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ABSTRACT: 

 

Over the past decades, non-metric cameras have been utilized in functions with less accuracy requirement or even in precise works 

with the progress of photogrammetric cameras developed technology. One of the reasons to use these kinds of cameras is due very 

much to their lower costs in comparison with the metric ones. Since we have always error in measurements, there is no exception in 

Photogrammetry, which is more in the non-metric cameras than the metric ones. Some of these errors are systematic and the only 

way to cope with them is to model.  So far, many models have been proposed to investigate and modify the behavior of errors. Some 

of these models are linear and some others are non-linear. The number of parameters in each model is different based on the 

complexity of error in each image. Since the picture need to be connected to earth to calculate the calibration parameters of the 

camera, therefore this connection is generally made through points known as the ground control points, and more of these control 

points are needed in the complex models with more sophisticated calculations. Using a method to reduce the need for less control 

points and achieving a suitable accuracy is beneficial due to the high cost and time-consuming process of preparing the control 

points. One of the methods that could be used in solving the calibration equations is the Particle Swarm Optimization (PSO) 

algorithm. Images of a few targets are captured in this research by a non-metric camera and the collinearity equations are used by 

adding further correction terms in order to calibrate the camera. The results of PSO method are compared with the classical 

mathematical methods in each step by reducing the number of control points, which indicated that the performance of using the PSO 

algorithm is better than the conventional proration methods in reducing the number of points and could be utilized in projects 

suffering from the lack of control points. 
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1. INTRUDUCTION 

Photogrammetric images, like other observations, have errors. 

One of the sources of this error can be camera-related errors 

(Remondino, Fraser, & Sciences, 2006). In order to 

communicate between the image and the ground, it is necessary 

to identify and model the error behaviour in order to predict and 

model the error handling. How to model these errors is one of 

the issues we have always been looking for, and we have always 

been looking for a precise method despite its simplicity. 

Therefore, in any photogrammetric project, camera calibration 

is important. Camera calibration means estimating the internal 

and external parameters of the camera model. The solution to 

the calibration problem is to use the relationships between the 

3D coordinates of space, camera, and image to extract these 

parameters. Many methods have been introduced for 

calibration, each depending on the type of system requirements, 

imaging environment, accuracy, speed and facilities. The 

methods are usually based on the pattern dimensions used in the 

method (Duane, 1971; Fraser & Sensing, 2013; Luhmann, 

Fraser, Maas, & Sensing, 2016; Z. J. I. T. o. p. a. Zhang & 

intelligence, 2000).  In this section, we will briefly review the 

performance of methods and then discuss computational and 

artificial intelligence methods. 

 

1.1 An Overview of Calibration Methods 

The first batch uses basic camera calibration methods, which are 

traditional or classic methods, and use a 3D object that has 

orthogonal plates (such as a box) and has small squares like a 

chessboard on their faces. The algorithms presented for this 

method are of two types (Z. Zhang, 1999): 1- Direct calculation 

of parameters, 2- Using projection matrix 

The third category is the use of one-dimensional objects, which 

are actually thin and tall objects such as television antennas, 

rulers and thin wood (Z. Zhang, 2004). The fourth category of 

calibration methods is self-calibration or non-dimensional 

calibration, only by calibration between surrounding images (Ji 

& Dai, 2004). We will need to calibrate each project separately. 

Therefore, Calibration on the Job and Self-Calibration methods 

will be more important in close range photogrammetry (Brown, 

1976). 

 

1.1.1 Direct Linear Transformation (DLT): The 

mathematical model of the DLT is considered as the basic 

equation of the calibration predecessor as the object space and 

image linker (Zhizhou & Scholar). The mathematical equation 

of the DLT, along with the additional parameters used for 

external calibration and justification, is formulated as equations 

1 and 2 (Chen, 1997): 
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Where: 

 

 

 
 

 
 

Where X, Y and Z are the three-dimensional coordinates of the 

point in the object space in the photo coordinate system. By L1, 

..., L11 eleven transformation parameters establish the relation 

between the object point and the image point. Extra parameters, 

in addition to accurately calculating external justification 

parameters, model systematic errors or mathematical model 

defects for a non-metric camera. These parameters bring the 

equations closer to the mathematical equations of an ideal 

camera in order to correct the mathematical equations of a non-

metric camera. These parameters are defined as the relationship 

of 3 and 4 (Zhizhou & Scholar). By linearizing Equations 1 and 

2 with additional parameters and 11 unknown DLT transforms 

and solving least squares, the external justification parameters 

and camera calibration parameters are calculated. 

 

1.1.2 Collinearity equations: In analytical photogrammetry 

collinearity equations are used to communicate the object space 

and the photographic space. The mathematical model of the 

collinearity equations along with the additional parameters is a 

suitable mathematical model for correcting systematic errors 

and increasing the accuracy of the bundle adjustment. The 

mathematical model is described in Equations 5 and 6. 

 

 
Where ∆xp and ∆yp are corrections along the x and y axes. 

 

 

Various types of additional parameters are proposed (Brown, 

1976) and (Moniwa, 1977) and so on. 

Generally, the calibration parameters of a camera (except 

internal orientation) are: 

 

Radial distortion model: 

 

 

 

 
 

Where k1, k2 to kn are the radial distortion parameters of the 

lens. 

 

Tangential Distortion Model: 

 

 

 
 

Where p1 and p2 are the parameters of the tangential lens 

distortion. 

 

Affinity Distortion Model: 

 

 
 

 
 

Where A and B are the parameters of the film dimension change 

along the x and y axes. By omitting the higher terms, we will 

have: 

 

 

 
 

In each step, a computation is performed to adjust the unknown 

values using control points. One of the most common methods 

of adjustment is the least squares method. 

 

1.2 Least Squares adjustment 

The concept of least squares estimation was introduced by 

Legendre and Carl Friedrich Gauss in the early 1800s 

(Bretscher). Based on the least square’s method, since 

observations and measurements always have errors, we cannot 

arrive at the actual amount of observations. In this case, by 

minimizing sum of the square of the errors, we arrive at a 

suitable approximation for the observations (Leon, Bica, & 

Hohn, 1980). The least squares problem can generally be 

defined as a set of linear equations. Given the set Ax = b with 

dimensions m × n such that m> n we cannot generally expect to 

obtain the vector x∈Rn of the equation Ax = L. Instead, we can 

(1) 

(2) 

(3) 

(4) 

(5) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 
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reach x where Ax is close to L. In relation 18 this difference is 

calculated.  

V = L – Ax 

The difference between Ax and b is as follows: 

| L – Ax | = | V | 

We want to set the vector x such that | V | Minimize. Minimize | 

V | It is equivalent to minimizing || V ||2. The estimated value of 

the unknowns is denoted by x, and the answer is obtained by the 

least square’s method (Boyd & Vandenberghe, 2015).  

 

1.3 Artificial Intelligence Based Techniques 

Optimization is an important part of our daily lives. Many 

engineering and other science issues have parameters that aim 

to provide the most desirable result (Van Den Bergh, 2001). 

The purpose of optimizing is to define the best solution to 

bound problems. In the past decades, several researchers have 

proposed solutions for linear and nonlinear optimizations 

(Konar, 2006). Nowadays, using classical methods and 

computational intelligence has many applications in 

optimization problems. One of the methods of computational 

intelligence is the particle swarm algorithm.  

 

1.3.1 Particle Swarm Optimization: The particle swarm 

algorithm, which originates from social-psychological theories, 

is used as a powerful solution to nonlinear and 

multidimensional problems (Kennedy & Eberhart, 1997). The 

initial idea of particle swarm was from Kennedy (social 

psychologist) and Eberhart (electrical engineer) whose goal was 

to produce computational intelligence using simple theories of 

social interaction rather than purely individual cognitive 

abilities. A number of scientists have created simulations based 

on interpretations of birds and fish. The initial particle swarm 

algorithm (Eberhart & Kennedy, 1995) evolved from 

simulations of social behavior of birds described by (Reynolds, 

1987) and (Heppner & Grenander, 1990). In PSO, members are 

known as particles that search for a multidimensional space to 

find the desired location (Sierra & Coello, 2005). The PSO 

algorithm works by repeatedly searching for a region based on 

its previous best particle success, its previous best neighbor 

success, its current particle position and its previous velocity 

(Mendes, Kennedy, & Neves, 2004). The concept of particle 

swarm optimization is that at each time step, the velocity of 

each particle shifts to pbest and gbest, and the acceleration is 

weighted at random with pbest and gbest (Eberhart & Kennedy, 

1995). The variable g is defined as the value of the index of the 

best current performance of any particle in the neighborhood. 

Therefore, the original version of particle motions is represented 

by (Kennedy & Eberhart, 1997).  

 

 

PSO algorithm flowchart 

Figure 1 illustrates the six steps the particles are trying in the 

PSO algorithm to find appropriate answers in the search space.   

 

 
 

Figure 1. The PSO algorithm flowchart 

Parameters 

The basic PSO described above has a few parameters that need 

to be determined. One of these parameters is population size, 

which is often empirical and depends on the size and 

complexity of the problem. Parameters ϕ1 and ϕ2 are defined by 

random forces for the best personal pi and the best pg in the 

neighborhood, and are often referred to as acceleration 

coefficients. The behavior of a PSO varies substantially with 

values of ϕ1 and ϕ2. In the initial PSO studies, the value was ϕ1 

= ϕ2 = 2.0 (Das, Abraham, & Konar, 2008).  

 

 Contraction coefficient: In 2002, Clerc and 

Kennedy introduced a compatible PSO model that uses a new 

parameter called the Contraction coefficient. It also ignores the 

weight of inertia w and the maximum velocity Vmax 

(Ratnaweera, Halgamuge, & Watson, 2004).  

 

 

Where: 

 

 
 

When using the Clerc's control method, the value of ϕ is usually 

4.1. ϕ1 = ϕ2 and the constant coefficient χ is about 0.7298. 

Therefore, the previous velocity is multiplied by 0.7298 and 

each of the two (p - x) is multiplied by 1.49618 ≈ 0.7298 × 

2.05. 

 

 Inertia weight: The inertia weight w controls 

the movement of the particles (Das et al., 2008). (Shi & 

Eberhart, 1998) have had several research papers on w that 

show that when Vmax is not small (<3) an inertial weight of 0.8 

is a good choice.  

 

 

 Maximum speed: The maximum velocity 

(V_max) means the maximum number of changes in its position 

during each iteration. 

 

 Papulation size:  A common method in PSO is 

to limit the number of particles to 20 to 60 particles (Kennedy 

(19) 

(20) 

(21) 

(22) 
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& Eberhart, 1997; Shi & Eberhart, 1998). Eberhart and Shi 

(1998) showed that particle size has little effect on PSO 

performance.  

 

 Reflection method: The reflection method 

reflects the position of a particle that crossed the search space 

boundary. (Mostaghim, Halter, & Wille, 2006). Figure 2 

illustrates this idea in a two-dimensional space.  

 

 

 
Figure 2. Reflection - A particle from the excluded range is then 

moved to a new position inside the search space. 

 

 

 
 

1.4 Artificial Neural Networks 

Artificial neural networks are a mathematical model of the 

biological system (Sharma, 2012). Which is basically inspired 

by the human nervous system (Dayhoff, 1990). Nervous 

systems are an algorithm for optimizing and learning freely 

based on concepts inspired by research into the nature of the 

brain. The brain organizes its structural components using a 

feature known as a neuron, making it perform much more 

computationally faster than a digital computer (Katiyaar & 

Sharma).  

 

Neuron 

The neuron is the smallest unit of an artificial neural network 

that forms the function of neural networks (Fausett, 1994).  

 
Figure 3. The structure of a neuron 

 

The artificial neural network acts as a function that captures the 

number of input neurons and outputs the number of output 

neurons (Hagan, Demuth, Beale, & De Jesús, 1996). Artificial 

neural networks are a way of approximating functions and 

predicting the future states of a system. This feature of neural 

networks is used in many applications (Chansarkar, 2000).  

 

Artificial neural network architecture 

The neural network consists of at least one input layer and one 

output layer. Depending on the complexity of its architecture, it 

contains one or more hidden layers. The input layer is user-

defined data that enters the neural network. The output layer is 

where the final results of the network are sent. Neural networks 

can have different architectures. A widely used architecture is 

back-propagation. (Merwin, Cromley, Civco, & Science, 2002). 

 

Weight 

The weights in the artificial neural network are estimated using 

training algorithms. This algorithm randomly selects the initial 

weights and compares the calculated output with the actual 

output. The difference between the calculated output and the 

actual output is estimated using the mean squared error. After 

all observations have been trained on the network, the observed 

error rate is distributed among the different nodes to keep the 

network error rate low (Nguyen & Widrow, 1990). 

 

2. MATERIAL AND METHOD  

2.1 Image Specification 

Figure 4 is used to evaluate the different calibration methods 

proposed in this study. To this end, Target's terrain coordinates 

were first obtained by the Australis program, assuming that 

these points were error-free, 20% of them were eliminated for 

evaluation, and the remainder of the model training process was 

performed.  
 

 
Figure 4. Study image 

 

 

2.2 Artificial Neural Network Modeling 

Multilayer perceptron neural network in MATLAB software 

was used for geometric modeling of image. In this process, data 

inputs are image points with x and y coordinates, and data 

outputs are ground 3D points with X, Y, and Z coordinates. 

According to Figure 5 the architecture of this network is that it 

has two layers with tansig and purelin transfer functions.  

 

 
Figure 5. Artificial neural network architecture in this study 
 

For network training, 60% of data were used for training data, 

40% for data validation. In the first step, each of the validation 

and training data was randomly selected by the network and 

then maintained in the next steps. And this structure was used 

every time to evaluate the amount of network error and 

performance. In the next step, which was to obtain the 

appropriate number of neurons, the number of neurons was 

calculated by try and error. It was evaluated for the number of 
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neurons from 2 to 30 neurons. To do this, each network 

architecture was trained 20 times and the RMSE value of the 

test data was calculated each time. Because the bias weights and 

components in each case are determined by the network itself, it 

may be inaccurate at some stages. For this purpose, at the end of 

the network learning process, for each situation, the 10 RMSEs 

that had the highest values were discarded, and thus in each 

network architecture, 10 RMSEs were obtained that were most 

similar to the actual RMSE value of that architecture. Other 

network settings are as follows: 

Train Function: trainlm 

Performance Function: mse 

Maximum Epochs:1000 

Performance Goal:0 

Minimum Gradient: 1e-07 

Maximum Validation Checks:6 

Mu:0 .001 

Mu Decrease Ratio:0 .1 

Mu Increase Ratio:10 

Maximum mu: 1e+10 

 

2.3 Modeling using the PSO method 

The cost function 

Due to the least squares method, the objective is to estimate the 

unknowns by minimizing the squares of the errors. Therefore, 

the cost function used in the PSO algorithm is to minimize the 

value of VT W V. Here V is calculated by putting the DLT 

equation on one side. Since the value is not equal to zero, the 

second soft of this difference is introduced as a cost function. 

Weights were also taken for all observations constant and equal 

to one.  

 

The number of decision variables 

Here, since the objective is to estimate the two-dimensional 

coordinates of points, so the number of decision variables is 

obtained from the following relation: 

2x11 = number of decision variables 

 

The range of variables 

Determining the range of variables in the use of PSOs to 

estimate the coordinates of points depends on the amount of 

distortion and error in the image. Since the parameters L4 and 

L8 are related to the transfer, these two parameters are always 

slightly higher than the other parameters. Taking a range for all 

parameters causes it to never converge. Therefore, in this 

research, a technique was used to make convergence very fast. 

For this purpose, each of the above coefficients was scaled by 

the parameter k to fit the other coefficients.  

 

Maximum iterations and population size 

These parameters are empirical and can be obtained by applying 

the algorithm several times. 

 

Inertia weight 

As mentioned earlier, studies show that by applying the χ 

parameter to the inertia weight, the algorithm performs better.  

 

Coefficients C1 and C2 

According to studies in this field, its values can be obtained 

through the following relationships: 

𝜙1=𝜙2=2 𝐶1=χ × 𝜙1 𝐶2=χ × 𝜙2 

 

Wdamp 

This value is empirical as well, with the algorithm running 

several times to obtain its proper value. 

 

Maximum and minimum speed 

The appropriate value of maximum velocity in this paper is 

calculated according to the following relation: 

𝑉𝑚𝑎𝑥=𝑘(𝑉𝑎𝑟𝑚𝑎𝑥− 𝑉𝑎𝑟𝑚𝑖𝑛) 

Where k is an experimental value. Reflective methods have also 

been used to prevent problems from moving particles out of 

range. 

 

3. RESULT AND DISCUSSION 

Initially the coordinates of each point were controlled by the 

CAD output of the Australis program.  

 

 
Figure 6. Location of control points in the space Cad 

 

Then the corresponding image and ground coordinate values 

were obtained. The following results were obtained by 

evaluating the models by test points.  

 
Coefficient L1 L2 L3 L4 L5 L6 

value 0.263329 
-

0.25813 
-

0.00256 258.9444 0.077049 
-

0.07685 

L7 L8 L9 L10 L11 

0.001407 76.62051 0.001027 -0.001 0.0000059 

 
 

Table 1. Estimation of DLT unknown coefficients with least 

squares solution 

 
Coefficient L1 L2 L3 L4 L5 L6 

value 0.263329 
-

0.25813 
-

0.00256 258.9502 0.077049 
-

0.07685 

L7 L8 L9 L10 L11 

0.001407 76.62052 0.001027 
-

0.00095 0 

 
 

Table 2. Estimation of DLT unknown coefficients by PSO 

 

Method LS PSO ANN 

RMSE 0.57 0.58 7 

Table 3. RMSE value of test points 

 

Also, these methods were calculated in different states of the 

number of points, the results of which are shown in Figure 1. 
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Figure 7. RMSE of methods with variable number of points 

 
As can be seen in the case of the number of control points 

greater than 1, all three methods have the same efficiency. And 

then the neural network shows a high dependence on the 

number of control points. At fewer points, the PSO algorithm 

shows better robustness. This is an indication of its strength 

against the number of points. The above results show that the 

estimation of DLT equation coefficients by PSO method is very 

accurate and in complex equations, the PSO method is very 

suitable. The results of artificial neural networks showed that 

this model has a lower accuracy than the DLT method but 

overall its accuracy is good. Due to the high dependency of 

artificial neural networks on the number of training points, 

some applications may not be economically viable.  
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