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Figure 2. SVM classification map from 2000 to 2018, respectively; there are four classes; water (blue colour), urban (cream colour), 

agriculture (light green colour), urban forest (dark green colour). 

 

After classification, land use maps are compared in order to 

obtain changed areas between 2000 and 2018. 

 

 
 

Figure 3. Bar graph of Land use area from 2000 to 2018; urban 

area has increased and forest area has decreased in time series. 

 

 

water Urban forest agriculture 

Water 308.88 0.36 0.9 0.27 

Urban 13.23 410.85 182.88 161.1 

forest 0 12.69 472.68 128.34 

agriculture 0 8.01 41.49 445.32 

 

Table 1. Land use change from 2000 to 2018 (ha). 

Figure 4. Forest to urban exchange map in 2000-2018; 

Deforestation has increased in 2018. 

 

3.2 Above ground biomass (AGB) in forest area 

In this part, sentinel-1, sentinel-2 and ALOS PALSAR data are 

used. After pre-processing and extraction of indices, the AGB 

and the total carbon stock map of    combination of them is 

estimated by GA-SVM matlab code. At the end, the carbon 

stock of urban green space (urban forest) on 2018 is acquired by 

the total carbon stock map and green space extraction on 2018. 
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Figure5. Green space extraction in 2018 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data 

 

Index group Index name 

 

 

ALOSPALSAR 

Texture Entropy, Entropy_shannon_I_norm, Entropy_shannon_P_norm, 

C11_texture_dissimilarity, C11_texture_entropy, C11_texture_homogeneity 

Decomposition Combination_H1mA, Raney_Rnd, Combination_1mHA, Raney_Dbl, 

Combination_1mH1mA, Raney_m, Combination_1mH1mA, Delta, Compact_Rsov, 

Compact_phi, Compact_ps, Compact_p1, Compact_mv 

 

 

Sentinel-1 

Texture Entropy1, C22_texture_uniformity, C22_texture_dissimilarity, C12_real1, 

C22_texture_contrast, C12_imag_texture_dissimilarity, C11_texture_mean, C12_imag1 

Decomposition Raney_Rnd2, Lambda1,Delta1, Compact_tau1,Compact_Rsov, 

Compact_ps1,Compact_p11, Compact_mv1,Compact_l21, Compact_l11, 

Combination_HA1, Combination_H1mA1, Compact_alpha_s1 

 

 

Sentinel-2 

PCA Pca2 

Vegetation index ttvi 

Texture Variance_texture12, Mean_texture6, Mean_texture1, Data range_texture12, Data, 

range_texture6 

Tasseled cap Fourth, brightness 

Band Band9, band5, band12 

 

Combination of 

Data 

 

ALOSPALSAR C12_real, c11_texture_11 

Sentinel-1 P11, entropy__1, delta1, compact_ms 

Sentinel_2 Brightness,variance_texture3, Mean_texture7, Mean_texture9, Data range_texture12, 

band9, Data range_texture3, band10, Ratio 

 

Table 2. The best selection indexes of the data for biomass estimation in GA-SVM. 

 

 
 

    Figure 6. Above ground biomass of urban forest map in 2018 

 

 
 

Figure 7. Carbon stock of urban forest in 2018 
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3.3 Simulate of the carbon stock in time series 

At the end part, the carbon stock map on 2000, 2005, 2010 and 

2015 are simulated by the carbon stock of green space estimated 

map on 2018 and the green space extraction of each year with 

Kiriging interpolation (Stein 2012). 

 

 
Figure 8. Carbon stock of urban forest in 2000 

 

 
Figure 9. Carbon stock of urban forest in 2005 

 

 
Figure 10. Carbon stock of urban forest in 2010 

 

 
Figure 11. Carbon stock of urban forest in 2015 

 

2018 2015 2010 2005 2000 

469.05193 670.6051 897.13379 1302.45 1671.4052 

 

Table 3. The amount of Carbon stock (ton/ha) 

 

Carbon cycle has decreased with the increase in deforestation. 

The lowest rate of carbon stock is observed in 2018. 182.88 ha 

of forest area in 2000 have been converted into urban area in 

2018 and 1202.35327 ton/ha of carbon have decreased since 

2000 to 2018. 

 

4. CONCLUSION 

 

Literature demonstrates that there is a decline in the number of 

studies using conventional methods to estimate AGB, compared 

to remote sensing methods. Conventional methods, although 

accurate, are time-consuming, too costly and practically 

impossible to apply on a broader scale. Although active sensors, 

such as Lidar and radar, provide higher and more reliable AGB 

estimates than coarse multispectral data, they are still not 

operational in the environments. The growth rate of cities has a 

direct relation with the reduction of biomass in the city. 
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