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ABSTRACT: 

Accurate and reliable assessment of above-ground biomass (AGB) is important for the sustainable forest management, especially in 

Zagros forests, in which a frangible forest ecosystem is being threatened by anthropogenic factors as well as climate change effects. 

This study presents a new method for AGB estimation and demonstrates the potential of Sentinel-2 Multi-Spectral Instrument (MSI) 

data as an alternative to other costly remotely sensed data, such as hyperspectral and LiDAR data in unapproachable regions. 

Sentinel-2 performance was evaluated for a forest in Kurdistan province, west of Iran, using in-situ measured AGB as a dependent 

variable and spectral band values and spectral-derived vegetation indices as independent variables in the Random Forest Regression 

(RFR) algorithm. The influence of the input variables number on AGB prediction was also investigated. The model using all spectral 

bands plus all derived spectral vegetation indices provided better AGB estimates (R2 = 0.87 and RMSE = 10.75 t ha−1). Including the 

optimal subset of key variables did not improve model variance but slightly reduced the error. This result is explained by the 

technically-advanced nature of Sentinel-2, which includes fine spatial resolution (10, 20 m) and strategically-positioned bands (red-

edge), conducted in different topographical conditions with an advanced machine learning algorithm. However, assessing its 

transferability to other forest types with varying conditions would enable future performance and interpretability assessments of 

Sentinel-2. 

* Corresponding author

1. INTRODUCTION

Accurate assessment of forest above-ground biomass (AGB) is 

important for the sustainable management of forests, 

particularly for Zagros forest areas whose currently degraded 

through overgrazing and deforestation. In west of Iran, forest is 

severely influenced by the pressure from human development 

on vegetated areas, specially landcover change for cultivation 

and ranching purposes. This, requires timely-based observing of 

available resource. An assessment of AGB helps foresters and 

scientists to monitor and understand ecosystem responses 

(Chinembiri et al., 2013; Gara et al., 2014). Furthermore, time 

series and frequently monitoring of the forest status provide a 

basis for decision-making and the sustainable use of forest 

resources with a view to introducing appropriate planning and 

conservation efforts.  

Traditional field-based methods and remote sensing (RS) 

methods are known as two major approaches for forest biomass 

estimation. There is no doubt that traditional methods are more 

accurate (Lu, 2006), but they are also laborious, difficult to 

implement in inaccessible areas, time consuming and 

destructive in nature (Henry et al., 2011). Thus, this study has 

favoured remote sensing techniques since their inception. AGB 

cannot be directly measured from space, however, the use of 

spectrally-derived parameters from sensor-measured reflectance 

enables increased biomass prediction accuracy when combined 

with field-based measurements (Dong et al., 2003). Many 

studies utilized hyperspectral, LiDAR, and medium-resolution 

sensors with sufficient field data collection to estimate AGB 

(Chen et al., 2009; Muinonen et al., 2012; Rana et al., 2014; 

Dube at al., 2015; Shen et al., 2016). Employing hyperspectral 

and LiDAR remote sensing technologies, confronts with some 

restrictions, e.g. high data accusation and processing costs and 

data redundancy, that have resulted in a shift towards the use of 

free and readily available broadband, including Landsat and 

Sentinel-2 (pandit et al., 2018), which offer a large swath width, 

letting timely AGB estimations from local to regional-scale 

(Hall et al., 2011; Laurin at al., 2014). 

Although, Landsat data have been mostly used for forest AGB 

estimation (Foody at al., 2003; Powell at al., 2010), its 

increasing data saturation in fully vegetated areas leads to 

under-estimation of biomass (Steininger, 2000; Kasischke at al., 

2014). Sentinel-2 equipped with a multi-spectral instrument 

(MSI) sensor, launched on 23 June 2015 by the European Space 

Agency (ESA), provides a significant improvement in spectral 

coverage, spatial resolution, and temporal frequency over the 

current generation of Landsat sensors (Gómez, 2017). It offers a 

multi-purpose design of 13 spectral bands ranging from visible 

and near-infrared (NIR) wavelengths to shortwave infra-red 

wavelengths at 10 m, 20 m and 60 m ground pixel size. Besides, 

the presence of four bands within the red-edge region, centred 

at 705 (band 5), 740 (band 6), 783 (band 7), and 865 nm (band 

8a) (Shoko and Mutanga, 2017), gives a high potential for 

mapping various vegetation characteristics, such as vegetation 

nutrient (Clevers and Gitelson, 2012), assessing rangeland 

quality (Ramoelo at al., 2015), mapping and monitoring 

wetlands (Kaplan and Avdan, 2017) and tree canopy cover 

(Godinho et al., 2017). Sentinel-2 was recently evaluated for 

forest AGB estimation in tropical forests (Chen at al., 2018; 

pandit at al., 2018), however, to the best of our knowledge, it 
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has yet been conducted in the challenging and in-danger Zagros 

forests. In such areas, Sentinel-2, with its fine resolution and 

free access policy, can offer new opportunities for timely and 

accurate AGB estimation. 

In this research, Random Forest Regression (RFR) was chosen 

based on prior studies, which have shown that the RFR 

approach provides one of the best performances among 

empirical modelling (Strobl at al., 2008; Karlson at al., 2015). 

Moreover, RFR is able to determine the relevance of variables, 

which is crucial for concluding the final AGB estimates based 

on the incorporated spectral bands and their combinations. 

Also, ignoring the contribution of irrelevant variables, that can 

be confusing, results in a faster model and less prone to 

overfitting (Chave at al., 2005).  

The main aim of this study is, therefore, to 1) investigate the 

performance of spectrally-derived indices using Sentinel-2 MSI 

combined with in-situ measurements for estimating AGB in the 

Zagros forests, West of Iran and 2) point the major spectral 

variable to generate the smallest subset of input variables in the 

RFR algorithm. 

2. STUDY AREA AND DATA

2.1 Study area 

The study area is a relatively highly sloped area, in Kurdistan 

province, west of Iran, situated in the Northern part of Zagros 

mountain chain (Figure 1). The forest are mainly dominated by 

broadleaves species Brant’s Oak (Quercus brantii) and Aleppo 

oak (Quercus infectoria).  

2.2 In-situ data 

Forest inventory data were collected in 57 forest plots in July 

2018, distributed according to a random sampling strategy. All 

the trees inside each rectangular 20m by 20m plot were 

measured. Forest parameters, namely the diameter at breast 

height (DBH) greater than 5cm and tree height (H), were 

measured using a tape and a total station, respectively. The 

species name of each tree was noted as well. Figure 2 shows the 

conditions in one of the measuring plots.  

Among all researches on AGB estimation in Zagros forests, a 

few studies focused on the Brant’s Oak dominated forests, 

particularly in Kurdistan provience (e.g. Abbasi et al. 2017). 

Therefore, the biomass values were estimated using an existing 

species-specific allometric equation developed by Yousefvand, 

et al. (2017), in which similar Brant’s Oak dominated forests 

was investigated. Using the quadratic equation, tree-level AGB 

values were calculated  using equation 1: 

Y= 0.7116 D2 - 6.1363 D + 38.473 (1) 

Where D is tree diameter at breast height (cm) and Y is 
the tree-based AGB in kilogram. Using the number of trees 
per plot, the plot-level AGB were standardized in tonnes 
per hectare (t ha-1).

Figure 2. One of the measuring plots shows Brant’s Oak trees 

locate in a sloped train. 

2.3 Remote sensing data 

Single scene standard Sentinel-2 Level-1C product obtained on 

closest date of acquisition to field collection dates were selected 

and downloaded. This product is an ortho-image in UTM/WGS 

84, 38N projection, with per-pixel radiometric 

measurements provided for top of atmosphere reflectance. The 

data is acquired in 13 spectral bands, however, bands 1, 9, and 

10 were excluded in this study as they are used to detect 

atmospheric features. The image was converted from radiance 

to surface reflectance by applying the dark object subtraction 

method. Moreover, the 10m spatial resolution bands were 

resampled to 20-m resolution to unify the remotely sensed data 

to size of the measured plots.  

3. METHOD

To test the applicability of the Sentinel-2 data for estimating 

forest AGB in the study area, spectral bands and a few 

vegetation indices (VIs), which presented better performance in 

previous studies (Zhu and Lu, 2015; Chen et al., 2015), were 

exploited (Table 1).  

Estimation of forest AGB using MSI data was based on the 

extension of a tree-based model called Random Forest 

Regression (RFR). A detailed description of the basic theory 

behind the model is provided by Breiman (2001). In this 

algorithm, decision trees are generated to the maximum extent 

without pruning using a randomly-selected two thirds of the 

samples as training data with bootstrapping, which strengthens 

the flexibility by aggregating the prediction across individual 

trees to make a final prediction. The rest of the data, i.e., the 

remaining third, is called OOB data (out-of-bag), is not seen by 

the model, and is used as validation samples to estimate the 

model errors (Prasad at al., 2006).  

There are two important parameters, namely mtry, which is 

denoted as the number of variables available for splitting at 

each node of the tree, and ntree, which is the number of trees 

Figure 1. The study area as a black rectangle in (a) and its exact border are presented in a grey polygon. 
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adjusted to achieve a desirable prediction. These two parameters 

were optimized to achieve a reasonable prediction (selecting the 

lowest RMSE). To identify whether a smaller set of the variable 

would improve model performance, ntree and mtry were tested 

in the range of 500 to 1000 and 1 to 20, respectively, which 

explained the variables optimally. For indicating the importance 

of variables, a score is assigned, that depends on changes in the 

error when a particular variable is varied, namely 

IncNodePurity. The larger the effect of a IncNodePurity, the 

more importance is assigned to that variable (Reif et al., 2006). 

Taking this into account, all the remote sensing-generated 

variables were used for AGB estimation and the IncNodePurity 

measure was used to determine the variable importance. The 

RFR was implemented in MATLAB software 2015 version 

using the statistical toolbox. 

In order to evaluate the RFR performance, the coefficient of 

determination (R2) and root mean square error (RMSE) between 

the estimated AGB and the field-measured AGB, were 

calculated. 

 

 

Spectral feature description 

MSI bands:  

B2  

B3  

B4  

B5 

B6  

B7  

B8  

B8a  

B11  

B12 

Blue  

Green  

Red  

RE 1  

RE 2  

RE 3  

NIR  

RE 4  

SWIR1  

SWIR2 

Vegetation 

indices: 

 

NDVI  

RGR  

EVI  

SR  

PSRI  

SAVI 

Red-edge-based 

NDVIs:  

1  

2  

3  

4 

(NIR−R/NIR+R)  

Red665/Green560  

2.5*((NIR−R)/(1+NIR+6R−7.5Blue)) 

NIR/RED 

(ρ665−ρ560/ρ740)  

 (NIR−R)/(NIR+R+L)*1.5  

 

 

(NIR − RE1/NIR + RE1)  

(NIR − RE2/NIR + RE2)  

(NIR − RE3/NIR + RE3)  

(NIR − RE4/NIR + RE4) 

Table 1. Spectral bands and calculated vegetation indices from 

Sentinel-2 MSI. 

 

4. RESULTS AND DISCUSSION 

Forest stand parameters (DBH and H) measured for individual 

trees within the rectangular plot were aggregated to generate 

plot-level AGB for all sampling plots in the study area. The 

average AGB in the area is 35.70 t hec-1 with 18.61 t hec-1 

standard deviation, while the lowest and highest AGB are 52.44 

t hec-1 and 21.09 t hec-1, respectively. These results are close to 

destructive measurements have done before in the study area 

(Abbasi at al., 2017).  

The parameters ntrees and mtry was adjusted to generate a 

better prediction result. Boosting of ntree for the full predictor 

variable resulted in a value of 700, whereas mrty was 14, which 

produced the lowest RMSE.  

 

Considering the potential of the RFR algorithm for predicting 

forest biomass, the RFR model with all input variables (n = 20) 

produced a reasonable result (R2 = 0.87 and RMSE = 10.75 t 

ha-1). 

 

 
Figure 3. Relative importance of the variables 

 

 

RFR also calculates the relevance of the input variables using 

IncNodePurity. As shown in Figure 3, the most influential 

features pose in the red edge spectral region, which confirm the 

results achieved in pandit et al., (2018). The spectral band 8a in 

the most important feature, however, band 8 in the same 

spectral region belongs to the impractical features. It may 

related to the spectral resolution, while band 8a has five times 

lower bandwidth. The variable selection method used in this 

study identified the smallest subset of predictor variables in the 

model.  

 

No. of Variables 

Used 

Eliminated Variable 

(Backward) 

R2 RMSE 

20  

19  

18  

17  

16  

15  

14  

13  

12  

11  

10  

9  

8  

7  

6  

5  

4  

3  

2  

Full variables 

PSRI 

Band 8 

Band 4 

SAVI 

Band 12 

Band 11 

RGR 

EVI 

RE-NDVI 4 

SR 

RE-NDVI 3 

Band 3 

Band 5 

RE-NDVI 2 

RE-NDVI 1 

Band 2 

Band 7 

NDVI 

0.87 

0.87 

0.86 

0.87 

0.86 

0.84 

0.83 

0.83 

0.81 

0.80 

0.80 

0.80 

0.79 

0.78 

0.78 

0.74 

0.74 

0.73 

0.69 

10.57 

10.55 

10.01 

10.08 

10.69 

11.01 

10.93 

11.42 

11.80 

12.76 

12.95 

13.33 

13.82 

14.00 

16.07 

19.46 

20.04 

22.58 

26.99 
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1 Band 6 0.61 31.14 

Table 2. Performance of the RFR by withdrawing of variables. 

 

Comparing the variable importance values (IncNodePurity), 

progressive backward feature elimination did not substantially 

improve model performance. Removal of the five least 

important variables from the model resulted no change in R2; 

however, as presented in Table 2, there were inconsistencies in 

the RMSE value. Slight increases or decreases were observed 

when the variables were progressively removed from the model. 

Thus, the full set of predictor variables that yielded the highest 

R2 (0.87) and low RMSE (10.08 t ha−1) values were considered 

in the final RFR algorithm to predict the AGB of the forest. 

Finally, an AGB map was produced using the best predictor 

variables from the final model generated by the RFR algorithm 

(Figure 4). The choice of Sentinel-2 spectral bands and spectral-

derived VIs for producing biomass estimates was based on the 

fact that it produced strongly-explained variable values (R2) and 

a low RMSE. The average predicted forest biomass was 37.45 t 

ha−1, ranging from 18.70 t ha-1 to 65.63 t ha-1. 

 

 
Figure 4. Estimated AGB using best predictor from RFR 

algorithm, where dark green indicates maximum AGB (65.63 t 

hec-1) and light green indicates lowest value (37.45 t hec-1). Red 

circles point to the measuring plots. 

 

 

5. CONCLUSIONS 

This study investigates the performance of the RF algorithm in 

predicting forest AGB in Zagros forests, West of Iran, using fine 

spatial resolution Sentinel-2 MSI data. The approached results 

show Sentinel-2 data effectively predicted the above-ground 

biomass of the Zagros forests, with an R2 value of 0.87 and an 

RMSE value of 10.75 t ha−1. Also, selection of important 

variables did not improve the variance explained by the RFR 

model (R2), but improved the model performance error (RMSE) 

from 10.75 to 10.08 t ha−1. 

Technical improvements in the Sentinel-2 MSI sensor at fine 

medium resolution (10 and 20 m) have the potential to enable 

accurate predictions of AGB in areas of semi-arid forest with 

sloped terrain. 

Since Sentinel-2 MSI is a relatively new sensor, in comparison 

to Landsat and MODIS, we recommend further researches in 

near future, such as the applicability of this data to other parts 

of the forested Zagros mountain and including species-specific 

allometric estimates for plot-level AGB values.  
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