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ABSTRACT: 

 

Aerosols and Clouds play an important role in the Earth's environment, climate change and climate models. The Cloud-Aerosol 

Transport System (CATS) as a lidar remote sensing instrument, from the International Space Station (ISS), provides range-resolved 

profile measurements of atmospheric aerosols and clouds. Discrimination aerosols from clouds have always been a challenges task in 

the classification of space-born lidars. In this study, two algorithms including Random Forest (RF) and Support Vector Machine (SVM) 

were used to tackle the problem in a nighttime lidar data from 18 October 2016 which passes form the western part of Iran. The 

procedure includes 3 stages preprocessing (improving the signal to noise, generating features, taking training sample), classification 

(implementing RF and SVM), and postprocessing (correcting misleading classification). Finally, the result of classifications of the two 

algorithms (RF-SVM) were compared against ground truth samples and Vertical Feature Mask (VFM) of CATS product indicated 

0.96-0.94 and 0.88-0.88 respectively. Also, it should be mentioned that a kappa accuracy 0.88 was acquired when we compared VFM 

against our ground truth samples. Moreover, a visual comparison with Moderate Resolution Imaging Spectroradiometer (MODIS) 

AOD and RGB products demonstrating that clouds and aerosol can be well detected and discriminated. The experimental results 

elucidated that the proposed method for classification of space borne lidar observation leads to higher accuracy compared to PDFs 

based algorithms.  

 

 

1. INTRODUCTION 

Aerosols are suspended particles (liquid or soil) in the 

atmosphere (Wong et al., 2013) which have a different physical, 

chemical and light scattering characteristic and so they have a 

high variability in time and space (IPCC, 2001; Murari et al., 

2015; Tomasi et al., 2015). These particles are produced as the 

result of natural activities such as volcanoes, storms as well as 

human activities such as burning fossil fuels and traffic are 

produced (Gong and Ma, 2012; Kokkalis et al., 2012; Wiltshire, 

2011; Zhu et al., 2016). Aerosol phenomenon and suspended 

particles in the atmosphere as one of the important sources of 

uncertainties in climate models result in reduced accuracy in 

remote sensing and its difference with ground-based 

measurements. Moreover, aerosols play an important role in 

cloud formation, chemical processes and precipitation (Kumar et 

al., 2018; Lin et al., 2014; Petiot, 2012; Stocker, 2014), great 

potential to change earth climate balance (Kumar et al., 2015), 

and negative effect on human health by affecting on air quality 

and traffic (Brunekreef and Holgate, 2002; Darquenne, 2012; 

Kulkarni et al., 2011). 

There are several methods for studying aerosols including in-situ 

measurements, models and remote sensing-based techniques 

(Brakhasi et al., 2018). The in-situ measurements are performed 

discretely and point at ground stations, and are not capable of 

showing a significant change in the temporal and spatial extent 

of aerosols. Aerosol Models (Geng et al., 2015; Nowottnick et 

al., 2015; Prijith et al., 2016; Vijayakumar et al., 2016) often have 

a lot of inputs and the results of such models are also associated 

with uncertainty (Yu et al., 2015). Remote sensing technology is 

knowable as one of the promising methods in studying different  

events of climate and atmospheric simultaneously at the global 

scale (Kokhanovsky, 2013; Smith et al., 2019).  Passive sensors 

such as MODIS as a widely used technique in studying of 

aerosols are constraint by daytime and data acquisition in the 

cloudy condition. Concerning the necessity of vertical 

distribution study of aerosols to comprehensive understanding of 

aerosols (Nabavi et al., 2016), such instruments cannot measure  

vertical distribution of aerosols (Kar et al., 2015). However, 

state-of-the-art space borne lidars including Ice, Cloud, and land 

Elevation (ICESat- launched at 2003), Cloud-Aerosol Lidar and 

Infrared Pathfinder (CALIPSO- launched at 2006), The Cloud-

Aerosol Transport System (CATS- launched at 2015), the Ice, 

Cloud, and land Elevation Satellite-2 (ICESat-2- launched at 

2018) as well as future mission Earth Cloud Aerosol and 

Radiation Explorer (EarthCARE) and Aerosol-Cloud-

Ecosystems (ACE) have revolutionized the studying of 

atmosphere and investigating the vertical distribution of aerosol 

and clouds (Fueglistaler et al., 2009; Tomasi et al., 2015).  The 

active instrument CALIOP on the CALIPSO satellite and the 

Cloud-Aerosol Transport System (CATS) instrument on the 

International Space Station (ISS) are the two more applicable 

devices to measure vertical profiles of aerosol and clouds. 

Compare to CALIOP, CATS instrument located an altitude of 

about 405 km and it has depolarization measurement at 1064 nm. 

Moreover, the CATS-ISS orbit is particularly suited to aerosol 

measurement because the 51-degree inclination of the orbit puts 

ISS tracks over and along primary aerosol transport paths.  

Generally numerous studies including classification and 

detection (Brakhasi et al., 2018; Chen et al., 2010; Gong and Ma, 

2012; Kar et al., 2015; Liu et al., 2015, 2014, 2009; Lu et al., 

2011; Ma et al., 2011; Ma and Gong, 2012; Naeger et al., 2013; 

Omar et al., 2009; Vaughan et al., 2009), have been done using 

space borne lidar data. It should be mentioned that classification 

and discrimination of aerosols from clouds as the most important 
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and challenges step has been emphasized. Previous studies used 

different methods including Probability Density Functions 

(PDFs) based (Chen et al., 2010; Gong and Ma, 2012; Kar et al., 

2015; Liu et al., 2015, 2014, 2009, 2004; Naeger et al., 2013; 

Vaughan et al., 2009; Liu et al., 2019) and machine learning 

(Brakhasi et al., 2018; Ma and Gong, 2012; Ma et al., 2011) 

which has their own advantages and disadvantages. It is really 

worth mentioning that almost in all of the previous works in the 

classification of space bourn lidars, the challenges part is 

discrimination thin aerosol from clouds or mixed aerosols and 

clouds. Unlike machine learning methods, the PDFs based 

algorithms lead to coarse classification which cannot fully 

represent spatial distribution of aerosols and clouds. Separating 

clouds mixed with aerosols and thin aerosol as discussed is 

another challenge for these algorithms. Considering 

discrimination aerosol form clouds in spaceborne lidar 

observation, the result has shown that support vector machine 

(SVM) as a machine learning algorithm compared to methods 

based on probability distribution function could lead to better 

results for the classification of aerosols and cloud (Brakhasi et 

al., 2018; Ma et al., 2011). Additionally, the potential of these 

algorithms, especially random forest (RF) classifier as an 

ensemble learning technique for processing satellite images for 

various application is receiving highlighted interest (Ahmed et 

al., 2015; Chen et al., 2014; Hudak et al., 2008; Rodriguez-

Galiano et al., 2012; Thanh Noi and Kappas, 2018). However, it 

has not been utilized in processing of space born lidars as we 

know. Therefore, the main objective of this research is to test and 

demonstrate the effectiveness of RF and SVM machine models 

for discriminating aerosols from clouds using CATS-ISS lidar 

observation. Also, we present an almost novel method for taking 

training samples in CATS-ISS lidar data.  

 

2. METHODOLOGY AND STUDY AREA 

In this research, the two machine learning methods including 

Random Forest (RF) and Support Vector Machine (SVM) is 

applied on the CATS-ISS lidar data. The RF and SVM are non-

parametric models for classification or regression that utilize 

training samples in order to classify the data. The RF algorithm 

fits multiple decision trees and combines the predictions from all 

of the trees. It iteratively and randomly samples the data and 

variables to produce a large group, or forest, of classification and 

regression trees (CART) (Breiman, 2001). However, SVM 

define a hyperplane in the feature space based on training 

samples. In fact, after finding the support vectors, the hyper plan 

is fitted (Cortes and Vapnik, 1995). The overpass is related to 18 

October 2016 which passes from the western part of Iran and 

north of Iraq and eastern part of Syria. These regions have been 

imposed against strong dust storms. Also, for several week at the 

summer of 2016, ISIS has been burning oil wells south of the 

Iraqi city of Mosul, sending toxic plumes into the atmosphere 

which is observed by CATS-ISS at the aforementioned date (Fig. 

1). Thus, the purpose of the implementation these algorithms is 

classifying scene lidar data into feature regions including aerosol 

and cloud and Non- feature regions containing clean air, surface, 

subsurface, totally attenuated. However, more attention is paid 

to atmospheric feature regions because of higher importance in 

the atmospheric studies and climate models. 

 

Figure 1. The study overpass of CATS-ISS 
 

Research is carried out in three main stages. Flowchart is shown 

in the Fig.2:  
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Figure 2. Flowchart of ground truth selection and RF-SVM classifications 

 

3. IMPLEMENTATION AND EXPERIMENTAL 

RESULTS 

3.1 Preprocessing and Feature Generation 

At this stage 3 features including total attenuated backscatter at 

1064 nm ( 𝛽1064,⊥ ) (Fig.3 (c)), perpendicular attenuated 

backscatter at 1064 nm (𝛽1064,⊥), and total attenuated backscatter 

at 532 nm (𝛽532), are extracted by horizontal averaging of 15 

profile in order to improving signal to noise ratio. In the 

following, 4 other features including parallel attenuated 

backscatter at 1064 nm (𝛽1064,∥), color ratio (𝜒), depolarization 

ratio (𝛿) based on equations 1, 2 and 3(Hostetler et al., 2006), 

and particle density (PD) are calculated. 

 

𝛽1064,∥ = 𝛽1064 − 𝛽1064,⊥                                                        (1) 

 

𝜒 =
𝛽1064

𝛽532
                                                                                  (2) 

 

𝛿 =
𝛽1064,⊥

𝛽1064,∥
                                                                                (3) 

                                                                                                  

Color ratio are related to the size of the particles and value 1 or 

less is related to aerosols particle and value greater than 1 is 

related to clouds (Fig.3 (b)), while depolarization ratio is an 

index of shape of the particles. Smoke has a spherical and regular 

shape and has a lower depolarization value ((Fig.3 (a))) in 

comparison to dust and ice crystal with irregular shape (Hostetler 

et al., 2006; Yu et al., 2015).  

It is worth mentioning here that previous work (Brakhasi et al., 

2018) has been shown that PD has a great impact on the 

classification accuracy. Thus, PD is produced by proper 

thresholding 0.0003 on the 𝛽1064 and then applying 3*3 kernel.  

 

 
Figure 3. Depolarization ratio (a), color ratio (b) and total 

attenuated backscatter at 1064 nm (c). Smoke steams form burning oil 
wells by ISIS has a lower DR and higher backscatter intensity. 

 

3.2 Classifications 

The first and significant step for implementation RF and SVM 

classifier is generating training samples. However, producing 

these samples in lidar data is not as easy as optic data due to 
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complexity in the interpretation of lidar observations 

(Khoshelham et al., 2013). Besides, visually taking training 

samples for phenomenon like aerosol and cloud particles which 

have a constant microphysical characteristic is not advised. 

Thus, training samples were selected automatically based on 

ROI selection algorithm (Fig.2 and 4) and in total 600 samples 

in a previous work with some modifications (Brakhasi et al., 

2018). Moreover, by parametrization and optimization of RF and 

SVM classifiers, the scene lidar data classified. It is noticed that 

the number of 100 trees for RF is selected. Also, the penalty 

parameter c and g were optimized based on a gird search using a 

3-fold cross validation. The initial result of this stage is shown 

in Fig.5 (a). 

 

 
Figure 4. ROI algorithm selection (a), result of random 

selection(b) 

3.3 Post processing 

Due to some misclassification in the initial RF and SVM 

classification Fig.6 (a) in this step we need to correct them based 

on a knowledge-based approach and previous works. These 

misclassifications along with the solutions for eliminate them are 

presented as follows: (a) The surface and thick clouds have a 

similar backscatter intensity and so thick clouds classified 

inaccurately as surface; by using surface elevation (SE) layer as 

an ancillary data form level 1 CATS-ISS, the surface class pixels 

higher than SE layer returned to cloud class. (b) The margin of 

clouds usually behaves link aerosols and so classified mistakenly 

in place of clouds; selecting mathematical morphology such 

misclassification is tackled. (c) High clouds like cirrus and 

stratospheric clouds due to strong wind spared horizontally and 

behave like aerosols at 532 and 1064 nm; so, by using tropopause 

high layer, the misclassifications were corrected. Also, it is 

worth mentioning that laser pulses at 532 and 1064 nm penetrate 

form thin clouds, but passes a little in the thick clouds, so in such 

situation the surface cannot be captured by laser; thus, by take 

advantage of uncaptured surface, the pixels under thick clouds 

labeled totally attenuated. Thus, the final classification result 

including 6 class clean air, cloud, aerosol, surface, subsurface 

and totally attenuated was achieved Fig.6 (c and d).  

 

 

 

4. ACCURACY ASSESSMENT 

The results of classifications were compared visually against 

MODIS AOD (MYD04_3 K) and true color (MYD02HKM) 

(Fig 5 and Fig 1 respectively), and quantitatively against ground 

testing samples and also CALIPSO vertical feature mask 

production (VFM). In this comparison, more attention is paid to 

feature region (cloud and aerosol).  

 

Figure 5. MODIS-AOD along with ISS-CATS orbit at 18 

October 2016 

 

 In visually comparison, we found that both FR and SVM 

classification show a good general agreement when it compared 

with MODIS-AOD and reflectance. Also, it should be 

mentioned that in this case study, the aerosols including smoke 

and dust mixed with clouds at some location (usually upper 

latitude) and the results of the algorithms is promising at 

detection smoke embedded in the dust and dust embedded in the 

clouds. Additionally, as can be seen from MODIS RGB images, 

the discrimination of clouds from aerosols around the top of 

mountain by RF and SVM algorithms is overweight the 

algorithms based on PDFs. The quantitatively assessment is 

including two parts. At first, the results were compared with 

VFM to better understand the performance machine classifiers 

and PDFs based algorithms. In this comparison, the 

classifications (RF or SVM) were compared pixel by pixel with 

VFM.  The kappa accuracy between RF and SVM classifications 

with VFM products were obtained 0.88 and 0.88 respectively, 

which shows high general agreement. Moreover, by visual 

inspection from MODIS (AOD and reflectance) and CATS lidar 

data, the ground truth polygons were taken. Final ground truth 

samples were selected randomly in the total number of 40800. 

The comparison RF and SVM classifications, and VFM product 

against ground samples shown the kappa accuracy 0.96, 0.94 and 

0.88 respectively. Additionally, by pay more attention to feature 

regions, the conditional kappa of clear air, cloud and aerosol for 

RF result (0.97, 0.92 and 0.98 respectively), SVM result (0.97, 

0.93 and 0.98) and VFM (0.95, 0.75 and 0.93) were calculated.  

5. CONCLUSIONS 

This study presents performance of two machine learning  
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algorithms, RF and SVM, on CAST-ISS lidar observation. This 

study presents performance of two machine learning algorithms, 

RF and SVM, on CAST-ISS lidar observation. This is the first 

study to classify CATS lidar data using the aforementioned 

algorithms in the overpass at eastern Middle East. For the 

detection and discrimination of the aerosols and clouds, RF and 

SVM algorithms using automatically generated training samples 

was successfully applied to the space borne lidar observation. 

However, current space bourn lidar classification method for 

producing VFM product has some limitations with respect to 

mixed aerosols and clouds. The advantage of machine learning 

approaches is that they are more compatible with the very 

complex structure of the atmosphere due to its high spatial-

temporal variability and also the very complex interaction of 

atmospheric particles of different sizes and shapes with laser 

pulses. Thus, they lead to a finer classification which is more 

compatible with aerosols and climate modeling in comparison 

with VFM product which leads to a coarse pattern.  So, a scene 

lidar data of CATS instrument at 18 October 2016 which passes 

from locations with mixed dust and clouds and smoke originating 

from burning oil wells by ISIS, were preprocessed, classified and 

postprocessed. It should be mentioned that training samples were 

selected automatically based on microphysical characteristics of 

aerosols and clouds. Moreover, the total number of 7 features 

were used in the classification including the two features of total 

attenuated backscatter at 1064 and 532, color ratio, 

depolarization ratio, particle density and the two features of 

parallel and perpendicular attenuated backscatter at 1064.
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