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ABSTRACT: 

 

Precise measurements of forest trees is very important in environmental protection. Measuring trees parameters by use of ground- 

based inventories is time and cost consuming. Employing advanced remote sensing techniques to obtain forest parameters has recently 

made a great progress step in this research area. Among the information resources of the study field, full waveform LiDAR data have 

attracted the attention of researchers in the recent years. However, decomposing LiDAR waveforms is one of the challenges in the data 

processing. In fact, the procedure of waveform decomposition causes some of the useful information in waveforms to be lost. In this 

study, we aim to investigate the potential use of non-decomposed full waveform LiDAR features and its fusion with optical images in 

classification of a sparsely forested area. We consider three classes including i) ground, ii) Quercus wislizeni and iii) Quercus douglusii 

for the classification procedure. In order to compare the results, five different strategies, namely i) RGB image, ii) common LiDAR 

features, iii) fusion of RGB image and common LiDAR features, iv) LiDAR waveform structural features and v) fusion of RGB image 

and LiDAR waveform structural features have been utilized for classifying the study area. The results of our study show that 

classification via using fusion of LiDAR waveform features and RGB image leads to the highest classification accuracy. 

 

 

1. INTRODUCTION 

Recently, the importance of preserving the environment is 

universally acknowledged (Foody, 2003; Giuliani et al., 2017). 

Precise measurements of the environment and especially 

obtaining parameters of forest trees by use of ground-based 

inventories is an exhausting job which is both time and cost 

consuming. During the last decades, developing automatic 

method became an important concern for many researchers in 

this field of study (Katila and Tomppo, 2001; Suárez et al., 2005).  

The advent of remote sensing techniques and data availability in 

the recent years have significantly revolutionised many study 

fields in environment monitoring, among them, tree species 

classification.  Nowadays, aerial or satellite imagery is one of the 

main remote sensing information sources for this purpose 

(Brandtberg, 2002; Fassnacht et al., 2016; Immitzer et al., 2012). 

Another remote sensing information resources which has 

attracted the attention of many researchers in the last two decades 

is LiDAR data. The high performance of LiDAR in monitoring 

the vertical structure of trees provides reliable information for 

obtaining the forests parameters. That is especially the case for 

full waveform LiDAR data which can record returned energy of 

the objects (Mallet and Bretar, 2009; Reitberger et al., 2006). 

However, decomposing LiDAR waveforms is one of the biggest 

challenges in processing the data (Chauve et al., 2008; Mallet and 

Bretar, 2009). In fact, in many applications such as single tree 

segmentation, LiDAR waveform needs to be decomposed for 

further processing, but the procedure of waveform 

decomposition itself causes some of the waveform information 

to be lost (Vaughn et al., 2011, 2012).  

In most of classification tasks, LiDAR waveforms are 

decomposed to extract point cloud and some conventional 

features such as amplitude and intensity where these data are used 
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for classification in the next steps. In (Reitberger et al., 2008), 

authors have extracted three-dimensional (3D) point clouds and 

LiDAR features like the intensity and the pulse width from laser 

beam reflections by the use of fitting a series of Gaussian models 

to the waveform pulses. Afterwards, tree crowns were delineated 

using the canopy height model (CHM) and were classified into 

coniferous and deciduous classes with overall accuracy of 85% 

in a leaf-on and 96% in a leaf-off situation. Heinzel and Koch  

(2011) have identified three most important variables in their 

work based on the intensity, the width and the total number of 

targets and classified six, four and two tree species with an 

overall accuracy of 57%, 78% and 91%, respectively. Yao et al.  

(2012) detected single trees automatically by a 3D segmentation 

technique. In order to classify trees, they used salient features that 

are defined on single 3D tree segments and the additional 

information extracted from the reflected laser signal by the 

waveform decomposition. Finally, deciduous and coniferous 

trees were classified with 93% and 95% accuracy with an 

unsupervised and supervised classifier, respectively. Cao et al. 

(2016) have extracted full-waveform metrics by a voxel-based 

composite waveform approach and examined Random-Forests 

classifier to discriminate six subtropical tree species. One of the 

main problems of these methods is smoothing and decomposing 

waveforms to extract point cloud and features for classification 

tasks which cause losing important information of waveforms 

and their potential use for classification (Vaughn et al., 2011). 

To the best of our knowledge, a few experiments have been done 

for forested area classification using integration of non-

decomposed full waveform LiDAR data and aerial imagery. In 

this study, we intend to explore the potential employment of such 

data and in particular structural features of full waveform LiDAR 

data in classification of a sparsely forested area. To this end, 

some structural features have been extracted from full waveform 
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airborne LiDAR data and have been integrated with an aerial 

RGB image to classify the study area. In order to compare the 

potential of using this data, we apply and assess five different 

strategies including i) using RGB image, ii) common LiDAR 

features, iii) fusion of RGB image and common LiDAR features, 

iv) structural features of full waveform LiDAR and v) fusion of 

RGB image and structural features of full waveform LiDAR for 

classifying the study area. For studying the effect of 

normalization on classification using each data source, 

classification with and without normalizing the features has been 

also performed. 

The rest of the paper is organized as follows. In section 2, the 

study area and the data sources are introduced. In the third 

section, the methodology for classifying study area using each 

dataset and extracting structural features of full waveform 

LiDAR is elaborated. Section 4 involves with describing the 

experimental results. Finally, our conclusion is given in section 

5. 

 

2. DATASET 

2.1 Study Area 

The proposed method in this study was evaluated on airborne full 

waveform LiDAR data and RGB aerial imagery of Madera 

experimental range in California which has been collected 

through the National Ecological Observation Network (NEON) 

project. This study area extents from 119.735W to 119.738W and 

from 37.111N to 37.113N, covering an area of about 6.25 ha and 

is an open woodland dominated by Quercus wislizeni and 

Quercus douglasii with scattered shrubs and a nearly continuous 

cover of herbaceous plants. 
  

2.2 LiDAR Data 

The LiDAR data used in this study was collected by an Optech 

Gemini LiDAR system at a nominal range of 1000 m (which 

means the aircraft flew at 1000 m AGL), wide divergence (0.8 

mrad), 100 kHz PRF, and a mirror scan frequency of 50 Hz and 

full scan angle of 37 degrees. This achieves a nominal 3.82 points 

(first return) per meter squared at Nadir with a 0.8 m diameter 

spot and a spot spacing of about 0.524 m in the across-track 

direction and 0.5 m in the along-track direction. The outgoing 

pulse width is about 15 nano-second and the waveform is 

digitized with 1 nano-second bins and a 12 bit analog to digital 

converter (ADC). In order to collect this data, the aircraft was 

flying either North-to-South or South-to-North where two flight 

lines of LiDAR data were provided in an area of 250 m × 250 m. 

Finally, 258667 waveforms have been recorded by this system. 

The first return point cloud of this data is illustrated in Figure 

1(a). 

 

2.3 Image Data 

The aerial image exploited in this study has been captured in 

three bands (red, green and blue) simultaneously with LiDAR 

data collection. The image pixel size is 50 cm and its dimension 

is 1000 × 1000 pixels. The areal image of the study area in shown 

in Figure 1(b). 

 

 
(a) 

 
(b) 

Figure 1. (a) First return point cloud (the legend shows 

points altitude from the sea level) and (b) aerial image of 

the study area. 
 

3. METHODOLOGY 

The focus of this study is on investigating the potential use of 

non-decomposed LiDAR waveform features and its fusion with 

RGB image in classifying a forested area.  Thereafter, we aim to 

compare the results of our strategy with the results of the other 

methods. For this reason, minimum distance (MD) as a simple, 

fast and widely-used classifier is being employed for the 

classification. That is because MD has lower computational 

burden due to its simplicity and is free parameter when it is 

compared with many other cutting-edge classifiers such as SVM 

(Boiman et al., 2008; Lim et al., 2000; Zhang et al., 2006). Most 

of trees in the study area (90%) are oak trees (Quercus wislizeni 

and Quercus douglasii) and as a results, three classes considered 

in this study including ground, Quercus wislizeni and Quercus 

douglusii classes. The ground truth (GT) used in this study was 

produced using the reported position of a limited number of trees 

(16 trees) and visual interpretation of the RGB image and 

multiple high-resolution satellite images of the study area. In this 

study, 60% of the GT was considered as training data where the 

rest of data was used as test data. The GT used in this study is 

illustrated in Figure 2. 

 

 

Figure 2. The GT used in the study for classification. 
 

As mentioned, we use different strategies in this study for the 

classification procedure. The methods are briefly presented in the 

following. 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W18, 2019 
GeoSpatial Conference 2019 – Joint Conferences of SMPR and GI Research, 12–14 October 2019, Karaj, Iran

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W18-147-2019 | © Authors 2019. CC BY 4.0 License.

 
148



 

3.1 Classification using aerial image (RGB) 

In this case, the study area was classified just using three bands 

(red, green and blue) of the aerial image. 

 

3.2 Classification using common LiDAR features related to 

the first return LiDAR pulse (first return) 

Here, the corresponding LiDAR points to each pixel are 

identified and the amplitude, width and intensity of the first peak 

(first return) along with the total number of peaks in the 

waveform corresponding to each point are extracted and used as 

common features for classification. The reason for using the 

amplitude, width and intensity of the only first return for 

classification is that the first peak in each waveform is the most 

trustable among the waveform peaks, where in the others, parts 

of laser energy are being reduced and affected by the previous 

objects in the laser path (Abed, 2012; Hyyppä et al., 2009).  

 

3.3 Classification using fusion of common LiDAR features 

and aerial image (RGB and first return) 

In this case, common LiDAR features along with the three bands 

of the aerial image are employed for classification. 

 

3.4 Classification using structural features of full waveform 

LiDAR (waveform) 

Here, the corresponding LiDAR points to each pixel are 

identified and LiDAR waveforms related to each point are 

extracted. Afterwards, without decomposing waveforms, eight 

structural features are extracted from raw LiDAR waveforms and 

used for classification. These features are introduced in the 

following: 

 

3.4.1 Integration of waveform 

Integration of waveform can be physically defined as a 

summation of all intensities in waveform which is affected by 

parameters such as specification of existed objects in laser path 

and their distances to each other. This feature, therefore, in the 

case of trees is different and depends on the reflectivity, density 

and spatial arrangement of the leaves and branches. The feature 

is defined as a summation of values of waveform amplitude 

which can be expressed as equation (1): 

 

(1) 𝑃𝐼 = ∑ 𝑥𝑖

𝑛

𝑖=1

 

 

 where 𝑥𝑖 is the energy of waveform in ith nano-second and n is 

wavelength. A sample of this feature is shown in Figure 3(a). 

 

3.4.2 Amplitude of highest peak 

This feature is defined as the amplitude of highest detected peak 

in each waveform and is the return energy estimate of the 

corresponding object in laser path which is affected by type, 

shape and specification of the object. A sample of this feature is 

illustrated in Figure 3(b). The feature has been used in many 

studied (Hollaus et al., 2009; Lindberg et al., 2014) 

 

3.4.3 Location of highest peak 

This feature is defined as the time that the highest potential peak 

is recorded which corresponds to the distance between the 

position of the object (identified by the highest detected peak) 

and the beginning of the wave recording. The feature is affected 

by parameters such as the object specification and distances 

between the detected objects in the laser path. Figure 3(b) 

illustrates this feature for a sample waveform. 

 

3.4.4 Distance between first and last detected peak 

In this method, the feature is defined as interval time distance 

between first and last detected peaks on horizontal axis of 

waveform diagram which is corresponded to the distance 

between the first and last object in the laser path (Cao et al., 

2016). For some of waveforms related to trees, this feature can 

be considered as tree height if the laser is shot vertically and 

reaches the ground. This feature can play an important role in 

waveform classification. A sample of this feature is shown in 

Figure 3(b). 

 

3.4.5 Width to height ratio of first peak 

Width to height ratio of first peak is defined as width of estimated 

Gaussian model of first potential detected peak at %50 of its 

amplitude to its amplitude ratio. This feature is affected by some 

parameters such as type and shape of first object in laser path and 

for example, for the sample waveform illustrated in Figure 3(c) 

is 
𝑊1

𝐴1
 which 𝑊1 and 𝐴1 are the width and amplitude of first 

detected peak, respectively. Amplitude and width of detected 

peaks in waveforms have been used in many classification tasks 

like (Reitberger et al., 2008) (Hollaus et al., 2009)  . 

 

3.4.6 Sum of width to height ratios 

This feature is defined as sum of estimated width (using Gaussian 

function) to height ratios of all detected potential peaks in a 

waveform and physically relates to both fundamental parameters 

(amplitude and width) of all peaks. For the sample waveform 

shown in Figure 3(c) the value of this feature is 
𝑊1

𝐴1
+  

𝑊2

𝐴2
+

 
𝑊3

𝐴3
+  

𝑊4

𝐴4
 which 𝑊𝑖 and 𝐴𝑖 are width and amplitude of ith 

detected peak.  This feature is affected by location, shape and 

type of objects existing in laser path. 

 

3.4.7 Intensity of first detected peak 

The intensity of first detected peak is used in many segmentation 

and classification tasks (Reitberger et al., 2009) , (Hovi et al., 

2016) and is defined as the intensity of first detected peak in a 

waveform. A sample of this feature is illustrated in Figure 3(d). 

The intensity of first detected peak is equal to the area under the 

waveform curve of first peak which is estimated by (Reitberger 

et al., 2008): 

 

(2) 𝐼𝑖 = √2 ∗ 𝜋 ∗ 𝐴1 ∗ 𝜎1 
 

where 𝐴1 is the amplitude and 𝜎1 is standard deviation of the 

estimated Gaussian function of the first peak.  

 

3.4.8 First energy drop 

First energy drop is defined as the location that a temporary 

energy drop occurs in the waveform before hitting to the last 

object in the laser path where its value in the case of waveforms 

which do not have this energy drop is considered as zero. This 

feature is affected by characteristics and distances between 

objects. A sample of this feature is illustrated in Figure 3(e). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 3. Generated structural features using LiDAR 

waveforms. 

 

3.5 Classification using fusion of structural features of full 

waveform LiDAR and aerial image (waveform and RGB) 

In this case, structural features of full waveform LiDAR defined 

in section 3.4 along with the three bands of the aerial image are 

used for classification. 

Here, normalizing features whose values are in different ranges 

is necessary, especially when distance classifiers are employed 

(Naeini et al., 2017). In this study, in order to normalize the 

features in each case, the stretching based method normalization 

which maps values between [0,1] was used (Aksoy and Haralick, 

2001) and the effect of normalization on each classification 

strategy was assessed. 

 

4. EXPERIMENAL RESULTS 

In this section, the results of classification with and without 

feature normalization based on kappa coefficient for five 

proposed strategies are illustrated (Figure 4). Classification map 

for the case of using fusion of structural features of full waveform 

LiDAR and aerial image is shown in Figure 5. 

 

 
Figure 4. Classification accuracies based on kappa 

coefficient for each strategy. 

 
Figure 5. Classification map for the case of using fusion of 

structural features of full waveform LiDAR and aerial image. 

 

As is clear from Figure 4, normalizing features leads to 

improvement in the classification accuracy for all five strategies. 

It is worth noting that in the cases which the number of features 

and the differences in their ranges were higher (4th and 5th cases 

in which structural features of LiDAR waveforms were used), 

normalizing features is absolutely necessary and leads to much 

more improvements in classification accuracy than other three 

cases. As it is obvious from the results, even though using non-

normalized structural features of LiDAR does not lead to high 

accuracy of classification result but after normalization, fusion of 

structural features of full waveform LiDAR and aerial image 

bands leads to the highest classification accuracy among five 

cases. After feature normalization, in the case of using just 

LiDAR features for classification, structural features of LiDAR 

waveforms improves the classification accuracy by 7%, 

compared to using only common LiDAR features related to first 

return. 

Finally, even though the use of only LiDAR features for 

classification leads to lower accuracy than using just aerial image 

bands, employing fusion of common LiDAR features and aerial 

image and fusion of structural features of full waveform LiDAR 

and aerial image improves the results respectively by 1% and 4% 

in classification accuracy when compared with using only aerial 

image bands. 

 

5. CONCLUSIONS 

LiDAR datasets, especially full waveform LiDAR data, is a 

valuable remote sensing source which is used effectively in 

numerous applications such as tree species classification. LiDAR 

waveform decomposition is a pre-processing step in most 

classification tasks which causes a part of information in 

waveform to be lost. In this study, we tried to use raw waveform 

LiDAR data for classification and assessed the potential of using 

structural features of non-decomposed LiDAR waveforms and its 

fusion with optical image for classifying a sparsely forested area. 

To this end, five different strategies including using RGB image, 

common LiDAR features, fusion of RGB image and common 

LiDAR features, LiDAR waveform features and fusion of RGB 

image and LiDAR waveform features were used for classifying 

the study area and the results were compared. 
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The results of this study showed that normalizing features 

improves the classification accuracy in all five strategies but this 

effect is much more significant for cases in which structural 

feature of LiDAR waveforms is used; this is because in these 

cases the number of features and the differences in their ranges 

were higher. Using LiDAR waveform structural features leads to 

higher classification accuracy than using common LiDAR 

features coming from waveform decomposition. This is due to 

the fact that LiDAR structural features presents more information 

about vertical structure of trees than common LiDAR features. 

After feature normalization, fusion of LiDAR waveform 

structural features and aerial image led to a 3% and 4% 

improvement in classification accuracy when compared with 

using only aerial image bands and fusion of common LiDAR 

features and aerial image, respectively. After all, we conclude 

that using non-decomposed LiDAR waveforms and generating 

suitable structural features in classification tasks can lead to 

better results than using only optical images or common LiDAR 

features. Future attempts should be focused on extracting more 

effective LiDAR waveform structural features and its fusion with 

other sources such as hyperspectral images for classification 

tasks.  
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