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ABSTRACT: 

Thermography is a robust method for detecting thermal irregularities on the roof of the buildings as one of the main energy dissipation 

parts. Recently, UAVs are presented to be useful in gathering 3D thermal data of the building roofs. In this topic, the low spatial 

resolution of thermal imagery is a challenge which leads to a sparse resolution in point clouds. This paper suggests the fusion of visible 

and thermal point clouds to generate a high-resolution thermal point cloud of the building roofs. For the purpose, camera calibration 

is performed to obtain internal orientation parameters, and then thermal point clouds and visible point clouds are generated. In the next 

step, both two point clouds are geo-referenced by control points. To extract building roofs from the visible point cloud, CSF ground 

filtering is applied, and the vegetation layer is removed by RGBVI index. Afterward, a predefined threshold is applied to the normal 

vectors in the z-direction in order to separate facets of roofs from the walls. Finally, the visible point cloud of the building roofs and 

registered thermal point cloud are combined and generate a fused dense point cloud. Results show mean re-projection error of 0.31 

pixels for thermal camera calibration and mean absolute distance of 0.2 m for point clouds registration. The final product is a fused 

point cloud, which its density improves up to twice of the initial thermal point cloud density and it has the spatial accuracy of visible 

point cloud along with thermal information of the building roofs.  

 

 

 

1. INTRODUCTION 

 

Considering the growing importance of the optimal use of 

energy and the allocation of one-third of total energy 

consumption to the building sector, there is a need to model the 

current status of energy performance in the buildings (González 

et al., 2012). Consequently, modifications can be made in the 

building to prevent the waste of energy. Thermography is a 

robust tool for representing environmental heat while Thermal 

cameras capture the temperature as an image and could be 

applied for thermal inspection of different parts of buildings to 

detect thermal bridges, thermal irregularities and defects such as 

damages, cracks, air leakage sources and insulation problems 

(Al Lafi, 2017).  

 

The thermal inspection of the building roof is of particular 

importance because it is one of the main sources of energy loss. 

Detecting and fixing defects will increase the life of the roof and, 

will save energy and costs. Unmanned Aerial Vehicles (UAVs) 

are presented to be useful and cost-effective platforms for data 

gathering over the urban and residential regions (Mader et al., 

2016). To visualize energy performance and simultaneously 

measure and interpret it, there is a need for 3D thermal modeling 

(Borrman et al., 2013). Related studies in 3D thermal modeling 

are divided into three main categories: 

 

i. Mapping thermal images to an existing 3D model.  

Schreyer and Hoque (2009) used SketchUp software to 

create a CAD model of the buildings based on thermal 

images and then mapped thermal images to the 3D 
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model. Iwaszczuk and Stilla (2017) textured 3D building 

model in CityGML format with thermal images. For this 

purpose, a line-based model-to-image matching was 

used. 

 

ii. Fusion of visible images and thermal images. Lagüela et 

al. (2012) fused visible images and thermal images at the 

pixel level by using the intensity-hue-saturation (HIS) 

method and generated a point cloud based on fused 

images. Ham and Golparvar-Fard (2012) captured thermal 

and visible images simultaneously with a handheld 

infrared sensing camera and used extrinsic parameters of 

visible images to generate a thermal point cloud. Hoegner 

et al. (2016) evaluated different strategies for 

coregistration and fusion of UAV-based 3D point clouds 

and thermal infrared images.  Javadnejad (2018) fused 3D 

point cloud with R, G, B, and thermal attributes by using 

boresight separation parameters between multi-cameras to 

project 3D coordinates from the point cloud onto the 2D 

thermal image space.  

 

iii. Thermal texture mapping to the point clouds. Borrmann et 

al. (2013) used a robot and, multiple scans from different 

positions were registered by using 6D SLAM technique; 

then the point cloud was colored with solving the relation 

between scanner and cameras through calibration steps. Al 

Lafi (2017) created a panoramic thermal image from 

overlapping thermal images and mapped it to the point 

cloud model using reference points. Lin et al. (2019) 

applied a coarse registration between thermal and RGB 
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point clouds. Reliable matching features on thermal-RGB 

image pairs were extracted then followed by mono-

plotting of the RGB image and image resection of the 

thermal image. At the end an image pose refinement was 

used to decrease blur effects. 

 

According to the mentioned methods, the first category includes 

some limitations such as the difficulty of aligning IR images to 

the model that needs some manual work, the 3D model does not 

represent as-is building condition, and the final model shows 

relative temperature differences. In the texture mapping method, 

there are issues with shooting direction of IR camera that should 

be perpendicular to the facades, and sequential thermal images 

have to overlap 50% for image registration (Wang et al., 2012). 

In this research, the advantages of thermal and RGB image 

fusion method are used. The purpose of this paper is to generate 

a high-resolution thermal point cloud of the building roofs. For 

this purpose, thermal and visible images are acquired using a 

small UAV system. The lower spatial resolution of thermal 

images causes sparse thermal point cloud, and the edges of the 

buildings are distorted and not accurate enough for 3D mapping 

applications. So, it is fused with a higher resolution visible point 

cloud in order to yield combined point cloud with the spatial 

accuracy of visible point cloud and thermal information content 

of the building roofs. 

 

2. PROPOSED METHOD 

 

The proposed methodology consists of 5 steps: (1) camera 

calibration, (2) point clouds generation, (3) point clouds 

registration, (4) building roofs extraction, and (5) fusion of 

visible and thermal point clouds. Fig.1 shows the workflow of 

the proposed strategy. 

 

 
 

Figure.1 Workflow of the proposed strategy. 

2.1 Camera Calibration 

 

In the first processing step, camera calibration is performed to 

obtain interior orientation parameters of both visible and thermal 

sensors. Self-calibration is available for visible images but, 

because of the low spatial resolution of thermal images, thermal 

camera calibration is applied. For the purpose, Zhang's method 

is considered in which a calibration target with a specific pattern 

is captured in multiple views from different convergent 

directions. Circular pattern and chessboard are two common 

patterns used for calibration targets. Datta et al. (2009) and 

Usamentiaga et al. (2017) compared the camera calibration with 

two circular and chessboard patterns, and results in higher 

accuracy were obtained for the circular pattern. Thus, in this 

paper, circular targets are chosen for thermal camera calibration. 

In each image, the center of circles are needed to be detected that 

requires an ellipse extraction algorithm. Ouellet and Hébert 

(2008) algorithm is executed to the estimation of ellipse 

parameters by exploiting tangent lines. This algorithm used the 

advantage of dual conic model and constrained the dual conic to 

a dual ellipse. After locating the patterns and forming the object 

coordinates, the camera calibration parameters are calculated. 

The Homography matrix H is used to relate the object space and 

the image space as Eq.1. 

 

              𝑥 = 𝐻𝑋,              [
𝑥
𝑦
𝑧

] = [

ℎ11  ℎ12  ℎ13

ℎ21  ℎ22  ℎ23

ℎ31  ℎ32  ℎ33

] [
𝑋
𝑌
𝑍

]              (1) 

 

In equation 1, [x y z] represents the coordinates of a point in the 

image space and [X Y Z] represents the coordinates of a point in 

the object space. The Levenberg–Marquardt method is then used 

to optimize the Homography by minimizing the re-projection 

error (Zhang, 2000). Given N pairs of calibration images with m 

dots in each one, the cost function is defined as: 
 

∑ ∑ ‖𝑚𝑖𝑗 − 𝑚̂(𝐴, 𝑅𝑖 , 𝑡𝑖 , 𝑀𝑗)‖
2𝑚

𝑗=1
𝑛
𝑖=1                   (2) 

 

where 𝑚𝑖𝑗 is the image coordinate and 𝑚̂ is the projection 

coordinate. By the accurate estimation of the Homography 

matrix, the internal camera parameters are calculated.  

 

2.2 Point Clouds Generation 

 

To create the point cloud, from un-ordered, un-calibrated RGB 

images, state-of-the-art Structure from Motion (SFM) and Multi-

View-Stereo (MVS) photogrammetry and computer vision 

techniques are applied. After acquisition of block of RGB 

images with at least overlap of 80%, a scale-invariant feature 

transform (SIFT) then identifies common feature points across 

the image set (Lowe, 2004). SIFT feature descriptors are 

invariant to scale, orientation, affine distortion and, partial 

illumination changes. The fundamental matrix (F-matrix) can be 

calculated using common keypoints of image pairs (Longuet-

Higgins, 1979). The F-matrix establishes the relationship 

between the two images and preserving collinearity constrain. 

Candidate F-matrices are evaluated using the Random Sample 

Consensus (RANSAC) method (Fischer and Bolles, 1981). After 

further refinement, all ‘outlier’ matches are removed (smith et 

al., 2016). From the correct feature correspondences, SFM uses 

sparse bundle adjustment  (Snavely et al., 2008), to transform 

measured image coordinates into 3-D points covering the area of 

interest (Micheleti et al., 2015).The sparse point cloud is then 

intensified using MVS techniques (Furukawa and Ponce, 2010). 

The same operation is repeated with a block of thermal images, 

but due to the limitation of thermal images, the internal 
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orientation parameters obtained in the previous step will be used 

instead of a self-calibration procedure. 

 

2.3 Point Clouds Registration 

 

In order to register the two generated visible and thermal point 

clouds, at first, the visible point cloud is geo-referenced via the 

control points that are extracted using Google Earth. A geo-

referenced point cloud is given in an Earth-fixed coordinate 

system, that in this study, WGS84 is used as an earth-centered 

system. To specify the coordinate of the point cloud in a real-

world coordinate system a 3D Helmert transformation (with 

seven parameters: three translations, three rotations and, one 

scale) can be used by considering common GCPs and solve the 

absolute orientation (Turner et al., 2012). It is necessary to have 

at least three control points to calculate the transformation, 

though more is needed to assess the quality of the 

transformation, independently. The control points should have a 

good dispersion and be distributed throughout the model (James 

and Robson, 2012). Control points are measured manually in the 

images, and their 3D locations are determined in the model 

through the intersection. After adding the control points, the 

position of the cameras is optimized, and a dense visible point 

cloud is generated which the ortho-image can be obtained based 

on it. Then, by applying control points captured from visible 

ortho-image to the thermal point cloud, two point clouds are 

registered. 

 

2.4 Building Roofs Extraction 

 

To detect the buildings and extract their roofs, in the first step, 

filtering of ground points is required. For the purpose, cloth 

simulation filtering (CSF) algorithm is applied (Zhang et al., 

2016). This method is based on a simulation that if the point 

cloud is turned upside down and then a piece of cloth is dropped 

on the inverted surface because of the gravity and the cloth is 

defined with rigidness, then the final shape of the cloth is the 

DTM. Fig. 2 illustrates the overview of the concept of this 

algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.Overview of the basic concept of CSF algorithm.  

 

By filtering the DTM, ground points are separated from non-

ground points. Then, to remove vegetation and trees the RGBVI 

index that defined as the normalized difference of the squared 

green reflectance and the product of blue× red reflectance is used 

(Bendig et al., 2015) as follows: 

 

RGBVI = (RG*RG) – (RR*RB) / (RG*RG) + (RR*RB)       (3) 

  

where RR = red, RG = green, RB = blue. A height threshold is 

applied to remove points with elevations below the specified 

value with the concern that a building cannot be that low. 

Because of the different orientation of normal vectors in z-

direction for roofs and walls, it is possible to extract the facet of 

roofs and isolate them from walls by computing the normal 

vectors in the z-direction and applying a predefined 

threshold.  To compute normal vectors, Boulch and Marlet  

(2016) method is used which map a Hough accumulator for 

normal estimation into an image and use it as an input of a 

convolutional neural network (CNN) to learn to estimate a 

normal from such an image-accumulator. The framework of this 

method is pictured in Fig. 3. This method is robust to noise, 

outliers, and density variation, especially in the presence of sharp 

edges. 

 

 
 

Figure 3. Framework of CNN-based normal estimation (Boulch 

and Marlet, 2016). 

 

After this step remaining points are belongs to the roof of the 

buildings and some others are excess points. The use of Gaussian 

filter to remove noise makes the edges soften, so 3D Connected 

Components Labeling is used to separate building roof segments 

from the rest of the points that is done by a connectivity analysis 

in TIN (Triangulated Irregular Network), which was modified 

based on an algorithm suggested by (Lumia et al., 1983). Finally 

building roofs are extracted and isolated from ground points, 

vegetation points, walls and excess points. 

 

2.5 Combination of Visible and Thermal Point Clouds 

 

During previous steps, points of the building roofs that are 

extracted from the visible point cloud are registered to the 

corresponding points in the thermal point cloud. So, for the 

combination of visible and thermal data, each visible point is 

referred to its corresponding point in the thermal point cloud and 

its radiometric information is extracted and assigned to the 

visible point as stated in Eq.3 and 4: 

 

(𝑋′, 𝑌′, 𝑍′)𝑇 = 𝐹𝑖𝑛𝑑𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑋, 𝑌, 𝑍)𝑉          (3) 

 

𝐹(𝑋, 𝑌, 𝑍)𝑓𝑢𝑠𝑖𝑜𝑛 = 𝐺(𝑋′, 𝑌′, 𝑍′)𝑇ℎ𝑒𝑟𝑚𝑎𝑙                     (4) 

 

where (𝑋′, 𝑌′, 𝑍′) and ( 𝑋, 𝑌, 𝑍) are the spatial coordinate in the 

thermal point cloud and the visible point cloud, 𝐹𝑓𝑢𝑠𝑖𝑜𝑛 is the  

radiometric information of the new generated point cloud and 

𝐺𝑇ℎ𝑒𝑟𝑚𝑎𝑙  is the  radiometric information of the thermal point 

cloud. In this way, the process of resampling is carried out based 

on the nearest neighbor interpolation strategy. Finally, a fused 

point cloud is generated with the spatial accuracy of the visible 

point cloud and the radiometric information of the thermal point 

cloud that represents the heat map for each building roof. 

 

3. RESULTS   

 

In this research, for thermal camera calibration, a rectangular 

calibration board with 13 * 17 hollow circles, 12 mm in diameter 

is used where the distances between centers of the circles are 24 

mm. Six coded targets are considered on the calibration board to 

specify target positions in different images (Fig. 4(a)). To make 

the targets more distinguishable and make a better contrast in the 

images, the calibration board heated, then imaged by a thermal 

camera in multiple views (Fig. 4(b)). 

Invers

e

DTM 
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(b) 

 

Figure 4. Thermal camera clalibration: (a) circular calibration 

target in the thermal camera, (b) thermal camera positions. 

 

Calibration board images are changed to binary images using the 

adaptive thresholding (Prakash and Karam, 2012), and then the 

centers of the circles are identified through the algorithm 

expressed in (Ouellet and Hebert, 2008) that is based on the 

intersection of lines perpendicular to the gradient (Fig. 5). The 

circles in each image are numbered so that the same circles in 

the different images have the same number. 

 

  
 

Figure 5. Detection of centers of circles based on Ouellet 

method. 

 

Center of the circles are considered as image coordinate and by 

forming object coordinate, camera calibration is done based on 

Zhang's method. In order to evaluate the accuracy of thermal 

camera calibration mean re-projection error is calculated through 

mapping the calibration point positions from the object 

coordinate system to the image plane, using the obtained set of 

calibration parameters. 

 

 
 

Figure 6. Mean re-projection error chart for thermal camera 

calibration. 

Fig. 6 illustrates the mean re-projection error per image with an 

average of 0.31 pixels over all 13 views and 221 calibration 

points. In the next step, the dense visible and thermal point cloud 

are generated (Fig. 7). 

  

 
(a)  

 
(b) 

 

Figure 7. Point cloud generation: (a) thermal point cloud, (b) 

visible point cloud. 

 

712 thermal frames that they are 640 x 480 in dimension with 

pixel size of 17μm and ground sampling distance (GSD) of 4.45 

cm/pix were extracted from recorded video and 696 RGB images 

that they are  3000 x 2250 in dimension with pixel size of 

1.73μm and GSD of 2.22 cm/pix captured via UAV. Thermal 

and visible point clouds are generated with a point density of 106 

points/m² and 227 points/m² respectively. The point clouds are 

then geo-referenced based on the control points that are depicted 

in Fig.8. 

 

 
 

(a) 

 

           
    

(b) 

(a)                                 

 

Figure 8. Geo-referenced images: (a) thermal  
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orthophoto, (b) visible orthophoto. 

13 Control points and 9 check points are considered for visible 

point cloud and total RMSEs are 52.9628 cm and 53.5022 cm, 

respectively. 21 Control points and 14 check points are 

considered for thermal point cloud and total RMSEs are 5.03339 

cm and 32.7098 cm, respectively. These errors are indicated in 

details in Table 1. 

 

 X error 

(cm) 

Y error 

(cm) 

Z error 

(cm) 

XY error 

(cm) 

Thermal 

Control Point 

1.96434 3.43715 3.10844 3.95886 

Thermal 

Check Point 

3.97794 3.21909 

 

32.307 5.11728 

Visible 

Control Point 

11.2646 15.4173 49.4011 19.0942 

Visible 

Check Point 

9.91278 10.6897 51.4777 14.5785 

 

Table 1. Control points and check points RMSEs in the visible 

and thermal point cloud 

 

The registration accuracy is then evaluated based on absolute 

distances between the visible point cloud and thermal point 

cloud, and it is displayed through colors where blue represents 

the lowest distance and red represents the highest distance 

(Fig.9).   

 

 
 

(a) 

 

 
                                  

(b) 

 

Figure 9. Absolute distances between visible point cloud and 

thermal point cloud: (a) distances are displayed through the 

colors, (b) histogram of absolute distances (units are in 

meters).  

 

Mean absolute distance between visible and thermal point clouds 

is 0.2 m. As shown, most areas are blue with the least difference. 

The red zone is the part of the trees where there is more 

difference in them. Most of the buildings are displayed in blue, 

which indicates the success of registration process. Results of 

building roof extraction stages are presented in Fig. 10-14. 

 

  
 

Figure 10. Ground filtering of visible point cloud. 

 

Fig. 10 illustrates visible point cloud after applying CSF 

algorithm with cloth resolution of 2 and classification threshold 

of 0.5 (the unit is same as the unit of point clouds) to separate 

non-ground points from ground points. 

 

 
 

Figure 11. Applying RGBVI index. 

 

In order to remove vegetation points, RGBVI index is calculated 

for all the points and then figure out an adequate threshold that 

removes as many vegetation points as possible without removing 

building-related points (Fig. 11). 

  
 

Figure 12. Applying the normal limit in z direction. 

 

Calculating the normal vectors in the z-direction for the 

remaining points results that the normal vector for the roof 

planes is close to 1 or -1 and for the wall planes are close to 0 so 

the points related to the walls can be eliminated (Fig. 12). 

 

 
 

Figure 13. Utilize Connected Component Labeling algorithm. 

 

To isolate roof points from excess points Connected Component 

Labeling algorithm is applied. Finally, all the building roofs are 

completely extracted (Fig. 13). Afterwards, data resampling is 

carried out, and the high-resolution thermal point cloud of the 

building roofs is generated with the same point density of visible 

point cloud along with thermal information of thermal point 

cloud (Fig. 14(a)). 

Absolute Distances 

C
o

u
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(a) 

 

 

(b) 

 

Figure 14. Final results: (a) high resolution thermal point cloud 

of building roof, (b) comparison of extracted roofs in thermal 

and visible point clouds and fused point cloud. 

 

Sections of the buildings in the thermal point cloud, visible point 

cloud, and fusion point cloud are presented for comparison in 

(Fig. 14(b)). As it is presented, thermal point cloud distortions 

do not exist in the fused point cloud, and edges of the building 

roofs in the fused point cloud are as sharp as the visible point 

cloud. 

 

 

Figure 15. Thermal anomalies of building roofs. 

 

Buildings E, F, G are shown in Fig. 15 and the thermal anomalies 

of building roofs are evident. Lighter radiometric data indicates 

more heat in the area than the area with darker radiometric 

information. 

 

4. Conclusions 

 

This study has proposed a method for 3D thermal mapping of 

building roofs and suggested the combination of visible and 

thermal point cloud to address the problem of low-resolution 

thermal imagery. To generate a thermal point cloud, internal 

orientation parameters are needed, which they were obtained 

through thermal camera calibration. For 3D mapping of thermal 

information to the visible point cloud, accurate registration of 

two point clouds is of importance. By combining visible point 

cloud of the building roofs and registered thermal point cloud, a 

fused point cloud was generated that it has spatial accuracy of 

visible point cloud along with thermal information of the 

building roofs. The initial density of the thermal point cloud was 

106 points/m², which eventually density of fused point cloud 

improved to 227 points/m². Results showed that fusion of visible 

and thermal point clouds could be used to generate a high-

resolution, distortion-free thermal point cloud of the building 

roofs. Future work will perform this algorithm on a larger dataset 

that includes more buildings and will investigate to segment 

thermal anomalies for further analysis.    
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