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ABSTRACT: 

 

Research on determination of spatial patterns in urban car accidents plays an important role in improving urban traffic safety. While 

traditional methods of spatial clustering of car accidents mostly rely on the two dimensional assumption, many spatial events defy this 

assumption. For instance, car accidents are constrained by the road network and rely on the one dimensional assumption of street 

network. The aim of this study is to detect and statistically prioritize the car accident-prone segments of an urban road network by a 

network-based point pattern analysis. The first step involves estimating the density of car accidents in the one dimensional space of 

the road network using the network kernel density estimation (NKDE) method with equal-split continuous and discontinuous kernel 

functions. In the second step, due to the lack of statistical prioritization of the accident-prone segments with NKDE method, the output 

of the NKDE method is integrated with network-constrained Getis-Ord Gi* statistics to measure and compare the accident-prone 

segments based on the statistical parameter of Z-Score. The integration of these two methods can improve identification of accident-

prone segments which is effective in the enhancing of urban safety and sustainability. These methods were tested using the data of 

damage car accidents in Tehran District 3 during 2013-2017. We also performed the Network K-Function to display the significant 

clustering of damage car accident points in the network space at different scales. The results have demonstrated that the damage car 

accidents are significantly clustered. 

 

 

1. INTRODUCTION 

Today, increasing car accidents has a negative impact on the 

people’s life and social development. Therefore, a huge amount 

of efforts should be made to strengthen traffic safety standards in 

order to develop sustainable transportation (Flak, 1997). Spatial 

pattern analysis can provide an effective solution to identify 

global or local spatial distribution patterns of urban car accidents 

(Prasannakumar et al., 2011). Therefore, spatial pattern analysis 

has been used in urban road network based on geospatial 

information systems (GIS) in order to identify accident-prone 

segments of car accidents. GIS has been used as a science and 

technology for modeling and analysis of car accidents (Deepthi 

Jayan and Ganeshkumar, 2010). Spatial pattern analyses can be 

classified into local and global methods (O’Sullivan and unwin, 

2014). The first category examines the severity of accidents and 

determines the absolute location of discrete events, such as planar 

kernel density estimation (PKDE) method (Anderson, 2009; 

Erdogan et al., 2008). The second category examines the spatial 

interaction of discrete events for spatial patterns, such as nearest 

neighbor statistics, K-Function methods in both planar and 

network modes and Getis-Ord Gi* statistics (Okabe and Yamada, 

2001; Chaikaew et al., 2009; Flahaut et al., 2003). The PKDE 

method is a non-parameter method which has been widely used 

for analyzing the discrete events. Although no single technique 

has been achieved as the best method for detection of car accident 

clusters, recent research suggests that the PKDE method offers a 

better output due to its simplicity and ease of execution (Carlos 

et al., 2010; Pulugurtha et al., 2007). The PKDE method when 
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the accident locations are sufficient for the analysis, performs 

appropriately to identify accident-prone segments of the road 

network (Yu et al., 2014). Although the PKDE method has shown 

acceptable properties using density values, its two dimensional 

assumption is not logical for discrete events that are distributed 

in the one dimensional space (Yamada and Thill, 2004). To 

overcome this limitation, Okabe et al. (1995) proposed NKDE 

method for estimating kernel density in network space, which can 

overcome the weaknesses of the PKDE method and provides 

more logical results. Although PKDE and NKDE are useful 

methods for analyzing car accidents, they have some limitations. 

One of their main limitations is the lack of prioritization of the 

accident-prone segments in the road network (Bil et al., 2013). 

Therefore, it is necessary to decide which clusters are statistically 

significant. The aim of this research is to detect and prioritize 

accident-prone segments of the urban road network. Therefore, 

the NKDE method is used to discover the high-density road 

segments in the network space. Then, the network-constrained 

Getis-Ord Gi* statistics is used to prioritize the accident-prone 

segments of the road network based on the statistical parameter 

with inputs obtained by the NKDE method. Network K-Function 

method is also used to identify clustering of point events in 

different distance intervals of the network space.  
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2. DATA AND METHODS 

2.1 Data 

In this paper, we investigated the urban area of Tehran District 3 

that covers an area of 29.27 km2. The road network is 725888.12 

meters with 7200 road segments. The study area is located 

between 35°44′30″N - 35°48′00″N Latitude and 51°22′30″E - 

51°28′30″E Longitudes. The data used in this research is related 

to location of damage car accidents in Tehran District 3 during 

2013-2017 as shown in Figure 1. There have been about 9662 

damage car accidents during 2013-2017. 

 

 

Figure 1. damage Car accidents damage location in Tehran 

District 3 during 2013-2017 

2.2 Methods 

The flowchart of the proposed method is shown in Figure 2. 

 

 

Figure 2. Flowchart of the proposed method for car accidents 

clustering 

2.2.1  Network Kernel Density Estimation (NKDE) 

 

Network Kernel Density Estimation method (NKDE) has been 

used to detect cluster pattern of point events in the one 

dimensional space. According to Figure 3 , the main difference 

between the NKDE and PKDE methods is that in the NKDE 

method in addition to considering network space alongside point 

events, the shortest network distance is used instead of Euclidean 

distance in an one dimensional space (Xie and Yan, 2008). 

 

  
(a)        (b)                 

Figure 3. The difference between the NKDE and PKDE 

methods  (a) PKDE (b) NKDE (Xie and Yan, 2008). 

 

The estimate of the density of the point events in the network 

space is calculated according to Equations 1 and 2 (Xie and Yan, 

2008): 

 

(𝑠) = ∑
1

𝑟
𝑘(
𝑑𝑠(𝑞 ̦𝑝)

𝑟
) 

𝑛

 𝑞=1

         
 

(1) 

𝑘 (
𝑑𝑠(𝑞 ̦𝑝)

𝑟
) = 𝐾(1 −

𝑑𝑠(𝑞 ̦𝑝)
2

𝑟2
) 

(2) 

          

Where      r = search radius 

                q = kernel center 

                p = observed points 
                k = Base kernel function (Quartic kernel) 

               K = 0.75 

               ds(q,p) = the network shortest distance between the 

kernel center (q) and the observed accident locations. 

 

In this method, the choice of the two parameters r and k is of great 

importance. As the search radius increases, the density level 

becomes smoother. According to previous research for urban car 

accidents, the search radius of 100 meters was selected 

(Steenberghen et al., 2010; Erdogan, 2015).  The key feature of 

the NKDE method is that the road network is divided into basic 

linear units (BLU) with equal network length called Lixel 

(corresponding to pixels in the planar space), which is associated 

with the network topology. Using Lixel not only selects a set of 

locations with regular intervals along the network to estimate the 

density, but also significantly improves the efficiency of the 

computation (Xie and Yan, 2008). Okabe et al. (2009) Suggested 

that the length of Lixel is (
search radius

10
) as a rule of thumb. The 

NKDE method is defined based on the following steps (Xie and 

Yan, 2008): 

1. a certain threshold is considered to check the topology 

and connectivity of the road network. 

2. Each segment of the road network is divided into basic 

linear units (Lixel).  

3. The kernel function and the search radius are used to 

determine the estimation of density car accidents in 

each Lixels. 

4. Calculate the shortest-path network distance from the 

center of each source Lixel to centers of all its 

neighboring Lixels within the search radius. 
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5. At the center of each source Lixel and all its 

neighboring Lixels, calculate a density value based on 

a selected kernel function, the network distance, and 

the number of events on the source Lixel and assign the 

total density to the source Lixel. 

6. Output the density value of each Lixels. 

The topology changes in the road network nodes reduces the 

accuracy of the density in the nodes.  Hence, to calculate the 

density around the nodes, two types of kernel functions, 

including Equal-split continuous kernel function and Equal-split 

discontinuous kernel function have been used (Okabe et al., 

2009). For Equal-split discontinuous kernel function when the 

center of the kernel function (q) does not reach the node (is 

located near the intersection), the kernel function is defined as 

Equation 3 (Okabe et al., 2009): 

 

𝐾𝑞(𝑝) = {
𝑘(
𝑑𝑠(𝑞 ̦𝑝)
𝑟

)

(𝑛𝑖1 − 1)(𝑛𝑖2 − 1)… (𝑛𝑖𝑘−1)
  𝑎 ≤ 𝑑𝑠(𝑞 ̦𝑝) < 𝑏

       0                                              𝑑𝑠(𝑞 ̦𝑝)  ≥ ℎ 

 
 

(3) 

Where     Kq(p) = kernel function 

                h = search radius 

                n = degree of nodes on the network 

                a = ds (q,vik-1), b= ds (q,vik) 

  

Otherwise, when the center of kernel (q) reaches a node (𝑞 = 𝑣𝑖1), 

the value of the kernel function is defined as Equation 4, whose 

parameters are the same as those of Equation 3 (Okabe et al., 

2009): 

 

𝐾𝑞(𝑝) = {
2𝑘(

𝑑𝑠(𝑞 ̦𝑝)
𝑟

)

(𝑛𝑖1)(𝑛𝑖2 − 1)…(𝑛𝑖𝑘−1)
  𝑎 ≤ 𝑑𝑠(𝑞 ̦𝑝) < 𝑏

       0                                              𝑑𝑠(𝑞 ̦𝑝)  ≥ ℎ 

 
 

(4) 

Equal-split discontinuous kernel function is shown in Figure 4 

(Okabe et al., 2009): 

 

Figure 4. Equal-split discontinuous kernel function (Okabe et 

al., 2009) 

 

For the second type assuming that a node in the distance h is from 

the center of kernel (q) and v1= vi1, n1=ni1, kernel function is 

calculated according to Equation 5 (Okabe et al., 2009): 

 

𝐾𝑞(𝑝) =

{
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2
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𝑘( 𝑑𝑠(𝑞 ̦𝑝))     𝑓𝑜𝑟 𝑐 ≤ 𝑑𝑠(𝑞 ̦𝑝) < ℎ                

      

 

 

 
 

(5) 

 

where      c = ds (q, v1) 

Other parameters are the same as those of Equation 3 and 4. 

Equal-split continuous kernel function is shown in Figure 5 

(Okabe et al., 2009): 

 

Figure 5. Equal-split continuous kernel function (Okabe et 

al., 2009): 

The major limitation of NKDE method is that there is no 

statistical significance parameter to prioritize the accident-prone 

segments of the road network (Xie and Yan, 2008). Therefore, 

Getis-Ord Gi* statistics is used. 

   

 Network-Constrained Getis-Ord Gi* Statistics 

 

Getis-Ord Gi* statistics was introduced to evaluate the local 

spatial pattern. Getis-Ord Gi* statistics is used to identify 

accident-prone clusters based on statistical significance. The 

output of this method for each feature has two terms including    

Z-Score and P-Value, which are used to calculate the statistical 

significance of spatial autocorrelation between any feature and 

its neighbors (Getis and Ord, 1992; Ord and Getis, 1995). The    

Z-Score value is a standard deviation representing the clustering 

of features with high or low values together, and P-Value 

represents the randomness or non-randomness of spatial patterns.  

According to Figure 6 , The values of P-Value and Z-Score can 

have different states as follow (Mitchell, 2005): 

 

 high Z-Score and small P-Value indicates clustering 

of high values. 

 small Z-Score and small P-Value indicates clustering 

of low values. 

 

Figure 6. Different states of P-value and Z-Score (Mitchell, 

2005) 

A very small P-Value represents the notion that the observed 

spatial pattern is not the result of random processes and the null 

hypothesis is rejected. The values of P-value and Z-Score are 

related to standard normal distribution (Griffith, 2008). The 

statistical index of Getis-Ord Gi* was introduced by Getis and 

Ord in 1992 to study the local pattern of spatial data and was 

developed in 1995 (Getis and Ord, 1992; Ord and Getis, 1995). 

The statistical index of Getis-Ord Gi* and Z-Score are presented 

in Equation 6 to 10 (Ord and Getis, 1995):  
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𝑉[𝐺𝑖
∗] = 𝐸[𝐺𝑖

∗2] − 𝐸[𝐺𝑖
∗]2                                  

(10) 

 Where     xj = attribute value for feature j 

                 n = total number of features 

                Wij = a symmetric one/zero spatial weight matrix from 

a threshold d for the distance between features i and j. 

 

Network-constrained Getis-Ord Gi* Statistics is based on Getis-

Ord Gi* Statistics; however, the definition of weight matrix is 

different. Therefore, in Network-constrained Getis-Ord Gi* 

Statistics, weight matrix defines the neighboring relationships 

between the two network segments. Two types of weight 

matrices exist including the node-based and the distance-based 

matrix. In the node-based method, two segments are neighbors if 

they share a node. The distance-based matrix determines the 

neighboring relationships based on whether the distance between 

the midpoints of segments is less than a distance threshold or not 

(Yamada and thill,2007; Borruso, 2008).  

 

  2.2.3   Network K-Function method 

 

The planar K-Function method identifies clusters in space 

beyond the road network. The network K-Function method was  

introduced to overcome this problem (Okabe and Yamada, 2001).  

 

 

The Network K-Function method is an extension of planar K-

Function technique that uses the shortest path between two points 

to compute the network distance of the points and measure the 

spatial patterns of point events at different scales of the network 

space (Rui et al. 2015). The Network K-Function denoted by 

K(t), is defined as Equation 11 (Okabe and Yamada, 2001): 

 

𝐾(𝑡) =
1

𝑛 − 1
𝑆

  

∑ 𝑛(𝑡|𝑝𝑖)
𝑛
𝑖=1

𝑛
 

(11) 

Where     n = number of point events 

                S = Length of subnetwork (Lixel) 

                n(t|pi)= The number of point events in the shortest 

network distance between the point event t and pi. 

 

In this method, Monte Carlo simulation is used to evaluate the 

spatial pattern of point events in the network space. In order to 

verify the clustering of point events, observations of the Network 

K-Function and mean expected values are compared. If the 

observations of the Network K-Function are higher than the 

expected values, then the set of point events is in the cluster 

distribution and the complete spatial randomness (CSR) 

hypothesis will be rejected. Otherwise, if the observations of the 

Network K-Function are lower than the expected values, then the 

set of point events is in the dispersion distribution (Ni et al., 2016) 

 

3. RESULTS 

3.1   NKDE method 

 

In order to implement the NKDE method, the threshold to check 

the connection segments of the road network is set to 0.001 

meter. Also, the length of Lixels is set to 10 meters and the search 

radius is set to 100 meters (Xie and Yan, 2008; Steenberghen et 

al., 2010; Erdogan, 2015). Figure 7, illustrates the vulnerability 

map of damage car accidents with the two kernel functions based 

on the density parameter of the damage car accidents. The 

density-based maps are classified into five output classes 

according to standard deviation classification method which is 

shown qualitatively from very low density to very high density. 

 

  

                (a) (b)   
Figure 7. The output of the NKDE method (a) continuous kernel function (b) discontinuous kernel function 

 

According to Table 1, for damage car accidents the NKDE 

method with continuous kernel function identifies more density  

segments than those of the NKDE method with discontinuous 

kernel function in the road network. 
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Kernel type Total length of the density 

segments (Meter) 
Total length of the road 

network (Meter) 

Percentage of density segments 

in road network 

Continuous kernel function 250279.83 725888.12 34.47 

Discontinuous kernel function 220583.76 725888.12 30.38 

Table 1. Comparison of the length density segments resulting from the NKDE method with the two kernel functions  

 

3.2   Network-Constrained Getis-Ord Gi* Statistics 

To implement the Network-Constrained Getis-Ord Gi* statistics, 

density values resulting from NKDE method is used as an 

attribute for computing the Network-Constrained Getis-Ord Gi* 

statistics. In order to define the weight matrix, the distance-based 

method is used. The threshold for computing the spatial weight 

was chosen 300 meters based on highest Z-Score. Also to detect 

accident-prone segments at 99% confidence level, the simulation 

count for Monte Carlo simulation is set to 999 times. According 

to Table 2, the 10 accident-prone segments resulting from the 

integration of NKDE method and Network-Constrained Getis-

Ord Gi* statistics with two different kernel functions are 

prioritized according to the Z-Score statistical parameter. 

Continuous kernel function Discontinuous kernel function 

Order Segment 

number 

Density 

value 

(Mean) 

Z-Score 

(Mean) 

Number 

of 

Lixels 

District order Segment 

number 

Density 

value 

(Mean) 

Z-Score 

(Mean) 

Number 

of 

Lixels 

District 

1 5943 684.99 37.60 27 niayesh 1 5943 633.98 34.60 27 niayesh 

2 2146 528.25 26.61 16 niayesh 2 2146 466.42 23.28 16 niayesh 

3 6512 405.77 20.79 36 niayesh 3 6512 350.35 17.55 36 niayesh 

4 1166 325.22 14.62 26 niayesh 4 5530 288.98 14.62 12 niayesh 

5 5530 245.89 12.54 12 niayesh 5 1166 303.82 13.92 26 niayesh 

6 2833 262.18 10.50 26 niayesh 6 1167 207.23 12.14 25 niayesh 

7 4646 151.41 9.58 13 niayesh 7 1786 193.87 9.80 12 niayesh 

8 4272 131.85 8.28 22 niayesh 8 2833 227.64 9.01 26 niayesh 

9 2223 124.57 8.13 13 Kurdistan 9 4646 135.35 8.83 10 niayesh 

10 1167 127.36 7.78 25 niayesh 10 3526 157.54 7.58 21 hemmat 

Table 2. Comparison of the accident-prone segments resulting from the integration of NKDE method and Network-Constrained 
Getis-Ord Gi* statistics with two different kernel functions 

 

The classification of the Z-Score and P-Value statistical 

parameters for identify of the accident-prone segments is based 

on Table 3 (Mitchell, 2005). Figures 8 and 9, represent the 

vulnerability map of the accident-prone segments resulting from 

the integration of NKDE method and Network-Constrained 

Getis-Ord Gi* statistics based on the Z-Score parameter at 99%  

confidence Level. The Z-Score parameter by the NKDE method 

and Network-Constrained Getis-Ord Gi* with Equal-split 

continuous kernel function were in the interval [−2.32, 51.56] and 

the Z-Score calculated by the NKDE method and Network-

Constrained Getis-Ord Gi* with Equal-split discontinuous kernel 

function were in the interval [−2.28, 48.66]. 

 

Z-Score P-Value Gi
∗ Confidence levels (%) 

< -1.65 or > +1.65 < 0.1 +/-1.0 90 

< -1.96 or > +1.96 < 0.05 +/-2.0 95 

< -2.58 or > +2.58 < 0.01 +/-3.0 99 

Table 3. P-Values and Z-Scores for detection of accident-prone segments at different confidence levels (Mitchell, 2005) 

 

  

(a)      (b) 
Figure 8. The vulnerability map of the accident-prone segments resulting from the integration of NKDE method (continuous 

kernel function) and Network-Constrained Getis-Ord Gi* statistics based on Z-Score at 99% confidence level (a) 2D (b) 3D 
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(a)  (b) 
Figure 9. The vulnerability map of the accident-prone segments resulting from the integration of NKDE method (discontinuous 

kernel function) and Network-Constrained Getis-Ord Gi* statistics based on Z-Score at 99% confidence level  (a) 2D (b) 3D 

After producing the vulnerability maps of the damage accidents, 

the number of dangerous Lixels (Z-Score >2.58) detected in the 

accident-prone segments of the road network at 99% confidence 

level has been compared. Therefore, according to Table 4, it can 

be verified that the integration of the NKDE method (continuous 

kernel function) and Network-Constrained Getis-Ord Gi* 

statistics at 99% confidence level identifies more dangerous 

Lixels than those of the integration of NKDE method 

(discontinuous kernel function) and Network-Constrained Getis- 

Ord Gi* statistics in the density segments of the road network. 

Also, the length of the accident-prone segments resulting from 

integration of the NKDE method (continuous kernel function) 

and Network-Constrained Getis-Ord Gi* statistics is greater than 

the those of the integration of the NKDE method (discontinuous 

kernel function) and Network-Constrained Getis-Ord Gi* 

statistics. The Z-Score parameter frequency chart for dangerous 

Lixels with the two kernel functions is shown in Figure 10. 

 

 

input Confidence 

level (%) 

Number of 

dangerous Lixels 

in the accident-

prone segments 

Z-Score mean 

for accident-

prone segments 

Total length of 

the accident-

prone segments 

(Meter) 

Total length of 

density 

segments 

(Meter) 

Percentage of 

accident-prone 

segments in 

density segments 

NKDE 

(continuous) 

99 952 7.17 7501.78 250279.83 2.99 

NKDE 

(discontinuous) 

99 780 7.27 6552.47 220583.76 2.97 

Table 4. Comparison of the results from the integration of NKDE method and Network-Constrained Getis-Ord Gi* statistics with the 

two kernel functions 

 

  
(a)         (b)          

Figure 10. Comparison of Z-Score parameter frequency chart for dangerous Lixels of the accident-prone segments (Z-Score>2.58) 

with the two kernel functions (a) continuous kernel function (b) discontinuous kernel function 
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3.3   Network K-Function method 

In order to implement the network K-function method, the 

number of iterations for Monte Carlo simulation to identify 

clustering of point events in different distance intervals at 99% 

confidence level is set to 999 times. 

 

         Figure 11. Network K-Function Analysis for the  

damage accidents  

 

In Figure 11, the horizontal axis shows the distance range (Meter) 

and vertical axis shows the cumulative number of car accidents. 

Considering that the observations of the Network K-Function 

(blue cure) are higher than the mean expected values (red cure), 

with a 99% confidence interval, the damage car accidents are 

significantly clustered. 

 

4. CONCLUSION 

In this research, NKDE method was used to identify the accident-

prone segments of the road network. The key feature of the 

NKDE method is that the road network is divided into basic 

linear units called Lixel, which is associated with the network 

topology. Due to the change of network topology in the nodes, 

the density of the network nodes is calculated based on the two 

Equal-split continuous and Equal-split discontinuous kernel 

functions. As verified in the NKDE method, along with the 

density of car accidents, the density of the road network has been 

also taken into account. Considering that in the NKDE method 

there is no statistical parameter to prioritize the accident-prone 

segments of the road network, the Network-Constrained Getis-

Ord Gi* statistics was used to prioritize the accident-prone 

segments at 99% confidence level based on the Z-Score statistical 

parameter. It was found that integration of the NKDE (continuous 

kernel function) and Network-Constrained Getis-Ord Gi* 

statistics at 99% confidence level identifies more accident-prone 

segments than those of the integration of NKDE (discontinuous 

kernel function) and Network-Constrained Getis-Ord Gi* 

statistics in the road network. Finally, the Network K-Function 

method was used to investigate the clustering of the damage car 

accidents at different interval scales. The damage car accidents 

in the urban road network space were shown is in the cluster 

distribution. In addition, the random distribution hypothesis of 

the data is rejected. For future research, it is suggested that other 

spatial autocorrelation methods be used to prioritize accident-

prone segments of the road network and compared with the 

Network-Constrained Getis-Ord Gi* statistics in terms of the 

detection of accident-prone segments at different confidence 

levels. 
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