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ABSTRACT: 

 

Updating digital maps is a challenging task that has been considered for many years and the requirement of up-to-date urban maps is 

universal. One of the main procedures used in updating digital maps and spatial databases is building extraction which is an active 

research topic in remote sensing and object-based image analysis (OBIA). Since in building extraction field a full automatic system 

is not yet operational and cannot be implemented in a single step, experts are used to define classification rules based on a complex 

and subjective "trial-and-error" process. In this paper, a decision tree classification method called, C4.5, was adopted to construct an 

automatic model for building extraction based on the remote sensing data. In this method, a set of rules was derived automatically 

then a rule-based classification is applied to the remote sensing data include aerial and lidar images. The results of experiments 

showed that the obtained rules have exceptional predictive performance. 
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1. INTRODUCTION 

Some of the previous researches in object extraction focused on 

pixel based image fusion and classification (Bigdeli et al. 2013, 

Bigdeli et al. 2016, Bigdeli et al. 2017, Pahlavani et al. 2017, 

Bigdeli et al. 2014). However, in recent decades, object-based 

image analysis (OBIA) create a new perspective in remote 

sensing image processing. Object-based classification is the 

approach that classifies no single pixels but groups of pixels 

called segments. In Object-based classification, remote sensing 

experts use a wide range of features to interpret images such as 

spectral information, texture, geometry, spatial relations, etc. 

However, the quality of a classification is not always increased 

by inserting a higher number of features (Bruzzone and Serpico 

2000). Consequently, the quality of classification must be based 

on a subset of features identified due to their ability to 

recognize the classes and also depends on the classification 

method chosen by the expert. Traditionally, the classification is 

performed through the definition of rules by experts (e.g. a 

“Building” segment is a segment with a mean DSM value 

higher than a threshold). This process is usually done visually 

by an expert through a “trial-and-error” process and thresholds 

were derived empirically (Arvor, Saint-Geours et al. 2013). 

Therefore, the final accuracy of the classification depends too 

much on the expert knowledge and maybe two experts will 

define different rules for a same class and thus produce different 

maps. Therefore, the use of an automatic method to extract the 

rules seems essential.  

From a decision tree model, the C4.5 decision tree algorithm, 

which is proven to be efficient, accurate and robust by many 

researches can produce a set of rules to make predictions (Ren, 

Zargham et al. 2006). With the aim of building extraction, this 

method is used in this paper to generate rules automatically 

from remote sensing data without expert intervention.  

In the last decades, considerable attempts have been made to 

develop various methods for the detection of different types of 

objects in aerial and satellite images, especially buildings 

(Lhomme, He et al. 2009, Ahmadi, Zoej et al. 2010, Akçay and 

Aksoy 2010, Benedek, Descombes et al. 2011, Stankov and He 

2014, Sun, Pahlavani et al. 2017, Zhang et al. 2018, Xu, Wu et 

al. 2018, Shi, Mao et al. 2019). With the increasing availability 

and wide utilization of high resolution imagery, object-based 

image analysis (OBIA) has become a new approach or paradigm 

to classify or map satellite images into meaningful objects (Teo 

and Chen 2004, Walter 2004, Blaschke 2010, Pang, Hu et al. 

2014, Toure, Stow et al. 2016, Li, Zhang et al. 2018, Gavankar 

and Ghosh 2019). OBIA rests upon two interrelated 

methodological pillars, i.e. (1) segmentation for nested, scaled 

representations; (2) rule-based classifiers for making explicit the 

required spectral and geometrical properties.  

Image segmentation is the main step and a necessary 

prerequisite for extracting building blocks. Numerous image 

segmentation techniques have been developed and applied in 

remote sensing image analysis, such as (Baatz and Schäpe 2000, 

Benz, Hofmann et al. 2004, Blaschke, Burnett et al. 2004, Gao, 

Mas et al. 2011, Drăguţ, Csillik et al. 2014, Ming, Li et al. 

2015, Chen, Zheng et al. 2018, Huang, Meng et al. 2019). 

Some studies, use rule-based classification to extract objects but 

in many cases the experts are then used to define classification 

rules, based on a subjective process by advising which features 

to select and which rules to apply (Liu, Wang et al. 2005, Yu, 

Gong et al. 2006, Zhou, Troy et al. 2008, Bouziani, Goita et al. 

2010). In order to achieve more robust results in OBIA, it is 

necessary to extract rules by automatic methods. In some 

studies, rule-based via automatic methods are applied. For 

example, (Ren, Zargham et al. 2006, Zhang and Zhu 2011, 

Jumlesha, Babu et al. 2012, Arvor, Saint-Geours et al. 2013, 

Ziaei, Pradhan et al. 2014).  

 

 

2. STUDY AREA AND DATA SELECTION 

The ISPRS benchmark dataset of Potsdam (Germany) is an 

open asset dataset.  
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  a) Aerial photograph 

 

  b) DSM 

 

  c) NDSM 

 

  d) Ground truth 

Figure 1. The Potsdam dataset contain: a) true colour aerial 

image (RGB and IR), b) DSM, c) NDSM and d) 

corresponding ground truth   

This data contains 38 patches, patch 4_11 is used in this paper 

which consists of the high-resolution ortho-rectified aerial 

image that has 4 channels: red, green, blue, and near-infrared 

bands. Digital surface model (DSM) is generated by dense 

image matching with pixel size 6000 × 6000 at the spatial 

resolution of 5 cm. The ground truth labels are obtained by 

manual labelling (Sun, Zhang et al. 2018). In this paper NDSM 

is derived using an automatic filtering (Pahlavani, Amini 

Amirkolaee et al. 2017). Figure 1 illustrates this dataset. 

3. METHODOLOGY AND EXPERIMENTS 

Extraction of urban buildings with different colours, structures 

and textures is difficult for different methods, even the object-

based ones, to obtain a satisfactory result. Figure 2 shows the 

overall structure of proposed method for detection and 

extraction of buildings. To describe the proposed method, at 

first the study area was introduced and the suitable data were 

selected in Section 2. Then the procedure of segmentation is 

described in Section 3.1 and effective features are extracted in 

Section 3.2. Collecting train and test data is described in 

Section 3.3, then rules are produced using decision tree 

algorithm in Section 3.4. Finally according to the obtained 

rules, an object and rule-based classification methodology is 

applied to the dataset (Section 3.5) and is evaluated (Section 

3.6). 

 

Figure 2. Flowchart of the proposed methodology 

3.1 Segmentation 

Image segmentation is the process of partitioning a digital 

image into a sets of pixels (segments, also known as super 

pixels).  This process is the first step in object-based image 

analysis and its accuracy affects the overall result (Li, Zhang et 

al. 2018). The multiresolution segmentation algorithm is 

probably the most popular one for the purpose of the 

delineation of relatively homogeneous and meaningful objects. 

This procedure minimizes the average heterogeneity and 

maximizes their respective homogeneity for a given number of 

image objects, (Li, Zhang et al. 2018). The performance of 

segmentation is controlled by the user defined parameters which 

are scale, shape and compactness. Users have to repeatedly 

select a set of segmentation parameters and test them through a 

trial-and-error process, until a satisfied segmentation result is 

achieved (Tong, Maxwell et al. 2012). 

After several experiments, appropriate segmentation parameters 

were determined. They are set as 30, 0.5 and 0.5 respectively. 

The visual results of the data in two scales are depicted in 

Figure 1.  

 

 

 

Figure 1. Multiresolution segmentation results in two scales. 

3.2 Extraction of features 

After the segmentation process, spectral and spatial features of 

the images are extracted. Indeed good classification system is 

conductive to selecting appropriate features or combinations of 

feature (Li, Zhang et al. 2018). Spectral features are related to 

all values of a segment, including metrics for maximum and 

minimum values of pixels or texture properties, while spatial 

features measure the shapes of objects-based, such as length and 

width. 

In Table 1 and  

3.3 Collecting train and test data  
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Here is two classes: Building and Not_building. To collect 

train and test data the ground truth image is used. Some 

segments are selected randomly to label the training data and 

the corresponding feature values in that segments are selected 

as training values. 

In this research, about 5% of pixels in each area were chosen as 

the training inputs and the rest (about 95%) were selected as 

testing samples. 

Table 2 common spectral and spatial features extracted from 

the segments are listed, respectively. for more information 

about features visit (Körting, Fonseca et al. 2013). 

Table 1. Spectral features extracted from the segments 

Name Description 

Amplitude 
Defines the maximum pixel value 

minus the minimum pixel value. 

Dissimilarity 

Measures how different are the 

Gary Level Co-occurrence Matrix 

(GLCM) elements. 

Entropy 

Measures the disorder in an image. 

When the image is not uniform, 

many GLCM elements have small 

values, resulting in large entropy. 

Homogeneity 
Assumes higher values for smaller 

differences in the GLCM. 

Mean 
Returns the average value for all N 

pixels inside the region. 

Mode 
Returns the most occurring value 

for all N pixels inside the region.  

standard 

deviation 

Returns the standard deviation of 

all N pixels 

NDVI 
normalized difference vegetation 

index 

SAVI Soil-adjusted vegetation index 

DSM 

An elevation model that includes 

the tops of buildings, trees, and 

any other objects. 

NDSM 
difference between DSM and 

Digital Terrain Model (DTM) 

 

3.3 Collecting train and test data  

Here is two classes: Building and Not_building. To collect 

train and test data the ground truth image is used. Some 

segments are selected randomly to label the training data and 

the corresponding feature values in that segments are selected 

as training values. 

In this research, about 5% of pixels in each area were chosen as 

the training inputs and the rest (about 95%) were selected as 

testing samples. 

Table 2. Spatial features extracted from the segments 

Name Description 

Angle 

Represents the main direction of 

a region. It is retrieved by the 

angle of the biggest radius of the 

minimum circumscribing ellipse. 

Area 

Returns the area of the region. 

When measured in pixels is 

equal to N. 

Box area 
Returns the bounding box area 

of a region, measured in pixels. 

Circle 

Relates the areas of the region 

and the smallest 

circumscribing circle. R stands 

for maximum distance between 

the centroid and all vertices. 

Elliptic fit 

Finds the minimum 

circumscribing ellipse to the 

region and returns the ratio 

between the area and 

the ellipse area. 

Fractal 

dimension 

Returns the fractal dimension of 

a region. 

Gyration 

radius 

Equals the average distance 

between each pixel position in 

one region and its centroid. 

Smaller 

values stand for regions similar 

to a circle. 

Perimeter 
It is the amount of pixels in the 

region’s border 

Perimeter area 

ratio 

Is the ration between the regions 

are and the minimum rectangle 

outside the region. Higher values 

stand for regions similar to a 

rectangle. 

Rectangular fit 

Is the ration between the regions 

are and the minimum rectangle 

outside the region. Higher values 

stand for regions similar to a 

rectangle. 

Width 
It is the width of the region’s 

bounding box. 

 

3.4 Rule Extraction 

Decision tree, one of popular classification methodologies, is 

capable of classifying a dataset, which is defined by several 

features. In classification a particular feature begins at the root 

node, and the appropriate branch to a descendent node is 

followed. This procedure is repeated until a leaf node is 

reached, which has a class label. It trying to create a simple and 

compact tree with few nodes and deciding which attribute 
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should be used to split the training data set at each node such 

that it can create a simple model that explains the data 

appropriately. The C4.5 decision tree algorithm is considered to 

be a robust, efficient and accurate algorithm capable of 

generating simple and effective decision trees from which 

classification rules can be extracted (Ren, Zargham et al. 2006). 

C4.5 adopts entropy impurity and automatically selects the 

attribute that provides the highest information gain ratio as the 

splitting attribute such that the splitting attribute can partition 

the data set with the best improvement on purity. The equations 

for computing gain ratio are as follows (Han and Kamber 2006, 

Nugroho, Adji et al. 2018): 

 

( )
( )

( )A

Gain A

SplitI
GainRa

nfo
tio A

D
             (1) 

where  

 A = refer to an attribute 

 D = refer to a dataset 

 Gain(A) = gain of each attribute 

 SplitInfo A(D) = split attribute information 

  

SplitInfo A (D) can be calculated as follows:  

 

2

1

( ) log
v

j j

A

j

D D
SplitInfo D

D D

 
    

 
 

      (2) 

 

where 

 v = the number of classes 

 D = the number of frequencies of the data instance 

 Dj = the number of frequencies in the j-th attribute 

 

The equation for finding the gain is as follows: 

 

( ) ( ) ( )AGain A Info D Info D          (3) 

 

where  

 Info (D) = the expected information needed to 

classify a tuple in D. 

 InfoA (D) = the expected information required to 

classify a tuple from D based on the partitioning 

by attribute A. 

  

Info(D) and InfoA (D) have been expressed in equations (4) and 

(5), respectively: 

 

2

1

( ) log ( )
m

i i

i

Info D p p


          (4) 

1

( ) ( )
v

j

A j

j

D
Info D Info D

D

        (5) 

 

where  

 pi = the nonzero probability that an arbitrary tuple in 

D belongs to class Ci. 

 

 

Figure 2. C4.5 decision tree classification model 

Table 3. Extracted rules from decision tree 

Rule No. Rule Description 

Rule 1 
IF NDSM> 28.786 & NDVI > 0.103 & Shape_Index > 0.097 

then Not building 

Rule 2 IF NDSM> 28.786 & NDVI > 0.103 & Shape_Index ≤ 0.097 & 

NDVI > 0.260 then Not building 

Rule 3 
IF NDSM> 28.786 & NDVI > 0.103 & Shape_Index ≤ 0.097 

& NDVI ≤ 0.260 then Building   

Rule 4 IF NDSM> 28.786 & NDVI ≤ 0.103 & DSM> 44.258 then 

Building 

Rule 5 IF NDSM> 28.786 & NDVI ≤ 0.103 & DSM≤ 44.258 & 

Sum_Blue > 0.090 & DSM> 39.322 then Building 

Rule 6 
IF NDSM> 28.786 & NDVI ≤ 0.103 & DSM≤ 44.258 & 

Sum_Blue > 0.090 & DSM≤ 39.322 & Amplitude_Blue > 0.311 

then Not building 

Rule 7 
IF NDSM> 28.786 & NDVI ≤ 0.103 & DSM≤ 44.258 & 

Sum_Blue > 0.090 & DSM≤ 39.322 & Amplitude _Blue≤ 0.311 

& NDSM> 62.477 & NDVI > 0.012 then Not building 

Rule 8 
IF NDSM> 28.786 & NDVI ≤ 0.103 & DSM≤ 44.258 & 

Sum_Blue > 0.090 & DSM≤ 39.322 & Amplitude_Blue ≤ 0.311 

& NDSM> 62.477 & NDVI ≤ 0.012 then Building 

Rule 9 
IF NDSM> 28.786 & NDVI ≤ 0.103 & DSM≤ 44.258 & 

Sum_Blue > 0.090 & DSM≤ 39.322 & Amplitude_Blue ≤ 0.311 

& NDSM≤ 62.477 then Building 

Rule 10 IF NDSM> 28.786 & NDVI ≤ 0.103 & DSM≤ 44.258 & 

Sum_Blue ≤ 0.090 & Box_area > 0.150 then Building 

Rule 11 IF NDSM≤ 28.786 & Ratio_Green > 0.757 & Sum_Green> 

0.080 then Building 

Rule 12 IF NDSM≤ 28.786 & Ratio_Green > 0.757 & Sum_Red≤ 0.080 

then Not building 

Rule 13 IF NDSM≤ 28.786 & Ratio_Green ≤ 0.757 & NDSM> 18.849 & 

Mode_Green > 0.433 then Building 

Rule 14 IF NDSM≤ 28.786 & Ratio_Green ≤ 0.757 & NDSM> 18.849 & 

Mode_Green ≤ 0.433 then Not building 

Rule 15 IF NDSM≤ 28.786 & Ratio_Green ≤ 0.757 & NDSM≤ 18.849 

then Not building 

The decision tree classification model is constructed from 

training data and is illustrated in Figure 2 then the generated 

rules are listed in Table 3. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W18, 2019 
GeoSpatial Conference 2019 – Joint Conferences of SMPR and GI Research, 12–14 October 2019, Karaj, Iran

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W18-429-2019 | © Authors 2019. CC BY 4.0 License.

 
432



 

3.5 Object and rule-based classification 

According to the obtained rules the dataset is classified in two 

classes, Building (with red colour) and Not_building. The result 

of classification is shown in Figure 3. 

 

 

Figure 3. Extracted building from rule-based classification 

3.6 Evaluation of classification 

In the last step, the classification results are evaluated by 

using the overall accuracy and recall of each class. The overall 

accuracy of the classification was 96.43%, the recall of Building 

class is 93.84% and recall of Not_building class is 99.04% 

which seem that the results are reasonable. 

 

4. CONCLUSION 

In this paper, an automatic framework to perform building 

extraction in object-based classification with remote sensing 

imagery is presented. The major contribution of this work is to 

avoid expert's role in generating rules by using a decision tree 

algorithm therefore the producer of defining appropriate rules 

become easier and more accurate. 
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