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ABSTRACT: 

 

In the last few years, Unmanned Aerial Vehicles (UAVs) are being frequently used to acquire high resolution photogrammetric 

images and consequently producing Digital Surface Models (DSMs) and orthophotos in a photogrammetric procedure for 

topography and surface processing applications. Thermal imaging sensors are mostly used for interpretation and monitoring purposes 

because of lower geometric resolution. But yet, thermal mapping is getting more important in civil applications, as thermal sensors 

can be used in condition that visible sensors cannot, such as foggy weather and night times which is not possible for visible cameras. 

But, low geometric quality and resolution of thermal images is a main drawback that 3D thermal modelling are encountered with. 

This study aims to offer a solution for to fixing mentioned problem and generating a thermal 3D model with higher spatial resolution 

based on thermal and visible point clouds integration. This integration leads to generate a more accurate thermal point cloud and 

DEM with more density and resolution which is appropriate for 3D thermal modelling. The main steps of this study are: generating 

thermal and RGB point clouds separately, registration of them in two course and fine level and finally adding thermal information to 

RGB high resolution point cloud by interpolation concept. Experimental results are presented in a mesh that has more faces (With a 

factor of 23) which leads to a higher resolution textured mesh with thermal information. 
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1. INTRODUCTION 

In the last few years Unmanned Aerial Vehicles (UAVs) are 

being frequently used to acquire high detailed and resolution 

images and consequently producing Digital Surface Models 

(DSMs) and orthophotos in a photogrammetric procedure for 

topography and surface process research. Various applications 

such as monitoring (Cryderman et al, 2014; Siebert and Tiezer, 

2014; Lelong et al., 2008; Berni et al., 2009), providing volume 

estimates in earthworks (Zhou, 2009; Zhou, 2010), Change 

detection (Qin, 2014) and particularly low altitude and high 

resolution images have great potential on geomatics application 

such as 3D city modelling, large scale mapping, archaeology, 

true orthophoto generation and etc. (Zhang et al., 2011 and 

Reemondino et al., 2011). In addition, UAVs are flying due to 

collecting different remote sensing information and are using in 

several applications such as forest fire monitoring, agriculture 

field survey, search and rescue and etc. (Berni et al., 2009).  

Recently, thermal imaging systems are used in various and wide 

fields of applications such as archaeological heritage 

documentation (Brumana et al., 2013), landslide hazard 

assessment (Teza et al., 2015), crop health monitoring (Mangus 

et al., 2016) and photovoltaic plants inspection (Tsanakas et al., 

2017).  

Thermal mapping is getting more important in civil 

applications, as thermal sensors may be applied in condition 

that visible sensors cannot, such as foggy weather and night 

times which is not possible for visible cameraThermal cameras 

usually detect radiation in the long-infrared range of the 

electromagnetic spectrum (roughly 9,000–14,000 nanometers or 

9–14 µm) and produce images of that radiation, called 

Thermograms. Since infrared radiation is emitted by all objects 

with a temperature above absolute zero according to the black 

body radiation law, thermography makes it possible to see one's 

environment with or without visible illumination.  

However, low geometric quality and resolution of thermal 

images is a main drawback that 3D thermal modelling 

encounters. In another word, 3D models reconstructed from 

thermal images have low spatial resolution (e.g. buildings with 

soft edges) due to relatively large pixel size of thermal sensors 

and their small focal length. Thermal data integration with 

visible 3D models simplifies its perception and will produce 

appropriate high spatial resolution thermal 3D model. In this 

regard there are  various research with different methods, So 

that different 3D geometries can be integrated with thermal data 

as Building Information Models (BIM) (Mikeleit and Kraneis, 

2010), 3D building models via texture mapping (Hoegner et al., 

2007; Iwaszczuk et al., 2011), 3D point clouds via assignment 

and interpolation of the measured temperature to the points 

(Cabrelles et al., 2009; Borrmann et al., 2012; Vidas et al., 

2013) or a point cloud and aerial photographs at the same time 

(Boyd, 2013). Using point cloud as spatial reference enables 

fast generation of results with a high level of detail and is 

appropriate for visual interpretation (Iwaszczuk and Stilla, 

2017).  

 This study aims to offer a solution in order to fix mentioned 

problem and generate a thermal 3D model with high spatial 

resolution by thermal and visible point clouds integration. This 

integration leads to generate a more accurate thermal point 

cloud and DEM with reduced spacing distance which is 

appropriate for 3D thermal modelling. The main steps of this 

study are composed of generating thermal and RGB point 
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clouds separately, registration of them in two course and fine 

level and finally adding thermal information to RGB high 

resolution point cloud based on interpolation concept. 

 

2. LITERATURE REVIEW 

Integration of thermal data with high resolution data such as 

laser scanner point cloud or visible RGB image triangulation 

result is a common way to increase thermal point cloud density. 

In the last decade, several studies have addressed this issue; 

Coiras et al. 2000 proposed an edge base method in order to 

register thermal and visible images which consists of three basic 

steps; extraction of features from the images (persistent edges), 

matching of the extracted features and determination of a 

warping function from the determined images (Coiras et al., 

2000). In order to detect foreground objects in tele-immersive 

spaces, (Johnson and Bajcsy, 2008) offered a robust method by 

integration of thermal and visible imagery, this fusion-based 

foreground detection is done in object level by fusing objects 

that were detected from visible and thermal images separately. 

Integration of thermal-visible imagery with TLS (Terrain Laser 

Scanner) data is proposed by (Cabrelles et al., 2009) in order to 

record an architectural monument 3D model, which is based on 

3D reconstruction and mesh generation by TLS and generating 

a photo-realist and thermo-realistic data. The former is done by 

visible images bundle adjustment and adding visible texture to 

TLS mesh, and the latter is produced by single thermal image 

resection. In 2012 Borrmann (Borrman et al., 2012) registered 

thermal-visible imagery and TLS point cloud in order to 

produce an accurate thermal 3D model of building facets, in 

order to prevent the waste of energy. He used visible images for 

heat sources and thermal bridges. With the same purpose, Vidas 

et al. 2013 offered an indoor mapping method by simultaneous 

exploiting a thermal and a RGB-D camera which yields a 

precise 3D model of a building indoor by combining thermal-

visible images with depth map which is achieved from RGB-D 

camera. Hoegner et al. 2014 has considered the use of thermal 

imagery inappropriate for people detection because of low 

geometric resolution of that and absence of strong features. In 

order to compensate this weakness, he suggested a hybrid 

system containing a thermal and TOF (Time of Flight) camera. 

The NIR image of TOF camera is used due to its similar 

behaviour to the visible images and the depth map of that was 

used in order to depth finding and thermal images were 

exploited for people detection. 

 Some research has done in order to evaluate the potential of 

thermal imagery for 3D model reconstruction. By this goal, 

Khodaei et al. 2015 evaluated 3D model generated from thermal 

video frame sequences, and as a result has considered that the 

accuracy of thermal DSM is comparable with a visible one.  In 

2016 Hoegner extracted building textures with three methods, 

where one of them was integration of RGB and thermal images 

because of low geometric resolution of thermal images. uses the 

image sequence and camera calibration information only to 

reconstruct the scene in model coordinates and coregisters this 

model to a given 3D building model to derive optimized 

orientation parameters (Hoegner et al. 2016 a). With the same 

goal, (Hoegner et al. 2016 b) proposed a method in order to 

automatic registration and fusing thermal and visible point 

cloud which is done in five different methods; first is based on 

2D line for both thermal and visible images, second is 

registering both point clouds using 2D image projection 

registration. Third, is based on registering 2D lines in thermal 

images and 3D lines in RGB point cloud, fourth is done by ICP 

(Iterative Closest Point) method for 3D point clouds and plane 

registering and the last method is based on point features in 

both thermal and visible images. As a result, the RMS value 

achieved at its minimum for ICP method. Tsanakas (Tsankas et 

al., 2017) offered a new method for advance inspection of 

photovoltaic installation in large scale by aerial triangulation 

and terrestrial georeferencing of thermal and visible imagery. 

Iwaszczuk and Stillas, integrated thermal and visible images for 

camera pose refinement by matching uncertain 3D building 

models with thermal infrared image sequences for high quality 

texture extraction (Iwaszczuk and Stillas, 2017). Therefore, a 

methodology for co-registration of uncertain 3D building 

models with airborne oblique view images is presented. For this 

purpose, a line-based model for image matching is developed, 

in which the uncertainties of the 3D building model, as well as 

of the image features are considered. Matched linear features 

are used for the refinement of the exterior orientation 

parameters of the camera in order to ensure optimal co-

registration. Maset et al 2017 in his research first evaluated the 

potential of thermal data for automatic 3D modelling and 

second assessed the ICP model ability to register thermal and 

visible point clouds (Maset et al., 2017). He generated thermal 

and visible point clouds separately and after registering them, 

thermal texture is added to the mesh generated from visible 

point cloud. 

In this paper a method is proposed to produce a DSM with 

resolution of visible images and containing thermal data, in 

another word, a thermal 3D model is generated with high spatial 

resolution by thermal and visible point clouds integration. In the 

following section the methodology is described in more details. 

  

 
3. PROPOSED METHOD 

As shown in figure 1, proposed method consists of four main 

parts as described in the following sections. 

 

 
Figure1. Diagram of the proposed method. 
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3.1 Pre-Processing 

Camera Calibration: for calibration of thermal camera, it is 

necessary to select or design an appropriate test filed which is 

suitable for thermal imagery. There are several effective factors 

in designing this test field like material, shape, targets 

dimension and so on.  In this study a new test field is designed, 

where a special plane filled with ellipses is designed so that a 

cool plane with holes such as ellipse were put in front of a warm 

monitor. These holes become lighter in thermal images while 

the cool plane will be dark, these lighter ellipses will act such a 

target in images. (See fig. 2) Although it is better to use non-

planar test field, we used a planar test field due to problems 

such as construction and the importance of homogenous 

distributing of heat all over the test field (Zhang 1999 and S. 

Lagüela 2011). After capturing convergent images from this 

plane, an ellipse fitting algorithm proposed by Ouellet Jean-

Nicolas is used. (Ouellet and Hebert, 2009) In this algorithm, 

first a gradient operator is used to extract the edge of ellipses 

then the geometric centers of these ellipses are calculated.  

 

   

Figure 2. Calibration checkerboard image by a thermal camera 

(Left) and Calibration checkerboard view by an optical  

camera (Right) 

 

This study considers the pinhole camera geometry for thermal 

camera in order to calculate the IO parameters. Equation (1) and 

(2) transform a point from 3D object space to 2D image space 

which is called collinearity equation: 
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                 (2) 

 

where  c = focal length 

 x, y = image coordinates 

 X0, Y0, Z0 = coordinates of projection center 

 X, Y, Z = object coordinates 

 r = elements of rotation matrix. 

 
Lens distortion parameters are obtained by frequently used 

Brown model eq. (3) and (4): (Brown, 1971) 

 
' 2 4 6 2 2

1 2 3 2 1(1 ( 2 ) 2 )x x k r k r k r p r x p xy        (3) 

' 2 4 6 2 2

1 2 3 1 2(1 ( 2 ) 2 )y y k r k r k r p r y p xy        (4) 

 

where  x’ = image coordinate which is free of distortion 

 k = radial distortion coefficient 

 p = decentring distortion coefficient 

 r = radial distance from projection of perspective        

 point on image plane. 

3.1.1 Key Frame Selection: Extracting key frames of a 

video sequence is a useful way for video abstracting. Key 

frames are the outstanding frames of a video sequence which 

are the whole frame representation. So they are also called 

representative frames (Truong and Venkatesh, 2007). Key 

frames can be selected in radiometric and geometric aspects. In 

radiometric key frame selection, the quality of the frames is 

checked and the blur frames are removed. In geometric key 

frame selection, the frames are checked for geometry of frames. 

Several studies have been proposed in order to control and 

quantify the emergence of the blur effect (Boult et al., 1997; 

Marziliano et al., 2002; Ong et al., 2003). One of these metrics 

with an acceptable operation is the BluM metric, which is based 

on the human blur perception (Crete et al. 2007) The key idea 

of this blur estimation is to blur the initial image and to analyse 

the behaviour of the neighbouring pixels’ variation. The 

blurring step should be done with a strong low-pass filter in 

order to be sure to compare the initial image with an image 

which seems blurred for the human perception. The choice of 

the type of filter is not exhaustive if it is a strong filter. The 

output of this algorithm is a score between 0 and 1. The results 

close to 0 represent the best sharpness and results close to 1 

represent the worst blur of image, respectively. Geometric key 

frame selection is the procedure of selecting key frames due to 

the geometrical aspects of frames such as number of frames, 

position of selected frames, stability of them and etc. There is 

several research which studied about geometric key frame 

selection methods, three of these methods are based on 

Geometric Robust Information Criterion (GRIC) factor (Torr, 

1998). (Pollefeys et al, 2004) and (Knorr, 2006) modified this 

metric by using different weights for it and (Ahmed, 2009) 

integrated that with another factor named PELC. (Gibson et al., 

2002) and (Seo et al., 2008) had their exclusive scores for key 

frame selecting. 

 

According to (Javidi et al., 2017) experiments, we used BluM 

as a metric for radiometric aspect and the method proposed by 

Seo as a function for geometric key frame selection from our 

thermal aerial video frame sequences. Seo (Seo et al., 2004), 

considered three measures. First one is the ratio of the number 

of corresponding points about feature points, second is 

distribution of corresponding points about the frame and the last 

measure is the homography error. Equation (5) is the 

combination of these three measures which is presented by (Seo 

et al., 2008): 

 

 
1 2 3(1 )c

c err

f

N
S w w w H

N
                           (5) 

where  S = Score to select the key-frame 

 
cN , 

fN  = Number of corresponding points and that of  

 feature points 

 
c  = Standard deviation of the point density 

 
errH  = Homography error 

 w = Weight used to alter the relative significance of  

 each score. 

 

By dividing a frame to sub-regions equation (6) calculates 

standard deviation of the point density. 
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                                 (6) 

 

where  
SN  = Number of sub-regions 
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cN , 

ciN = Number of inliers and that in the i’th sub- 

 region. 

3.2 Block Adjustment 

The process of block adjustment starts with feature extraction 

and matching, then Structure from Motion (SfM) algorithm is 

used in order to compute camera alignment. Detailed 

descriptions of block adjustment workflow will be discussed in 

the following subsections. Mentioned workflow is used for both 

thermal extracted key frames and high resolution visible images. 

 

3.2.1 Feature Extraction and Matching: Feature points are 

extracted from the images as salient points. The SIFT operator 

(Scale Invariant Feature Transform; (Lowe, 2004)) is used to 

detect and describe local feature points in the image. The 

number of matched key-points is dependent on the image 

texture and resolution. This algorithm consists of six 

consecutive part. First, generating a "scale space" of original 

images to ensure scale invariance, second, using Laplacian of 

Gaussian (LoG) operator for finding key points. Third part is 

finding key points which are maxima and minima in the 

Difference of Gaussian (DoG) obtained in previous part. Forth 

is related to eliminating bad key points (Edges and low contrast 

regions), then an orientation is assigned to each key point, all 

further usage is related to these orientations. Finally SIFT 

features are calculated, this features are scale and orientation 

invariant and are appropriate for image matching. 

 

After feature extraction, key points are matched by orientation 

information assigned to them before, in this level image 

matching is done. The presence of similar areas will produce 

false matches (outliers). Validation of matches is verified by 

outlier detection RANSAC (RAndom Aample Consensus; 

(Fischler and Bolles, 1981)) algorithm. It attempts to fit the data 

into a mathematical model by iteration, the more the iterations 

the higher the probability that the fitted data contains only 

inliers. 

3.2.2 Structure from Motion: Structure from Motion or 

SfM is a photogrammetric algorithm which calculate camera 

poses (Motion) and 3D scene structure by finding 

correspondent features between a couple of image or multiple 

images captured from same scene (Ulmann, 1979) particularly 

producing 3D point cloud in case of aerial imagery due to 

producing accurate 3D model and Ortho-rectified images. 

The process of reconstructing sparse 3D point cloud of the 

scene from series of overlapping images can be done using 

structure from motion algorithm (Snavely et al., 2006). This 

study has used this algorithm in order to generate sparse 3D 

point cloud. As mentioned before, Feature points are extracted 

from the images as key-points. Then sequential bundle 

adjustment is used to orient the images using this set feature 

points. It iteratively builds a sparse 3D model of the scene and 

simultaneously estimates the exterior orientations of all images. 

 

3.3 Dense Point Cloud Generation 

After block adjustment, Semi Global Matching (SGM) 

algorithm is used to generate dense point cloud and DEM for 

both thermal and visible images, separately. Semi global-based 

matching use pixel-wise, Mutual Information (MI) matching for 

compensating the radiometric differences of input images 

instead of intensity based matching, because it is robust against 

many complex intensity transformations and even reflections 

(Hirschmueller, 2005). This method supported by a smoothness 

constraint expressed as a global cost function, but take local 

disparities into consideration and performs a fast approximation 

by path-wise optimizations from all directions. (Hirschmuller, 

2011).  

Mutual Information (MI) is the most applied measure to 

calculate the matching cost for a pair of pixels which measures 

the dissimilarity of corresponding pixels and handles 

radiometric   differences. Mutual information is the difference 

between the entropy (probability that a system will take a 

certain form) of each image and the joint entropy which is used 

to calculate the matching cost for each pixel and its disparity 

(The pixel value of the matched pixel in the second image) 

(Hirschmuller, 2008). 

 

3.4 Point Cloud Registration 

Thermal and visible point cloud registration procedure is 

implemented in two levels, course and fine registration. In the 

first level, the rigid body transform with GCPs is implemented, 

after first level, RGB and TIR point clouds would be close 

together in the 3D space and have approximately the same 

scale. Therefore, the TIR point cloud can be registered to the 

one generated from RGB images using Iterative Closest Point 

(ICP) algorithm. This part is called fine registration. ICP 

method may summarized in the following steps for given an 

input point cloud and target point cloud: 1) Determining pairs 

of corresponding points, 2) Estimate a transformation that 

minimize the distances between the correspondences, 3) Apply 

the transformation to align input and target point cloud. 

 

3.5 Thermal and Visible Point Cloud Integration 

After complete registration of thermal point cloud with visible 

point cloud, it is possible to make a higher resolution thermal 

point cloud which density is equal to the visible one. This 

procedure is done by simple linear weighted interpolation 

between point clouds. See equation (6): 

 

 

1
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new N
i
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i

d t
T
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
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

                                           (6)  

 

where  T = Thermal intensity for visible point 

 d = Distance between visible point and near thermal  

 points (we have considered four nearest points)  

 t = Thermal intensity of thermal points 

 N = Number of nearest points (e.g. N=4) 

 

 

4. RESULTS 

4.1 Sensors and Dataset 

In this study a thermal camera and a high resolution visible 

camera mounted on a light weight multi-rotor with roll and 

pitch axis stabilization have been used up to collect thermal and 

visible datasets. The high resolution visible camera is a Sony 

a6000 24 MP with a 35 mm lens and thermal camera is an 

uncooled focal plane array camera 640S which used to collect 

thermal video.  

Generally, thermal imaging cameras are divided to short-wave, 

middle-wave and long-wave Infrared (IR) based on their 

electro-magnetic spectrum range sensitivity. The thermal 

camera used in this study detects TIR region of IR which 

contains middle and long wave. More detailed specifications are 

presented in table (1). 
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Flight is planned and implemented in UAV GCS software for a 

part of an industrial city in south of Tehran, more detailed 

information is presented in Table (2). 

 

Visible camera 

 

Sensor CMOS 

Pixel size 4.04 μm 

Image Size 6000*4000 

Focal length 35mm 

Thermal camera 

 

Sensor Uncooled FPA 

Pixel size 17 μm 

Video Size 640*480 

Focal length 25 mm 

Table 1. Applied sensors technical specification. 

 

Camera Visible TIR 

 

Fight height (m) 200 200 

Overlap (percent) 70 70 

Sidelap (percent) 70 70 

Images 205 
6000 

frame 

Table 2. Flight planning parameters. 

 

4.2 Pre-Process results 

As previously stated, two-dimensional target plane is used for 

geometric calibration of camera. In the case of geometric 

calibration, in addition to the interior orientation parameters, 

the mathematical model between image and target coordinate 

system are also calculated. Now, having these parameters and 

coordinates of the control points, we can calculate the accuracy 

of the proposed calibration algorithm. (Fig. 3) 

 

 

 
Figure 3. Points Error with a magnification of 20x (Top) and 

Re-projection errors of images (Bottom) 

 

In key frame selection step, frames with low quality are 

eliminated from video sequence by applying the BluM metric 

threshold. In order to select key frame geometrically from 

thermal video sequence, Seo key frame selection algorithm is 

used. The result of key frame selection steps is shown in Table 

(3). 

 

4.3 Dense Cloud, DEM and Orthomosaic Generation 

A dense point cloud was produced from the given set of images 

and their orientation parameters, using Semi-Global Matching 

(SGM) technique, where TIR point cloud has 28 and the visible 

one has 630 points per square meter. Then DSM has been 

generated with this source by interpolation. The resolution of 

DSMs is 20 cm and 4 cm for TIR and visible data respectively. 

Figure 4 is illustrating DSM and Orthomosaic generated from 

mentioned case study. 

 

Total captured frames 6000 

Removed by BluM 40 

Removed by Seo 5116 

Key frames 866 

Table 3. Results of key frame selection. 

 

  

  

Figure 4. Orthomosaic and DEM of visible (Top) and thermal 

images (Bottom). 

 

4.4 Assessment of Registration 

4.4.1 Georeferencing: Thermal 3D point cloud was built in 

the local coordinate, for transferring into a global coordinate 

system and to remove scale ambiguity, the similarity 

transformation using three Ground Control Points (GCPs) was 

used. This coordinates are measured independently from visible 

model which its images are georeferenced by PPK GPS module. 

 

4.4.2 Fine Registration: After georeferencing when two 

point clouds have the same scale, the ICP algorithm is fulfilled 

and region based evaluation is done after that (See Fig. 5). 

 

4.1 Integration of TIR and Visible 

The output of proposed method is a dense point cloud with both 

RGB and thermal information (i.e. temperature). This point 

cloud was produced by a linear weighted interpolation method 

which assign thermal information to visible points. So the 

geometric accuracy and point density of that is same as visible 

point cloud, furthermore the textured mesh generated by that is 

sharper and has more faces. Figure 6 shows triangulated and 

textured mesh produced by proposed method. This 3D model is 

produced by accurate registration of thermal poitn cloud by 

visible one. The accuracy of registration is validated by check 

points and region based differences between them. 
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Figure 5. Error map which shows vertical distance between TIR 

and Visible point clouds after course (Top) and fine registration 

(Bottom). (Units are in meters)  

 

The average error of difference between them is 10, 12 and 20 

in three axes. And the output point cloud density is 630 points 

per square meter. 

 

    

 
Figure 6. Triangulated and textured mesh produced by 

proposed method 
 

 

5. CONCLUSION 

The problem which is considered in this study is the low 

resolution of thermal images which leads to generate low 

density thermal point cloud. Due to literature, 3D models which 

produced by thermal imagery has an acceptable geometric 

accuracy but in this study we offered a method to enhance 

geometrical accuracy by registering that in object space and 

increasing the density of TIR point cloud by integration with a 

precise visible model generated by high resolution 

georeferenced visible images, thanks to GPS PPK technology. 

After precise calibration of thermal camera with 0.4 average 

reprojection error, and key frame selection, the registration is 

done by 10, 12 and 30 cm average differences between two 

point clouds, and finally the integration procedure was done 

successfully. As a result, the output of proposed method is a 

dense and accurate point cloud which has thermal information 

with minimum distortion and disparity rather to reference high 

accuracy visible point cloud. The number of points in this point 

cloud has increased by approximately 20 times and the density 

of that is averagely 630 points per square meter, where, the 

primary thermal model density was averagely 28 points per 

square meter. This study showed the potential of thermal 

imagery in 3D modelling by integration with visible imagery 

without using GCPs. 
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