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ABSTRACT: 

 

Vegetation mapping is one of the most critical challenges of remote sensing society in forestry applications. Sentinel-1 dataset has the 

potential of vegetation mapping, but because of its limited number of polarizations, full polarized vegetation indexes are not accessible. 

The Sentinel-2 dataset is more suitable for vegetation mapping because a wide variety of vegetation indexes can be extracted from 

them. Handling this large number of vegetation indexes needs a robust feature extractor. Convolutional Neural Networks (CNN) extract 

relevant features through their deep feature layers structure and throw out disturbances from small to large scales. Hence, they can be 

far useful for classifying remote sensing data when the number of input bands is considerable. After pre-processing Sentinel-1 and 2 

datasets and extracting the dual-polarized and optical vegetation indexes, we fed the sentinel-1 vegetation indexes alongside the VV 

and VH sigma Nought bands to a Random Forest (RF) and 1D CNN classifier. Also, 13 spectral features of the Sentinel-2 and the 

extracted indexes like Blue Ratio (BR), Vegetation index based on Red Edge (VIRE) and Normalized Near Infrared (NNIR) were 

imported to a RF and 1D CNN. The classification result of Sentinel-1 data showed that Dual Polarized Soil Vegetation Index (DPSVI) 

is a good indicator for discriminating vegetation pixels. Also, the experiment on the Sentinel-2 dataset using 1D CNN resulted in True 

Positive Rate (TPR) and False Positive Rate of 0.839 and 0.034, respectively.  

 

 

 

1. INTRODUCTION 

Using different remote sensing sensors for object extraction is a 

common issue in classification tasks (Bigdeli, et al. 2015; Bigdeli 

et al. 2014). Classifying and mapping vegetation is a cardinal 

issue for managing natural resources because it plays a 

significant role in influencing global climate change. Also, it 

contains a broad domain of applications such as designing 

strategies for the optimization of urban ecosystems, better-

conserving plant communities and so on (Xie et al.; 2008, Feng 

et al., 2015).  

Various studies have been done in vegetation mapping; some of 

them were predictive models based on statistical or machine 

learning methods (Franklin, 1995). Overall, we can group 

vegetation mapping methods based on using ground truth 

reference to supervised and unsupervised methods. Supervised 

classifiers are widely used since they are more robust than model-

based approaches (Belgiu and Drăguţ, 2016). Recently, 

Convolutional Neural Networks have been successful in 

classifying satellite images due to their ability to omit 

disturbances at different scales (Maggiori et al., 2016; Fu et al., 

2017). 

The Microwave remote sensing applies the radar signal of longer 

wavelength (1mm-1m) and saves the backscatter energy 

transformed to Sigma Nought values (Periasamy, 2018). Various 

studies have applied SAR data to monitor vegetated areas, 

especially sentinel-1 images (Baumann et al., 2018; Eringery et 

al., 2018; Ahmed et al., 2018). So, it seems reasonable to use this 

dataset for mapping vegetation.  

Using of spectral information along with radar data can provide 

more improvement in object classification (Bigdeli and 

Pahlavani, 2016 and 2017). Due to spectral variability existence 

in the Sentinel-2 bands, it has more capacity for defining biomass 

and vegetation indexes. Sentinel-1 images are only available at 

two polarizations, and this limits the definition of more 

informative indexes. So, it is necessary to test our vegetation 

mapping result using sentinel-2 images.  

In this paper, we use Sentinel-1 and 2 datasets for masking 

vegetated pixels. Furthermore, we aim to make a brief 

comparison of optic and SAR data performance. Also, we 

examine the performance of the applied classifiers using 

Receiver Operating Characteristic (ROC) (Fawcett, 2005). 

 

2. PROPOSED METHOD 

2.1 Pre-processing 

2.1.1 Sentinel-1 

 

Sentinel-1 GRD data are available at dual-polarized, VV, and VH 

intensity and amplitude bands. It is required to convert the 

intensity data to Sigma Nought values to extract the relevant 

vegetation indexes, Dual Pol Diagonal Distance (DPDD), 

Vertical Dual Depolarization Index (VDDPI) and Dual Pol Soil 

Vegetation Index (DPSVI). So, calibration is essential. Although 

GRD data are speckle reduced products, we further reduced the 

inherent speckle effect by applying a 7×7 Lee filter. Furthermore, 

Range Doppler terrain correction was done using SNAP 

software. 

2.1.2 Sentinel-2 

 

Sentinel-2 level-1C products are Top Of the Atmosphere (TOA) 

reflectance values available at 13 spectral bands from visible to 

shortwave infrared range collected via a single multispectral 

instrument. For extracting the probably informative indexes, like 

Green Normalized Difference Vegetation Index (GNDVI), 

Normalized Vegetation Index (NDVI), Blue Ratio (BR), Green 

Ratio (GR), it can be advantageous to do atmospheric correction 
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by converting the TOA reflectance to the corresponding ground 

values. Atmospheric correction of sentinel-2 bands was done 

using QGIS software. 

 

2.2 Extracting relevant vegetation indexes 

2.2.1 Sentinel-1 

 

Several dual-polarized vegetation indexes have been introduced 

in the literature for biomass and vegetation estimation 

(Periasamy, 2018). Table 1 illustrates some of the applied 

indexes. 

 
Table 1: Dual Polarized vegetation indexes 

index formula 

IDPDD1 

 

(𝜎𝑣𝑣(max) − 𝜎𝑣𝑣(𝑖)) + 𝜎𝑣ℎ(𝑖)

√2
 

 

 

DPDD2 (𝜎𝑣𝑣(𝑖) + 𝜎𝑣ℎ(𝑖))

√2
 

VDDPI3 (𝜎𝑣𝑣(𝑖) + 𝜎𝑣ℎ(𝑖))

𝜎𝑣𝑣(𝑖)
 

DPSVIi
4 𝐼𝐷𝑃𝐷𝐷(𝑖) × 𝑉𝐷𝐷𝑃𝐼(𝑖) × 𝜎𝑣ℎ(𝑖) 

SNBSD5 𝜎𝑣ℎ(𝑖) − 𝜎𝑣𝑣(𝑖) 

 

 

2.2.2 Sentinel-2 

 

As mentioned before, there are a massive number of indexes 

beneficial for vegetation mapping in optic bands. Some of the 

applied indexes in this research have been shown in Table 2 

(Muhsoni et al., 2018). 

 
Table 2: Vegetation indexes extracted from Sentinel-2 bands 

Index Formula 

BR (blue ratio) (
𝑅

𝐵
) × (

𝐺

𝐵
) × (

𝑅𝐸1
𝐵

) × (
𝑁𝐼𝑅1
𝐵

) 

GNDVI (green 

normalized 
difference 

vegetation index) 

𝑁𝐼𝑅1 − 𝐺

𝑁𝐼𝑅1 + 𝐺
 

SAVI (soil 

adjusted 
vegetation index) 

(1 + 0.2) × (𝑁𝐼𝑅1 − 𝑁𝐼𝑅2)

𝑁𝐼𝑅1 +𝑁𝐼𝑅2 + 0.2
 

MSAVI(modified 
SAVI) 

1

2
[2 × 𝑁𝐼𝑅1 + 1

−√(2 × 𝑁𝐼𝑅1 + 1)2 − 8 × (𝑁𝐼𝑅1 − 𝑅)] 
NDREI 

(normalized 

difference red 

edge index) 

𝑁𝐼𝑅1 − 𝑅𝐸

𝑁𝐼𝑅1 + 𝑅𝐸
 

NDVI 
(normalized 

difference 

vegetation index) 

𝑁𝐼𝑅1 − 𝑅

𝑁𝐼𝑅1 + 𝑅
 

NDVI2 
𝑁𝐼𝑅2 − 𝑅

𝑁𝐼𝑅2 + 𝑅
 

NDWI 

(normalized 

difference water 
index) 

𝐺 −𝑁𝐼𝑅1
𝐺 +𝑁𝐼𝑅1

 

                                                                 
1 Inverse Dual Pol Diagonal Distance 
2 Dual Pol Diagonal Distance 
3 Vertical Dual Depolarization Index 

NNIR 

(normalized near 
infrared) 

𝑁𝐼𝑅1
(𝑁𝐼𝑅1 + 𝑅 + 𝐺)

 

PSRI (plant 

senescence 
reflectance 

index) 

𝑅 − 𝐵

𝑅𝐸1
 

RR (red ratio) (
𝑁𝐼𝑅1
𝑅

) × (
𝐺

𝑅
) × (

𝑁𝐼𝑅1
𝑅𝐸1

) 

RVI (ratio 

vegetation index) 

𝑁𝐼𝑅1
𝑅

 

SVI (sentinel 

improved 
vegetation index) 

𝑁𝐼𝑅2 − 𝑅

𝑁𝐼𝑅2 + 𝑅
 

VIRE (vegetation 

index based on 
red edge) 

10 − 𝑁𝐼𝑅1

𝑅𝐸1
2  

VIRRE 

(vegetation index 

ratio based on red 
edge) 

𝑁𝐼𝑅1
𝑅𝐸1

 

WVVI (world 

view improved 
vegetation index) 

𝑁𝐼𝑅2 − 𝑅𝐸1
𝑁𝐼𝑅2 + 𝑅𝐸1

 

MTV (modified 

triangular 

vegetation index) 
1.2 × [1.2 × (𝑁𝐼𝑅 − 𝐺) − 2.5 × (𝑅 − 𝐺)] 

MTV2 (modified 

triangular 

vegetation index 
2) 

1.2 × [1.2 × (𝑁𝐼𝑅 − 𝐺) − 2.5 × (𝑅 − 𝐺)]

√(2 × 𝑁𝐼𝑅 + 1)2 − (6 × 𝑁𝐼𝑅 − 5 × √𝑅) − 0.5

 

RDVI 

(renormalized 

difference 
vegetation index) 

[
(𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝑅)2
] 

VARI 

(vegetation 
atmospherically 

resistant index) 

(𝐺 − 𝑅)

(𝐺 + 𝑅 − 𝐵)
 

VI green 
(𝐺 − 𝑅)

(𝐺 + 𝑅)
 

MSR (modified 
simple ratio) 

(
𝑁𝐼𝑅
𝑅

− 1)

√(
𝑁𝐼𝑅
𝑅

+ 1)

 

TVI (triangular 

vegetation index) 
0.5 × (120 × (𝑁𝐼𝑅 − 𝐺) − 200 × (𝑅 − 𝐺)) 

Description: Blue (B), Green (G), Red (R), Near infrared 1 (NIR1), 
Near-infrared 2 (NIR2), Red Edge 1 (RE1), Red Edge 2 (RE2). 

 

 

2.3 1D Convolutional Neural Network 

Some researches applied CNN for fusion of remote sensing data 

in the aim of classification improvement (Bigdeli et al. 2019).1D 

Convolutional Neural Networks are one kind of Deep Neural 

Networks commonly used in 1D signal processing like Time 

Series analysis. It is somewhat faster than 2D Convolutional 

Neural Network as it does not require patch generation that can 

be a demanding work while processing big satellite images with 

a considerable number of spectral bands. It also can be applied to 

2D signals by vectorizing input image and considering each 

spectrum as an input to the network. Figure 1 shows the 

architecture of the 1D CNN applied for vegetation mapping in 

Sentinel-1 and Sentinel-2 data sets. We used different 

architectures for Sentinel-1 and 2 because of the different number 

of input features. For Sentinel-1 data set, the number of input 

4 Dual Pol Soil Vegetation Index 
5 Sigma Nought Back Scatter Difference 
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features was 7, including the features mentioned in Table 1 and 

sigma Nought backscatter values of bands VV and VH. Sentinel-

2 input features included the vegetation indexes mentioned in 

Table 2 and the 13 spectral bands of Sentinel-2 data set. So, 

overall, we imported 36 features to CNN, as illustrated in Figure 

1 b.  

 

Figure 1a shows the 1D CNN architecture for Sentinel-1 data set. 

Each pixel was considered as a 7×1 spectrum. Fifty spatial filters 

with size 3×1 were considered in the first layer. The coefficients 

of these filters were learned during training. After applying 1D 

convolution to the input spectrum (pixel), the size of the input 

was reduced to 5×1. So, we had 50 features with 5×1 dimension 

as the output of the first layer. Next, the Dropout layer was 

considered to switch off some of the windows of the spatial filters 

during training. Also, as the third layer, we set a 2×1 Max Pooling 

layer to reduce the distortions and disturbances in the data set. 

After applying Max Pooling with size 2, size of the input was 

halved. Then the output of the Max Pooling layer was imported 

to a Batch Normalization layer to make data zero centered and 

with unit variance. The inputs to the 1D CNN are two-

dimensional. The first dimension (the second number in the 

parentheses) refers to the width or height and the second one (the 

third number in the parentheses refers to the number of channels 

or bands). None values in the parentheses denote the batch size 

can be any desired number. 

Before importing data into the fully connected layers, we need a 

flattening layer to convert two-dimensional data into one 

dimension. After applying the flattening layer, 2×50 vectors were 

converted to 100×1. Two fully connected layers were used to 

partition the extracted feature space to non-vegetated and 

vegetated areas (dense-1 and dense-2 in figure 1a).  Within 

convolutional and Max Pooling layers, we embedded Dropout 

and Batch Normalization layers to improve the generalization 

ability of the network. Figure 1b can be explained in the same 

manner as figure 1a. Please note that in the last layer of figure 1a, 

there are three output neurons for Sentinel-1 corresponding to the 

non-vegetate, vegetated, and other classes. Also, in the last layer 

of figure 1b, two neurons are corresponding to the vegetated and 

non-vegetated classes in Sentinel-2 classification results. It is 

worth noting that the non-linearity ReLU was applied after 

convolution layers, and negative values were converted to zero. 

For implementing CNN and RF classifiers, we used the Keras 

library and Scikit-learn library of python respectively. 

 

3. RESULTS AND DISCUSSIONS 

3.1 Ground Truth Data 

Accuracy validation of the applied classification models is 

necessary. As a result, we selected Ground Truth data using 

Google Earth Pro software. The main scope of this paper was 

detecting vegetated pixels. So, just two classes were considered 

for classification, non-vegetated areas containing water bodies, 

agricultural land and urban and vegetated areas containing 

human-made or natural vegetation. Figure 2 shows the 

distribution of selected polygons on the RGB image. Black 

polygons are non-vegetated class Ground Truth, and green 

polygons are vegetated class Ground Truth. We selected almost 

3000 samples from non-vegetated and vegetated Ground Truths 

randomly. So, in total, we considered nearly 6000 samples as 

Ground Truth. We portioned this data to Train and Test. 70% of 

Ground Truth data were set aside as training and the remaining 

as a test. 

 

 
(a) 
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(b) 

Figure 1: The architecture of the applied 1D CNN; a:Sentinel-

1;b:Sentinel-2 
 

 

 

 

 

 

 
Figure 2: Distribution of Ground Truth Data on the RGB image 

 

3.2 Masking vegetated pixels using 1-D CNN 

For training proposed 1-D CNN model, for both Sentinel-1 and 

Sentinel-2 data sets, we applied the same parameters as follows: 

learning rate parameter must be set a small value to stochastic 

gradient descent algorithm to work appropriately. So, we set this 

value to 10-4. Adam algorithm was considered as the 

optimization method because it usually shows superior 

performance than other optimization algorithms such as 

stochastic gradient descent. Also, batch size and the number of 

epochs parameters were set 100 and 200, respectively. The binary 

cross-entropy was considered as the loss function, and the 

weights and biases were updated using the mini-batch method 

during 200 epochs. 

 

3.3 Masking vegetated pixels using RF 

Random Forest (RF) classifier is a powerful tool using the 

concept of randomness and repetition of classifiers. For masking 

vegetated pixels in both Sentinel-1 and Sentinel-2 data sets, we 

set the number of trees to 100 and the default value of the selected 

number of features at each node (the second root of the total 

number of features) was considered. 

Figure 3 shows ROC space for Sentinel-1 RF classifier, the 

classifier with a combination of features, VV, VH, and DPSVI, 

achieved the highest TPR because of adding DPSVI that is a good 

indicator for masking vegetation pixels. The most conservative 

classifier was the one with a combination of features, VV, VH, 

DPDD, and VDDPI, acquired FPR of 0.35. Overall, no 

significant difference was observed between the performances of 

the classifiers. 

Figure 4 shows the precision and recall of different combinations 

of features. We can see that while there is not any significant 

difference between precision values, recall values show different 

results. Combining DPDD and backscatter values of VV and VH 

resulted in the lowest recall rate among other combinations. 

DPDD index inserted uncertainty discriminating water bodies 

and vegetated pixels because both of them have high diagonal 

distance in the scatter plot of the Sigma Nought VH and VV 

bands. When we added DPSVI to the previously mentioned 

backscatters, highest recall value was acquired because this index 

is an excellent representative of vegetated areas (Periasamy, 

2018). 
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Figure 3: ROC SPACE for different combination of features in 

Sentinel-1 

 

 

 

4. COMPARISON OF SENTINEL-1 AND SENTINEL-2 

 

In this section, we aim to compare vegetation detection using 

Sentinel-1 and Sentinel-2 data. For vegetation detection, we 

applied both RF and CNN classifiers. We compare the vegetation 

detection of both data sets in terms of visual inspection and 

quantitative results. 

 

4.1 Visual Comparison 

Figure 5 shows the classification results of Senitnel-1 and 

Sentinel-2 data sets using CNN and RF classifiers. By comparing 

the classification results with the RGB image we can conclude 

that using optical bands and their corresponding  

Vegetated indexes resulted in the best classification result. RF 

classifier overestimated in detecting vegetated pixels. 

 

4.2 Quantitative Comparison 

Figure 6 shows the confusion matrices of the four classification 

results shown in figure 5. The right part of the Sentinel-1 image 

was removed after doing Range Doppler Terrain Correction 

during the pre-processing stage. "Other" Class in the confusion 

matrices of the Sentinel-1 data set is referring to this part. 

Classification using RF resulted in 67 and 23 non-vegetated 

pixels mislabelled as vegetated in Sentinel-2 and Sentinel-1 

respectively. Most of these wrongly labelled pixels are related to 

the agricultural areas located on the west side of the vegetated 

areas. Applying 1D CNN alongside the optical bands and 

vegetated indexes resulted in most diagonal confusion matrix and 

labelled most of the agricultural lands as non-vegetated. 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 5: Classification results on Sentinel-1 and Sentinel-2 data sets; a: RGB 

image; b: 1D CNN Sentinel-1 data set; c: RF Sentinel-1 data set; d: 1D CNN 

Sentinel-2 data set; e: RF Sentinel-2 data set. 

 

  

  
(a) (b) 

 

Figure 4: Precision and recall values of different combination of features 
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(c) (d) 

Figure 6: Confusion matrices of classification results;  

a: 1D CNN Sentinel-1; b: RF Sentinel-1; c: 1D CNN sentinel-2; 

 d: RF Sentinel-2  

 

 

Figure 7 shows the ROC curves of our classifications. ROC 

curves for Sentinel-1 are not very representative of their 

corresponding classification performances. The least Area Under 

Curve (AUC) is related to the Sentinel-2 RF classifier because of 

the large number of negative pixels labelled as positive 

(vegetated) in figure 5 part e. 

.   

  
(a) (b) 

  
(c) (d) 

Figure 7: ROC curves for classification results shown in figure 5 
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