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ABSTRACT: 

 

Land-cover classification of Remote Sensing (RS) data in urban area has always been a challenging task due to the complicated 

relations between different objects. Recently, fusion of aerial imagery and light detection and ranging (LiDAR) data has obtained a 

great attention in RS communities. Meanwhile, convolutional neural network (CNN) has proven its power in extracting high-level 

(deep) descriptors to improve RS data classification. In this paper, a CNN-based feature-level framework is proposed to integrate 

LiDAR data and aerial imagery for object classification in urban area. In our method, after generating low-level descriptors and fusing 

them in a feature-level fusion by layer-stacking, the proposed framework employs a novel CNN to extract the spectral-spatial features 

for classification process, which is performed using a fully connected multilayer perceptron network (MLP). The experimental results 

revealed that the proposed deep fusion model provides about 10% improvement in overall accuracy (OA) in comparison with other 

conventional feature-level fusion techniques.  

 

 

1. INTRODUCTION 

The diversification of geospatial data and the limitations of the 

RS sensors have attracted the interest of many researchers in 

developing various data fusion algorithms with greater ability 

and efficiency (Goshtasby and Nikolov, 2007). Because 

combining various data sources to integrate various information 

can help to improve classification results.  Among the geospatial 

data, very high resolution (VHR) images and LiDAR data 

provide spatial contexture details and elevation information 

(Schmitt and Zhu, 2016), and fusion of these data is now a 

successful and active practical. LiDAR can provide height and 

shape information which is valuable for better describing the 

scene obtained by optical sensors only (Morsy et al., 2017). Since 

these source data have specific merits, numerous classification 

methods have been developed for fusion of VHR and LiDAR 

data, in the past two decades (Daneshtalab and Rastiveis, 2017; 

Xu et al., 2018). In this regard, the majority of these approaches 

are based on relatively simple or highly-customized decision 

rules that target subject classes or target objects based on specific 

elevation features, vegetation index, shape, or other information.   

 

Taking advantages of the rich fusion information, a numerous 

traditional classification methods, such as 𝑘-nearest-neighbors 

(𝑘-NN) and maximum likelihood as well as advanced classifiers 

such as Support Vector Machine (SVM) and Neural Networks 

(NN) have been used for image classification (Li et al., 2007; 

Makarau et al., 2011). For example, Rastiveis (2015) discussed a 

decision-level fusion of high-resolution aerial orthophoto and 

LiDAR data based on the Naïve Bayesian algorithm. In that 

research, the results of three different strategies for classification 

of these data using Naïve Bayes algorithm were compared that 

the results of final decision fusion were provided the best results.  

 

Recently, deep learning (DL) based method using convolutional 

neural networks (CNNs) have been of great interest of RS 
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researchers. Due to the effectiveness of different CNNs 

algorithms, they have been used in many RS applications, 

specifically image classification, and has shown superior 

performance over traditional methods (Xia et al., 2019; Zhang et 

al., 2016). CNNs are a type of deep learning that includes a large 

number of convolutional and sampling layers. The CNN input 

layer is usually an image matrix with arbitrary dimensions, and 

its output is a feature vector corresponding to different classes. 

CNN-based classification methods use these features in a 

classification algorithm to find the class label.  

 

The statistical characteristics of images with VHR and 

multispectral images pose significant problems for automated 

analysis due to their high spatial and spectral redundancy as well 

as their non-linear nature. Therefore, in this research, we focus 

on the indirect approach through spatial-spectral feature 

extraction to study the supplementary information transmitted by 

a LiDAR and a VHR image. In this case, a CNN-based feature-

level framework to integrate these data is proposed for object 

classification of an urban area. The architecture of the proposed 

CNN network consists of convolution kernels to extract deep 

features from surrounding neighbours of a pixel for spatial-

spectral feature extraction. All the extracted deep features are 

then concatenated together in a fully-connected NN to classify 

the pixels.  

 

Proposing a novel CNN framework for classification of VHR and 

LiDAR data to make full use of spatial-spectral information of 

these data is the contribution of this paper. The paper is organized 

as follows: In Section 2, a review of the related studies is 

presented. Then, the proposed method is introduced in Section 3. 

Then, in Section 4, the experimental results of our method in 

comparison with SVM and NN classifiers are presented. Finally, 

we will conclude the paper by summarizing our results in Section 

5. 
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2. RELATED WORKS 

The use of CNN for the fusion of LiDAR data and aerial images 

have been proposed by a number of researchers (Chen et al., 

2017). In terms of multisource RS data, the study of the CNN 

model is still rare. Längkvist et al. (2016) combined the 

multispectral bands and digital surface model (DSM) height to 

conduct per-pixel and per-segmentation land use classification 

using single and multi-CNN models. Also, Chen et al. (2017) 

proposed a deep model for RS data fusion and classification. In 

their research, different CNNs are used to effectively extract 

abstract and informative features from fusing a multi-spectral 

image (MSI) or a hyperspectral image (HSI) with LiDAR data, 

separately. Then, a Deep Neural Network (DNN) is adopted to 

fuse heterogeneous features obtained by the aforementioned 

CNNs. Xu et al. (2017) proposed a novel CNN-based approach 

for the classification of multisource RS data including HSI, 

LiDAR, and Visible images data. Their CNN is a simple two-

tunnel CNN, which consists of the same architecture of 2-D and 

1-D CNNs, designed for reinforcing the correspondence spatial-

spectral information. In addition, a cascade network was devised 

to combine features at different levels with a shortcut path. The 

experimental results with several multisource data demonstrated 

that in the condition of the same training samples, their CNN 

outperforms the traditional SVM and extreme learning 

machine (ELM) (Li et al., 2015). 

 

Using DL-based approaches for building extraction based CNN 

and auto-encoders using LiDAR and orthophoto integration was 

studied by Nahhas et al. (2018). Their proposed architecture 

includes multi-resolution and spectral difference segmentations 

to create objects by grouping the image pixels according to their 

shape and spectral properties. Hartling et al. (2019) examined the 

potentiality of a novel DL-based method, called Dense 

Convolutional Network (DenseNet), to identify dominant 

individual tree species in a complex urban environment within a 

fused image of WorldView-II, Worldview-II and LiDAR data. 

DenseNet were compared against two popular machine learning 

classifiers including Random Forest (RF) and SVM, and the 

results proved the superiority of the DenseNet over the other two 

methods. Also, Santos et al. (2019) proposed and evaluated a 

CNN-based approach for detecting tree species from high-

resolution images captured by RGB cameras in a UAV platform. 

In that study, three state-of-the-art CNN-based methods for 

object detection were tested: Faster R-CNN, YOLOv3, and 

RetinaNet. In the experiments carried out on a sample dataset 

comprising 392 images, RetinaNet achieved the most accurate 

results, having delivered 92.64% average precision. 

 

Feng et al. (2019) proposed a modified two-branch CNN for 

urban land-use mapping using HSI and LiDAR data. Their 

network consists of an HSI branch and a LiDAR branch, both of 

which share the same network structure in order to reduce the 

burden and time cost of the design. Within the HSI and LiDAR 

branches, a hierarchical, parallel, and the multi-scale residual 

block was utilized, which could simultaneously increase the 

receptive field size and improve gradient flow. Moreover, an 

adaptive feature-fusion module based on a Squeeze-and-

Excitation Net was proposed to fuse the HSI and LiDAR data.  

 

Bigdeli et al. (2019) presented two different feature-learning 

strategies for the fusion of hyperspectral thermal infrared (HTIR) 

and visible RS data. First, a Deep Convolutional Neural Network 

(DCNN)-Support Vector Machine (SVM) was utilized on the 

features of two datasets to provide the class labels. To validate 

the results with other learning strategies, a shallow feature model 

was used, as well. Their experimental results showed that, except 

for the computational time, the DCNN-SVM model 

outperformed shallow feature-based strategies in the 

classification accuracy. Another state-of-the-art method for 

classification of LiDAR data and WorldView-II image based on 

DL concept was proposed by Wu et al. (2019). They implement 

a hierarchical multi-scale super-pixel based classification using 

the ResNet+SPP network for urban impervious surfaces 

extraction. The results showed that the hierarchical method based 

on LiDAR height information significantly improves the 

extraction of buildings and roads, and sufficiently exerts the 

superiority of LiDAR height information. 

 
3. METHOD 

The literature review has indicated that continued research is still 

needed to reach a classification framework that can efficiently 

integrate image and LiDAR data. An overview of the proposed 

method is shown in Figure 1. As shown in this figure, feature 

level fusion of the input data (RGB image and LiDAR data) is 

initially performed to extract low-level features. Then, the 

resulted features are imported in the designed CNN-based 

network to extract deep or high-level descriptors. At the end of 

the framework, the multi-layer perceptron (MLP) is employed to 

produce the final classification map. The procedure is optimized 

through the back-propagation with the help of training samples. 

Details of the proposed framework are elaborated in the 

following subsections. 

 
Figure 1. Framework of deep feature fusion for VHR and 

LiDAR data for accurate classification 

 

3.1 Low-level Feature Fusion 

In this step, after geometric correction and co-registration of 

LiDAR point clouds and orthophoto, the possible features of 
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these data are used as low-level features. The LiDAR-derived 

layers can be included normalized digital surface model (nDSM), 

intensity, first and last pulses differentiation and orthophoto 

bands may involve red, green, and blue channels. The resulted 

layers are then normalized and combined before importing in the 

convolutional layers. Note, the spatial resolutions of all these 

layers must be equalized using resampling techniques.  

 

3.2 Deep Feature Extraction 

The extracted low-level information may not result in superior 

classification accuracy. Therefore, in this step, a CNN-based 

framework is used as a deep feature extractor to extract high-level 

and powerful features by importing the low-level features into a 

number of convolutional layers. The hidden layers in this 

network include the convolutional layer, the sampling layer, and 

the fully connected layer. The neurons in each layer of a 

convolution are sorted in a three-dimensional (3D) manner, 

transforming a 3D input to a 3D output. For an image input, the 

first layer (input layer) holds the images as 3D inputs, with the 

dimensions being height, width, and the feature channels of the 

image. The neurons in the first convolutional layer connect to the 

regions of these images and transform them into a 3D output. The 

hidden units (neurons) in each layer learn non-linear 

combinations of the original inputs, which is called feature 

extraction (Xu et al., 2018). Moreover, the sample data for each 

class are randomly distributed over the ground truth image, and 

are divided into two categories of training and experiment data. 

Patch window around each pixel is defined considering 

dimensions of 25×25 pixels. Sufficient training data for each 
class will be randomly selected among the sample data.  

The convolutional layer consists of learnable weights and biases 

that are used in the form of a filter with different dimensions and 

depths on the patch windows of the input layer. In this research, 

convolutional filters are 3×3 two-dimensional (2D) filters. 

Pooling layers follow the convolutional layers for down-

sampling, hence, reducing the number of connections to the 

following layers. They do not perform any learning themselves 

but reduce the number of parameters to be learned in the 

following layers. They also help reduce overfitting. A max-

pooling layer performs down-sampling by dividing the input data 

into rectangular pooling regions and computing the maximum of 

each region. The neuron in the pooling layer combines a small 

2×2 patch of the convolution layer.  

3.3 Classification 

A fully connected layer multiplies the input by a weight matrix 

and then adds a bias vector. The convolutional (and down-

sampling) layers are usually followed by one or more fully 

connected layers. All neurons in a fully connected layer connect 

to all the neurons in its previous layer. This layer combines all of 

the features (local information) learned by the previous layers 

across the image to identify larger patterns. At the end of the 

framework, a multi-layer perceptron (MLP) is taken into account 

to produce the final classification map. The structure of the MLP, 

here, contains 2 hidden layers with 100 neurons at each layer plus 

the SoftMax layer. 

 

4. EXPERIMENTS AND RESULTS 

4.1 Dataset 

The used test data for evaluating the algorithm is the 

“grss_dfc_2018” dataset which has been provided by the 2018 

IEEE (Institute of Electrical and Electronics Engineers) GRSS 

(Geoscience and Remote Sensing Society) Data Fusion Contest 

(Xu et al., 2019). It includes a VHR aerial imagery with a spatial 

resolution of 5 cm, multispectral-LiDAR point cloud data at 1550 

nm, 1064 nm, and 532 nm, the intensity raster from first return 

per channel, and DSMs at a 50 cm ground sample distance 

(GSD). From the data set, a 325×350 sq. m. area was chosen as 

sample area to evaluate the algorithm. The available training 

samples cover five classes of Buildings (B), Roads (R), Trees (T), 

Grasses (G), and Cars (C). For this data set, 500 samples were 

randomly selected from each class as training and the rest as test 
samples. 

 
(a) 

 
(b) 

 
(c) 

Figure 2. The grss_dfc_2018 data set over Houston. (a) VHR 

aerial image. (b) DSM (c) Ground truth map 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W18, 2019 
GeoSpatial Conference 2019 – Joint Conferences of SMPR and GI Research, 12–14 October 2019, Karaj, Iran

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W18-279-2019 | © Authors 2019. CC BY 4.0 License.

 
281



 

4.2 Results 

The proposed CNN was implemented using the Python 

programming language and TensorFlow deep learning 

framework1. In the first step of the proposed method, feature 

spaces on VHR and LiDAR data were produced, independently. 

From the LiDAR data, the intensity image, the nDSM, and the 

first-pulse and last-pulse differentiation with 5 cm spatial 

resolution were considered as low-level features. They integrated 

with the red, green, and blue channels of the image in the feature-

level fusion. At the Deep feature extraction step, given the 

advantages of the 2D CNN for feature extraction and 

classification, with the help of appropriate CNN architecture, 

pixel neighbors across all bands were used. CNN teaches spatial 

features on its own and uses the features learned in classification. 

For the sample data set, a 25×25×6 patch around each pixel as 

the obtained low-level feature fusion is used as the input of the 

CNN. Note, the input images were normalized into [0 1] before 

importing to the CNN. The size of the mini-batch for training was 

100, and the learning rate was 0.0003. In this set of experiments, 

the number of training epochs CNNs was 500. Also, random 

weights were used to initialize the network.  

 

There are three factors, (i.e. dropout, ReLU, and patch size) that 

significantly affect the accuracy of the final classification, and 

they should be analyzed. The nonlinear layer was added after 

each convolution operation. It contains ReLU activation 

function, which brings nonlinear property. Overfitting is the 

phenomenon when the constructed model recognizes the 

examples from the training sample, but works relatively poorly 

on the examples of the test sample. To prevent overfitting, 10% 

and 50% dropout were considered after each convolutional and 

fully connected layers, respectively. Also, to train the CNN 

model, the patch size of the neighborhood window was set to 

25×25 pixels, to include more spatial information in the input. 

Due to the small input size and limited training samples, only two 

convolution layers and pooling layers were used. Moreover, a 

layer of BN was inserted after each convolution layer to deal with 

the vanishing gradient problem as well as accelerate the training 

procedure. In the training process, mini-batch-based back-

propagation was considered. Figures 3 displays the 

corresponding accuracy vs validation behavior during training 

process. Figure 4-c displays the obtained classification map using 

these parameters, which resulted in overall accuracy (OA) of 

85%, and kappa coefficient of 82% after 500 epochs.  

 

We also conducted radial basis function (RBF)-based SVM and 

MLP classifiers with the obtained low-level features for 

evaluating the proposed CNN-based feature-level fusion 

framework. In the SVM classifier, the grid search optimizes the 

SVM parameters (C, gamma, etc.) using a cross validation (CV) 

technique as a performance metric. Wide ranges of c and gamma 

values for the SVM were searched with the RBF-SVM method, 

which they were configured as c = 218 and gamma = 21. Also, 

the MLP with one hidden layer including 100 neurons was 

implemented to classify the dataset. The results of the MLP and 

RBF-SVM classifiers are shown in Figure 4-a and -b.  

 

For any class, errors of commission occur when a classification 

procedure assigns pixels to a certain class that in fact does not 

belong to it. Also, errors of omission occur when pixels that in 

fact belong to one class, are included in other classes. The amount 

of errors of commission is also described by the Producer’s 

accuracy (PA) indicator (1-PA). User’s accuracy (UA) is another 

index characterizing the number of errors of omission (1-UA). It 
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is the number of the correctly identified pixels of a class, divided 

by the total number of pixels of the class in the classified image. 

An Error matrix of each classification strategy, e.g. the MLP, the 

SVM, and the CNN-based, is illustrated in Tables 1, 2, and 3, 

respectively. 

 
  Reference  

 Class B G R T C UA (%) 

C
la

ss
if

ie
d

 

B 53961 371 794 10365 1886 80.09 

G 1850 108375 5497 19783 5113 77.07 

R 7371 13533 100682 9854 21068 66.02 

T 1980 6997 747 58905 1827 83.61 

C 335 447 1553 748 20408 86.88 

PA(%) 82.39 83.54 92.14 59.11 40.57  

Table 1. Confusion Matrix of the MLP classifier. B=Buildings; 

G = Grasses; R = Roads; T = Trees; C = Cars; UA = User 

Accuracy; PA = Producer Accuracy. 

 
  Reference  

 Class B G R T C UA (%) 
C

la
ss

if
ie

d
 

B 61592 819 1218 2088 1660 91.41 

G 2465 112013 7686 16187 2267 79.66 

R 5951 14275 108361 7981 15940 71.05 

T 2479 9645 1524 56007 801 79.49 

C 654 596 1797 313 20131 85.7 

PA(%) 84.21 81.55 89.86 67.82 49.34  

Table 2. Confusion Matrix of the SVM classifier. B=Buildings; 

G = Grasses; R = Roads; T = Trees C = Cars; UA = User 

Accuracy; PA = Producer Accuracy. 

 
  Reference  

 Class B G R T C UA (%) 

C
la

ss
if

ie
d

 

B 64029 659 1017 1399 273 95.03 

G 2119 111382 10857 14846 1414 79.21 

R 4137 11734 119247 8717 8673 78.19 

T 1196 6395 1940 60680 245 86.12 

C 11 44 643 112 22681 96.55 

PA(%) 89.56 85.54 89.19 70.76 68.14  

Table 3. Confusion Matrix of the proposed CNN classifier. 

B=Buildings; G = Grasses; R = Roads; T = Trees; C = Cars; UA 

= User Accuracy; PA = Producer Accuracy. 

 

 

Figure 3. Accuracy of the training and the validation data during 

the training process of the proposed CNN. 
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(a)                          (b)                        (c) 

Figure 4. The resulted classification maps using LiDAR data and VHR imagery (a) The RBF-SVM classifier using low-level 

features; (b) The MLP classifier using low-level feature; (c) The proposed CNN-based framework.  

 

4.3 Discussion 

Figure 5 summarized the resulted OA and Kappa coefficient 

obtained from these three strategies. As can be seen, extracting 

high-level and deep features, the CNN has improved the 

classification accuracy for VHR aerial imagery and LiDAR data 

fusion. The resulted OA and Kappa coefficient by this strategy 

about 11%, and 16% is higher than the RBF-SVM, and about 7% 

and 8% higher than the MLP classifiers which had used low-level 

features. The average improvement for OA and Kappa 

coefficient is about 10% and 12%, respectively. Based on the 

chart shown in Figure 5, the RBF-SVM obtained the worst results 

in terms of OA and Kappa coefficient. 

  

 

Figure 5. Comparison of different classification results obtained 

by the RBF-SVM, the MLP, and the proposed CNN-based 

framework 

As it is clear from the error matrices shown in Tables 1-3, the 

accuracy of the car class is more accurate than the other classes 

in the CNN classification. It demonstrates the ability and 

structure of the network to train and identify different types of 

cars with different colors and spectral characteristics. Also, in 

classifying buildings and roads, due to User’s accuracy and 

omission error, it is shown that the pixels of other classes are less 

allocated to these classes. 

 

In most of the previous studies, this value has been chosen as 

70% to 30% of the whole study area as training and test data, 

which is a big number. However, in this study, only 400 training 

samples for each class were chosen for training the algorithm, 

and the rest of the data were considered as tests. This can prove 

the generalization capability of the proposed network in facing 

with high amount of the test data. 
 

5. CONCLUSIONS 

This study developed a DL-based approach using CNN models 

to classify a fused LiDAR–VHR dataset. In this approach, the 

extracted low-level features from the image and LiDAR data are 

normalized and integrated. Then, they are imported in the 

designed CNN to extract the spectral-spatial descriptors. At the 

end of the framework, an MLP classifier is employed to produce 

the final classification map. The algorithm was tested on a sample 

area from the “grss_dfc_2018” dataset, and compared with two 

conventional classifiers using the low-level features. The results 

showed the average about 10% and 12% improvement in OA and 

Kappa coefficient, respectively. This reveals that the proposed 

deep fusion method can be a potential tool for the fusion of 

remote sensing images. Although the results were promising, 

however, testing the proposed network on other datasets to 

optimize this framework is suggested for future studies. Also, the 

algorithm may be tested for multiple data sources.  
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