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ABSTRACT: 

 

Lakes play a pivotal role in the development of cities and have major impacts on the ecosystem balancing of the area. Remote 

sensing techniques and advanced modeling methods make it possible to monitor natural phenomena, such as lakes’ water level. The 

ecosystem of Urmia Lake is one of the most momentous ecosystems in Iran, which is almost close-ended and has become a global 

environmental issue in recent years. One of the parameters affecting this lake water level is snowfall, which has a key role in the 

fluctuations of its water level and water resources management. Hence, the purpose of this paper is the Urmia Lake water level 

estimation during 2000-2006 using observed water level, snow cover, direct precipitation, and evaporation. For this purpose, 

Support Vector Regression (SVR), which is the most outstanding kernel method (with various kernel types), has been used. 

Furthermore, four scenarios are considered with different variables as inputs, and the output of all scenarios is the water level of the 

lake. The results of training and testing data indicate the substantial impact of snow on retrieving the water level of the Urmia Lake 

at the desired period, and due to the complexity of the data relationships, the Gaussian kernel generally had better results. On the 

other hand, Quadratic and Cubic kernels did not work well. The fourth scenario, with RBF kernel has the best results [Training: R2 = 

97% and RMSE = 0.09 m, Testing: R2 = 96.97% and RMSE = 0.08 m]. 
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1. INTRODUCTION 

Nowadays, some lakes throughout the world are drying or 

completely dried due to irrigation or urban use diverting 

inflow. Climate changes are also a factor in drying some lakes 

(CASEY, 2016). Urmia Lake is one of the largest permanent 

lakes in the Middle East with a catchment area of 51,876 km², 

comprising 3% of the country area and 7% of total surface 

water in Iran, which has started serious uninterrupted 

desiccation since 1995 (Figure 1). There are many reasons for 

this dramatic water losses: (1) the thirteen rivers entering the 

lake have been dammed, (2) increased groundwater pumping 

has reduced flows into the lake, (3) water diversions, (4) climate 

changes, and (5) drought (Eimanifar et al., 2007), (Marks, 

2019). Naturally, the most important factors affecting the water 

level of this lake are climatic and hydrological factors. For 

example, precipitation and evaporation can be one of the most 

important climatic factors that are considered in this study. As a 

result, prediction of water level and investigating its future 

trends are crucial to prevent the complete drying of the lake. 

During 2002-2005, even though the water entering the lake 

(including permanent rivers and precipitation on the lake) is less 

than the threshold of Urmia Lake’s evaporation, there has been 

a temporary increase in the water level of Urmia Lake that can 

be due to the temporary runoff from snow melting (Boueshagh 

et al., 2019). If this enhancement is due to the temporary runoff 

from snow melting, and besides, the amount of water entering 

the lake is greater than the threshold of evaporation, or at any 

time, the water entering the lake is not less than the threshold of 

evaporation, then the lake will have no shrinkage. Thus, with 

any rainy year and the snowmelt runoff, the Urmia Lake will 

naturally be recovered. Therefore, snow in the catchment area of 

Urmia Lake is one of the significant sources of the lake water, 

and Snow Cover (SC) plays a significant role in the water 

balancing. Because of these reasons, SC monitoring is an 

important tool for analyzing this lake’s water level, particularly 

because satellite data provide timely and efficient snow cover 

information for large areas. Estimation of SC and water stored 

in the snowpack has great importance in climate changes 

researches and water resources management (Nikraftar et al., 

2016), (Johnson et al., 1984), (Yasunari et al., 1990), (Cohen, 

1994). According to the studies, snow is a controlling parameter 

over the regional weather and climate patterns (Cohen et al., 

1999). Evaluation of long-lasting SC can affect climate changes 

monitoring as well as the simulating models (Frei et al., 1999). 

On a regional scale, SC is essential for local water availability, 

river run-off, and groundwater recharge, especially in middle 

and high latitudes (AKYÜREK et al., 2002). In countries such 

as Norway or Switzerland, where electricity is mainly generated 

through hydropower stations, SC is an important factor 

influencing energy supply (Vikhamar et al., 2003). In this 

context, exact knowledge about the snow-covered area is also 

essential for water resource management e.g., when using 

snowmelt runoff models (Butt et al., 2011). 
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(c) 

Figure 1. Satellite images of the Urmia Lake in (a) 1989, 

(b) 2001 and, (c) 2011: These images obviously show the 

negative trend of water level and gradually shrinking of 

the lake area through 22 years (source: U.S. Geological 

Survey). 

 

Spatial-temporal attributes of SC can be obtained indirectly 

from remotely sensed data, or directly from ground 

measurements. In the remote sensing, one of the sensors that 

can be used to appraise SC is the Moderate Resolution Imaging 

Spectroradiometer (MODIS), and snow map is a SC estimation 

algorithm that was developed especially for MODIS (Hall et al., 

1995). The MODIS daily, 8-day and monthly SC products 

provided by the National Snow and Ice Data Center (NSIDC) 

are based on the mentioned algorithm. It uses the reflectance of 

VIS and IR radiation to calculate the Normalized Difference 

Snow Index (NDSI): 
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4 6

b b
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b b


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where b4 and b6 refer to MODIS bands 4 (0.54–0.56μm) and 

band 6 (1.62–1.65μm), respectively (Hall et al., 2002). Zhang et 

al. have used MODIS L1B data, MODIS Daily (MOD10A1) 

and 8-day (MOD10A2) Snow Products to monitor the SC of 

Liaoning Province in China over the winter months of 

November–April 2006–2008 (Zhang et al., 2010). There are 

many ways to examine the behavior of a parameter, as well as 

predict its future behaviors such as Support Vector Regression 

(SVR), Artificial Neural Network (ANN), and Least Squares 

(LS). In research, the potential of the support vector machine 

(SVM) in long-term prediction of lake water levels has been 

examined. They used the average value of monthly water levels 

from 1918 to 2001 to predict future water levels up to 12 

months ahead and compared the results with a widely used 

neural network model called a Multi-Layer Perceptron (MLP) 

and with a conventional multiplicative Seasonal Autoregressive 

Model (SAR). Based on the results of this research (Khan et al., 

2006), overall, the SVM showed good performance and is 

proved to be competitive with the MLP and SAR models. The 

SVM is relatively new and has demonstrated a good 

performance in classification (Osuna et al., 1997), (Belousov et 

al., 2002), regression (Smola et al., 2004), (Dibike et al., 2001), 

and time series forecasting and prediction (Mukherjee et al., 

1997), (Müller et al., 1997), (Tay et al., 2001), (Kim, 2003), 

(Thissen et al., 2003). The SVM leads to a unique and global 

solution because of its formulation, which employs a structural 

risk minimization (SRM) principle as opposed to an empirical 

risk minimization (ERM) principle, employed by conventional 

neural networks (Dibike et al., 2001). The SRM places an upper 

bound on the expected risk, as opposed to an ERM, which 

minimizes the error on the training data only. In this paper, the 

SVR method, which is the most illustrious kernel method, with 

various kernel types has been used to estimate the Urmia Lake 

water level using measured water-level in the monthly average, 

monthly SC in the whole catchment area of the Urmia Lake, 

monthly direct precipitation and monthly direct evaporation of 

lake surface. 

 

 

2. STUDY AREA AND DATASETS 

The study area is the Urmia Lake, located in the northwest of 

Iran in a geographic position between 45˚E - 46˚E and 37˚4'N - 

38˚17'N, is an oligotrophic lake of thalassohaline origin with a 

total surface area between 4750 and 6100 km2 and a maximum 

depth of 16 m at an altitude of 1250 m (Van Stappen et al., 

2001) (Figure 2). 

 

 
Figure 2. Urmia Lake basin in the northwest of Iran 

(Safaee et al., 2014) 
 

The total catchment area of the lake is about 51,876 Km2, which 

is 3.15% of that of the entire country and includes 7% of the 

total surface water in Iran. There are thirteen main rivers in the 

lake basin, among them Zarrineh rood is the largest one with a 

total annual discharge value of about 2×109 m3 (Ghaheri et al., 

1999), (Touloie, 1998). The climate in the Urmia Lake basin is 

harsh and continental, affected mainly by the mountains 

surrounding the lake (Ghaheri et al., 1999), (Alipour, 2006). 

Considerable seasonal fluctuations in air temperature occur in 

this semi-arid climate with an annual average precipitation of 

between 200 and 300 mm. The air temperature usually ranges 

between 0˚C and −20˚C in winter and up to 40˚C in summer. 

From this point of view, Urmia Lake is a critical asset for the 

region, because it acts to moderate these extremes (Kelts et al., 

1986). Annual inflow into the lake is 6900×106 m3, of which 

4900×106 m3 is from rivers, 500×106 m3 from floodwater 

(through rainfall) and 1500×106 m3 from precipitation (Touloie, 

1998). Underground springs are also a source of water, but the 

volume is not known (Jalali, 1984). Measured water-level by 

tide gauges in the monthly average, monthly SC in the whole 

catchment area of the Urmia Lake from SC products with a 

resolution of 0.05 degree (approx. 5 km) related to the MODIS 

aboard the Terra satellite extracted from the National 

Aeronautics and Space Administration website (NASA) 

available online at: https://earthdata.nasa.gov/, monthly direct 

Dec. 2001 

Dec. 2011 
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precipitation of lake surface from the MSWEP (Multi-Source 

Weighted-Ensemble Precipitation) data set extracted from 

Princeton Climate Analytics (PCA) website available online at 

https://platform.princetonclimate.com/PCA_Platform/, and 

monthly direct evaporation from the ECMWF (European Centre 

for Medium-Range Weather Forecasts) model extracted from 

the European Centre for Medium-Range Weather Forecasts 

website available online at 

https://apps.ecmwf.int/datasets/data/interim-full-

daily/levtype=sfc/, have been used for this study. This data is 

from 2000 to 2006, which there has been a temporary increase 

in the lake’s water level (Figure 3). 

 

 
Figure 3. Water level time series, SC time series, 

precipitation time series and evaporation time series (2000 –

2006) 

 

 

3. METHODOLOGY 

The first step to study and analyze the situation in Urmia Lake 

is to increase the accuracy of estimating the amount of water 

entering the lake, in order to find a suitable solution for its 

recovery. According to the water budget procedure, changes in 

the volume of a lake are a function of the balance between the 

amount of water entering the lake and the amount of water 

released from the lake. The general form of the water budget 

procedure is presented in Equation 2 (Jensen, 2010): 

 

input outputQ VQ   
 

 

where Qinput and Qoutput are the amounts of water entering the 

lake and the water coming out of the lake, respectively. The ∆V 

represents the changes in water body storage. The amount of 

water entering the Urmia Lake is subject to the following 

parameters (Jensen, 2010): 

 

( , , ' , )input input input input inputQ f Q R R G
 

 

where P is the direct precipitation on the lake, Rinput is the 

amount of water entering the lake by permanent rivers, R'
input is 

runoff from the land basin, and Ginput is groundwater inflow. 

Since the Urmia Lake is a closed lake, the amount of water 

released from the Urmia Lake is also subject to the following 

parameters (Jensen, 2010): 

( , )output outputf E GQ   

where E is evaporation from the water surface, and Goutput is 

groundwater outflow (Jensen, 2010). If Ginput = Goutput, by 

inserting Equations 3 and 4 in Equation 2: 

 

' ( )
input input

R V P R E    
 

 

by plotting the graph of Equation 5: 

 

Figure 4. Changes in the amount of runoff entering the 

Urmia Lake during 1999-2006 

The figure above shows that since 2002, the amount of 

temporary runoff into the lake has been increasing, and then the 

amount of this runoff decreases and increases again, which is 

consistent with the SC graph in Figure 3. As a result, this can 

indicate the relationship between the water level of the lake and 

the SC in the catchment area, and the temporary increase in the 

Urmia Lake’s water level during 2002 and 2005 can be due to 

temporary runoff from snow melting. For this reason, the 

purpose of this paper is the modeling and analyzing of the 

relationship between hydrological data and SC with Urmia 

Lake’s water level. Since the datasets are non-linear in the real-

world application therefore, the linear regression model can fail 

to generalize. Thus developing a nonlinear relationship between 

a pair of input and output is necessary (Pasupa et al., 2016). In 

this research, in order to accommodate the non-linearity, a new 

strategy for water level estimation of Urmia Lake based on 

SVM regression with various kernel types has been proposed. 

In the proposed method, four scenarios are considered with 

different variables as inputs of the SVR including SC in the 

whole catchment area of the Urmia Lake, direct precipitation 

and direct evaporation of the lake’s surface. As demonstrated in 

Figure 5, it is worth noting that all of the scenarios resulted in 

the water level of the lake (Figure 5). 

 

First 

scenario

Second 

scenario

Third 

scenario

Fourth 

scenario

In: PRE

Out: WL

In: PRE & 

EVA

Out: WL

In: SC & 

PRE

Out: WL

In: SC & 

PRE & EVA

Out: WL

Support Vector Regression (SVR)

In: Input, Out: Output

SC: Snow Cover, WL: Water Level

PRE: Precipitation, EVA: Evaporation
 

Figure 5: Flowchart of the proposed method 

(2) 

(3) 

(4) 

(5) 
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3.1 Support Vector Regression (SVR) 

In most cases, the researcher had attempted to establish a linear 

relationship between the input data and the corresponding target 

data. However, with the discovery of nonlinearity in the nature 

of the data, the focus has shifted towards the nonlinear 

prediction. Although there are many kinds of nonlinear statistics 

used in the literature for the water level forecasting, most of 

them require the nonlinear model to be specified before the 

estimation is done. In this paper, since the water level, climatic 

and hydrological data are nonlinear and follow a very irregular 

trend, SVR has evolved out to be a better technique to bring out 

the structural relationship between the various entities 

(Abhishek et al., 2012). The theoretical foundation of the SVM 

has been developed by (Vapnik, 2013). SVM can also be used 

as a regression method, maintaining all the main features that 

characterize the algorithm (maximal margin) (Sayad, 2019). 

There are two linear and nonlinear methods for SVR. Training 

an SVR with a linear kernel is faster than with other kernels, 

and it needs fewer parameters to optimize. The linear SVR is 

easy to interpret but may have low predictive accuracy. On the 

other hand, the non-linear SVR is more difficult to interpret but 

can be more accurate. In SVR, the kernel functions transform 

the data into a higher dimensional feature space to make it 

possible to perform the linear separation (Figure 6) (Nikraftar et 

al., 2015), (Boueshagh et al., 2018), (Sayad, 2019). 

 

 
Figure 6. Nonlinear SVR method (Sayad, 2019) 

 

 

Equations 6 and 7 represent the Gaussian and polynomial types 

of non-linear kernels, respectively (Sayad, 2019). 
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In this study, the Regression Learner App is used to carry out 

the analysis of the input data. This app implements linear 

epsilon-insensitive SVM regression, which ignores prediction 

errors that are less than some fixed number ε. The support 

vectors are the data points that have errors larger than ε.  

In this paper, Quadratic (Q), Cubic (C) and Gaussian or Radial 

Basis Function (RBF) kernels are used to train the model, and 

also Box constraint (BC), Epsilon (E) and Kernel Scale (KS) 

parameters have been tuned. For each of the scenarios, 70% of 

the data is considered as training data and 30% as testing data 

randomly, and the testing data is not included in the 

calculations. In addition, the information from the different 

inputs was scaled to [0, 1] range and also standardized. 

 

 

For each of the aforementioned scenarios through trial and 

error, the SVR parameters are shown in Table 1: 

 

Table 1: SVR parameters for four scenarios 

Kernel Parameters 1st 2nd 3rd 4th 

Q 

BC ---- 0.572 ---- 0.56 

E ---- 0.068 ---- 0.069 

KS ---- 1.03 ---- 1.01 

C 

BC ---- 0.33 ---- 0.07 

E ---- 0.033 ---- 0.071 

KS ---- 1.09 ---- 1 

RBF 

BC 0.53 1.91 2 1.73 

E 0.04 0.06 0.11 0.001 

KS 0.1 1.09 1.1 0.92 

 

 

4. RESULTS 

The test criteria for the performance measures of the forecasting 

methods used in this study are the root mean square error 

(RMSE) and R-squared (R2). After the water level modeling, 

these performance measures are outlined in Table 2.  

 

Table 2. The results of training and test data 

Scenarios Kernel 

Training Testing 

R2 

RMSE 

(m) 

R2 

RMSE 

(m) 

In: PRE 

Out: WL 
RBF 87% 0.203 80.26% 0.211 

In: PRE & 

EVA 

Out: WL 

Q 
75% 0.269 77.93% 0.203 

C 
90% 0.177 87.39% 0.181 

RBF 89% 0.178 87.57% 0.182 

In: SC & 

PRE 

Out: WL 

RBF 95% 0.127 91.77% 0.122 

In: SC & 

PRE & 

EVA 

Out: WL 

Q 
90% 0.182 92.13% 0.112 

C 
94% 0.137 93.41% 0.106 

RBF 97% 0.09 96.97% 0.08 

 

According to the results, the application of the SVR has been 

successfully demonstrated in this paper for mean monthly 

Urmia Lake water level prediction. Results generally prove that 

for this case study the RBF SVR is a superior model to the 

polynomial and produced the most accurate results for modeling 

the water level behavior. Furthermore, in the second scenario, 

similar results were obtained for the Cubic and RBF kernels, 

(6) 

(7) 
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which show that the degree-3 polynomial like the RBF kernel is 

capable of modeling the relationship between precipitation and 

evaporation with the water level. Based on the third and the 

fourth scenarios, the impact of snow on the quality of modeling 

is also observable. In Figures 7, 8, 9, 10, and 11 the outputs of 

the SVR for all the scenarios are shown and compared with the 

actual water level. The results indicate a high correlation 

between the calculated values and the actual values of the 

Urmia Lake water level. 

 

 
(a)  

 

 
(b) 

 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

R2 = 87% 

R2 = 75% 

R2 = 90% 

R2 = 89% 

R2 = 95% 

R2 = 90% 

R2 = 94% 
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(h) 

Figure 7. Correlation between retrieved and observed water 

level for training data: (a) RBF kernel, first scenario; (b) Q 

kernel, second scenario; (c) C kernel, second scenario; (d) 

RBF kernel, second scenario; (e) RBF kernel, third 

scenario; (f) Q kernel, fourth scenario; (g) C kernel, fourth 

scenario; (h) RBF kernel, fourth scenario. 

 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 8. Correlation between retrieved and observed water 

level for testing data: (a) RBF kernel, first scenario; (b) Q 

kernel, second scenario; (c) C kernel, second scenario; (d) RBF 

kernel, second scenario; (e) RBF kernel, third scenario; (f) Q 

kernel, fourth scenario; (g) C kernel, fourth scenario; (h) RBF 

kernel, fourth scenario. 

 

According to Figures 7 and 8, and the R2 and RMSE metrics’ 

value presented in Table 2, it can be concluded that the fourth 

scenario and the RBF kernel, which have the best results, can be 

used to establish a relationship between snow and other 

hydrological parameters with the water level of the Urmia Lake. 

It is also determined that the direct precipitation in the lake, the 

SC in the catchment area and the direct evaporation of the lake 

surface have the highest impact on the water level of the Urmia 

Lake, respectively. The results of the validation test of the 

estimating model shown in Table 2 indicate that the R2 value for 

the fourth scenario (with all kinds of kernel functions especially 

the RBF SVR) were more closely aligned to the R2 value of the 

training dataset than the other scenarios. On the other hand, the 

R2 value for the first scenario was more different for the training 

and testing data than for the other scenarios, which means that 

the direct precipitation alone is not capable of modeling the 

Urmia Lake’s water level.  

 

 

 
Figure 9. Comparisons of retrieved and observed water level 

for testing data: (a) RBF kernel, first scenario; (b) Q kernel, 

second scenario; (c) C kernel, second scenario; (d) RBF kernel, 

second scenario; (e) RBF kernel, third scenario; (f) Q kernel, 

fourth scenario; (g) C kernel, fourth scenario; (h) RBF kernel, 

fourth scenario. 

 

R2 = 97% 
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Figure 10. Comparison between results of four scenarios for 

training data 

 
Figure 11. Comparison between results of four scenarios for 

testing data 
 

 

 

Figure 9 represents the visual comparison of the testing results 

with the measured water level of Urmia Lake. The minor 

differences between the testing results and the measured water 

level show a relatively high quality of modeling for every 

scenario. Figure 9 shows that the first and the second scenarios 

are not able to model the lower water levels while modeling the 

upper water levels well, and then, in the third and the fourth 

scenarios, with the advent of the snow parameter, the accuracy 

of the modeling process is increased for lower water levels. 

In Figures 10 and 11, the yellow, red, and the blue colors 

indicate the RBF, Cubic, and Quadratic kernels, respectively. 

As the numeric analysis, scenario 4, as well as the RBF kernel, 

has the highest R2 and the lowest RMSE. 

Based on the water budget procedure, from the end of 2002 to 

the beginning of 2005, the amount of R'
input (runoff from snow 

melting) has increased. Additionally, according to Figure 3, at 

the end of 2001, a large peak is visible in the SC time series.  It 

can be said that the presence of snow peaks at the end of 2001 

has controlled the downward trend of Urmia Lake’s water level 

and then the occurrence of rainy years causes a temporary 

increase in the lake’s water level over the desired period (2002-

2005). 

 

 

 

5. CONCLUSION 

In this paper, the water level estimation of Urmia Lake was 

done using the SVR method. Analyzing models in various 

scenarios indicated that this method has a high performance, 

especially in the fourth scenario because the number of the 

predictors in this scenario is more than other scenarios, and 

when the number of predictors is higher, the SVR performs 

better. Also, the presence of the snow parameter in this scenario 

is another reason for more accurate modeling in the fourth 

scenario. Moreover, the outputs of various kernels showed that 

due to the complexity of the connections between the inputs and 

the output, the RBF kernel is better than other kernels. The 

results showed the significant impact of SC on retrieving the 

water level of the Urmia Lake at the desired period, and the 

high performance of SVR method in estimating the water level 

using hydrological parameters of the basin. The modeling 

results indicate that the direct precipitation in the lake, the SC in 

the catchment area and the direct evaporation of the lake surface 

have the highest impact on the water level of the Urmia Lake, 

respectively. As a result, because of the relationship between 

the water level of the Urmia Lake and the snow parameter in 

desired period (2000-2005), and besides, according to the water 

budget procedure, the temporary increase in the water level of 

the Urmia Lake during 2002-2005 may be due to the temporary 

runoff from snow melting. Also, if the amount of water entering 

the lake is greater than the amount of the evaporation, or at any 

time, the water entering the lake is not less than the amount of 

the evaporation, the lake will have no shrinkage. Therefore with 

any rainy year and the snowmelt runoff, the Urmia Lake will 

naturally be recovered. 
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