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ABSTRACT: 

 

In recent years, the applications of interior and exterior model of buildings have been increased in the field of surveying and 

mapping. This paper presents a new method for extracting a two-dimensional (2D) floor plan of a building from Simultaneous 

localization and mapping (SLAM)-based point clouds. In the proposed algorithm, after preprocessing, the voxel space is generated 

for the point cloud. Then, the optimal section of the voxel cube to generate building floor plan is identified. Finally, the linear 

structures and walls are extracted using the random sample consensus (RANSAC) algorithm. The proposed algorithm was examined 

on a collected point clouds of a building, and the walls of this building were automatically extracted. To evaluate the proposed 

method, the obtained walls by the algorithm were compared with the manually extracted walls. The algorithm successfully extracted 

almost 90% of the walls in the test area. Moreover, the average error of 3 cm for the extracted walls proved the high accuracy of the 

proposed method for building floor plan modeling.   

 

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

Indoor building modeling and floor plan generation are useful 

in many fields such as protection, documentation, facility 

management, security, and building information models (BIM) 

(Previtali et al., 2014). In this regard, 2D floor plans can be 

applicable in internal navigation, augmented reality and 

virtualization, and building energy simulation softwares (Turner 

and Zakhor, 2014). Also, they are applicable for legal map 

production of complex buildings to evaluate the dimension of 

rooms and other structural features (Stojanovic et al., 2018). 

 

In the traditional methods for generating these maps they are 

produced by directly measuting the interior spaces using strips. 

Since these methods are carried out by interaction of a human 

operator, measurement in this manner is time-consuming and 

costly, and therefore, the results may be accompanied by human 

errors. Therefore, indoor 3D data acquisition technologies based 

on Simultaneous Localization And Mapping (SLAM) have been 

developed in terms of proficiency and accuracy (Maboudi et al., 

2018). These tehnologies are three-dimensional (3D) mobile 

mapping technology that scans its environments to produce very 

accurate and dense 3D point clouds within minutes, while on 

the move. Despite the increasing of data collection speed and 

accuracy, due to the high volume of data, manual processing of 

these data is still tedious. Therefore, researchers have been 

focusing on developing automated techniques in order to obtain 

interior geometric details of buildings. The aim of developing 

new processing methods are automatic feature extraction and 

model generation from point cloud, which should be able to 

process high-density data (Babacan et al., 2016). 

 

There are several challenges for automatic 2D building plan 

extraction including manipulating large volume point cloud, 

occluded areas, optimal cross-section of point cloud, 

recognition and reconstruction of 2D linear features to provide 

architectural map. In this paper, a method for automated 

modelling of linear features from a SLAM-based point cloud as 

a floor plan of the building is proposed. In the prpoposed 

method, first a 2D floor plan is produced and then, the 

architectural map including walls is created.  

  

To simplify our solution, the following assumptions are 

considered: (1) the point cloud has a high density with common 

noise level, (2) the point cloud of different stations are 

geometrically co-registered and consistent, (3) there is not 

curved surfaces in the internal structure of the building and 

wall, ceiling and floors are planar, and (4) data from the main 

building structure is generally completed without big loss. In 

relation to the problem statement, the following key questions 

should be answered through our experiments: (1) in presence of 

room furniture, which method is more suitable for cross-section 

extraction? (2) what is the optimal value for the parameters of 

the proposed algorithm for floor plan segment extraction? and 

(3) what is the geometric accuracy and completeness of the 2D 

extracted plan? 

  

The structure of the paper is as follows: In Section 2, we 

describe related work to this research. Section 3 describes our 

proposed algorithm to generate floor plans. The proposed 

solution, along with implementation on real data, is presented in 

Section 4. Finally, in Section 5 results of the proposed 

algorithm are reported. 

 

2. RELATED WORK 

For building interior model extraction, line and planar surface is 

essential. Since the majority of studies about building floor plan 
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generation has used line or planar surface modeling in their 

methods, a review of related workds about this issue is 

presented. Today, developing point cloud collection 

technologies and processing methods have been the subject of 

much interest by researchers. In this context, floor plans can be 

considered a temporary step to approach future internal building 

models. Over the years, many algorithms for line modeling from 

point clouds have been studied by researchers including 

RANSAC (Hong et al., 2015; Jung et al., 2014; Li et al., 2018; 

Ochmann et al., 2014; Thomson and Boehm, 2015), Hough 

Transform (HT) (Dumitru et al., 2013; Huber et al., 2011; 

Oesau et al., 2013; Okorn et al., 2010),  split and merge (Zhang 

and Ghosh, 2000), Expectation-Maximiation (EM) (Liu et al., 

2001). In this case, Nguyen et al. (2007) presented a 

comprehensive comparison between a number of line extraction 

algorithms using 2D laser scanner data. Also, a comprehensive 

comparison between existing algorithms for fitting a flat plate to 

laser scanner point clouds was presented by Nurunnabi et al. 

(2014). 

 

Extracting 2D floor plan from point cloud data has also been a 

signification topic so far. Several methods have been proposed 

in the recent literature for extracting 2D floor plan from point 

cloud data. This section provides an overview of some research 

on building modeling. Budroni and Böhm (2009) provided a 

plane sweep algorithm for the segmentation of a point cloud in 

order to recognize the planar structures of a room. Also, Okorn 

et al. (2010) proposed an approach based on the use of Hough 

Transform algorithm for line detection. In addition, in 2011, 

Huber et al. developed and evaluated a new method for 

automatic modelling of vertical structures (i.e. walls) and 

displaying Building Information Model (BIM) from 3D point 

clouds based on Okron’s floor plan modelling algorithm (Huber 

et al., 2011). Additionally, Oesau et al. (2013) proposed an 

automated method using HT algorithm to reconstruct permanent 

structures such as walls, floors, and ceilings from cloud 

compartments. In contrast, Previtali et al. (2014) presented a 

new technique to generate a semantic model of the interior of 

buildings from point clouds.  

 

The reconstruction of interiors is mostly performed by using 

interactive or semi-automatic or automated approaches 

(Previtali et al., 2014). Anagnostopoulos et al. (2016) offered a 

stable method of extraction walls, ceilings and floors that 

automatically processes point cloud and identifies and 

categorizes complication. Simultaneously, Babacan et al. (2016) 

proposed a new method for automatically extracting floor plans 

by door detection algorithm from raw laser scanner. Recently, 

Giorgini et al. (2018) presented a new approach to automate the 

production of the floor plan from point cloud captured by a 

laser scanners. In their approach, the floor, ceiling and walls 

have not been considered flat. Similarly, Nikoohemat et al. 

(2018) proximated graph-based approaches to identify and label 

permanent structures such as walls, floors and ceilings and 

stairs from mobile laser scanners. Moreover, Stojanovic et al. 

(2018) presented a method for generating 2D and 3D 

approximate planes from the point cloud.  

 

3. PROPOSED METHOD 

Based on the aforementioned studies it is clear that still 

continued research is needed for building modeling from point 

cloud. Therefore, in this paper a new method for building 

modeling from SLAM-based point cloud is presented. The 

workflow of the proposed method is shown in Figure 2. As 

shown in this figure, the algorithm extracts the buiding floor 

plan from a SLAM-based point cloud in four steps including (1) 

Floor points selection, (2) Binary voxel generation, (3) Optimal 

section selection, (4) Linear features extraction. Each step is 

descriped in detail in the following subsections.  

 
Figure 1. The workflow of the proposed method 

 

3.1 Floor Points Extraction 

The proposed algorithm extracts a plan for each floor 

individually. Therefore, in this step, the points of each floor 

should be extracted to be imported in the processing steps. This 

helps to simplify the next processes, and is performed manually 

over the data.  

 

3.2 Binary Voxel Space Generation 

After selecting the points of a candidate floor, the points are 

transformed to a regular 3D network called voxel space. If each 

cell or voxel in this space includes one or more points, it would 

take 1; otherwise, it is an empty of 0 value cell. Since the final 

voxel space is generated in a binary format, we call it the binary 

voxel space. Dimensions of the voxels is a challenging 

parameters which can be determined based on the resolution 

and density of the point cloud as well as the required final 

accuracy. Although the smaller cell size would results more 

accurate 3D voxel space, however, it may increase the 

redundancy and sparsity of the final space. Conversely, too 

large cell size may cause information loss, and consequently, 

less accurate floor plan. Therefore, the cell size should be 

carefully detected. 

 

3.3 Optimal Section Extraction 

After the voxel generation of the point cloud, in this stage, we 

want to find the optimal section that the walls are visible. We 

create a height histogram. Then, the floor and ceiling are 

identified from height histogram using the Peak Identification 

Method presented by Okorn et al. (2010). So, the optimal 

section is that has the lowest noise (such as room furniture, 

lamps, computer, etc.), has no occluded area, and the overall 

structure of walls are visible. Also, the optimal section is the 

most similar to the ground truth wall segments. Therefore, to 

find the optimal planimetric section of the voxel point cloud, 

two ideas are studied and performed in the 2D binary raster 

space: (a) using median along the vertical axis of voxels and (b) 

using a constant offset distance below ceil.  

 

SLAM-based point cloud 

Floor Points Extraction 

Binary Voxels Space Generation 

Linear Features Reconstruction 

2D Floor Plan 

Optimal Section Extraction 
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3.4 Linear Features Reconstruction 

The generated raster image is used to reconstruct the linear 

features of the building floors. For this purpose, powerful line 

extraction techniques such as HT and RANSAC may be useful. 

In this research, the RANSAC as a fast and robust approach 

which can provide more accurate linear parameters is used in 

order to identify linear structures in that raster image.  
 

The proposed RANSAC algorithm firstly selects two random 

points from the voxel points, then fits the lines by examining 

the other points and analyzing same parameters. This process 

continues until all the points are examined. Our algorithm is a 

function of distance between the point of line. Then, it assumes 

a line that passes through these two selected points. Then, 

calculates the number of pixels which are less than one pixel 

from the assumed line. Then, obtains the parameters of the line 

and distance of all points from this hypothetical line. After that, 

it considers points whose distance is less than one pixel as 

inliers. The RANSAC algorithm repeatedly fits the best line to 

our voxel point. At this stage, we want to separate the lines. For 

this purpose, we introduce two parameters to the algorithm; gap 

parameter and noise threshold. The gap parameter refers to the 

maximum allowable distance to merge two disconnected lines, 

and the noise threshold refers to the smallest acceptable length 

of recognized lines. At the final step, a line is fitted to each 

voxel group to reconstruct the linear feature in that voxel group. 

We did it by a robust line fitting method which uses least square 

fitting after removing outlier point clouds in each voxels.  

 
4. TEST AND RESULT 

4.1 Dataset 

In order to evaluate the proposed algorithm, a point cloud 

dataset was collected from central building of the College of 

Engineering, the University of Tehran, Iran. The data was 

gathered by GeoSLAM (Zeb-Revo) with the range of 30 m and 

15 m for interior and exterior, respectively. Also, the scanning 

time for interior of the building was 34 minutes that 60 million 

points gathered. Figure 3 shows the overview of the collected 

point cloud.  

 

 
 

Figure 3. The collected SLAM-based point cloud from the 

College of Engineering, the University of Tehran. 

 

4.2 Results 

From the study area, a floor point cloud including about 6 

million points was manually extracted at the first step which is 

depicted in Figure 4.  

 
 

Figure 4. Manually extracted floor points as test data from the 

College of Engineering dataset. 

 

In our experiments, and based on the resolution of the collected 

point cloud, we found that the optimum value for voxel size is 

0.1 m in X, Y, and Z direction. This value was detected by trial 

and error. Figure 5 shows the generated Voxel space for the 

selected floor.  

 

 
 

Figure 5. The binary voxel space considering 0.1 m voxel size.  

 

For selecting the optimal section, two methods were examined: 

(a) offset solution, (b) the median solution. As you can see in 

Figure 6, the offset solution with a distance of 30 cm below ceil 

has shown a better output. The extracted 2D points of the best 

section is shown in Figure 7.  

 

      
(a)    (b) 

 

Figure 6. Optimal section selection results. (a) Extracted 

sections of the offset solution; (b) the median solution. 
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Figure 7. 2D SLAM-based point clouds of the best section 

 

As can be seen in Figure 8, some voxels with similar colors and 

directions should be grouped into different individual line 

segments. In addition, some voxels with similar colors and 

directions should be merged as a single line due to undesirable 

gaps between them. 

 

 
 

Figure 8. Segmentation of voxels by RANSAC algorithm. Each 

recognized line has a different color. 

 

In this part, a line is fitted to each voxel group to reconstruct the 

linear feature in that voxel group. The lines are reconstructed so 

that two parameters are introduced to the algorithm: gap 

parameter and noise threshold parameter (Figure 9).  
 

 
 

Figure 9. Extracted linear features of the optimal section. 

4.3 Accuracy assessment 

To evaluate the quality of the output segments, they were 

compared to the ground truth floor plan produced by tracing 

exact polylines on the test area using a skilled operator. Here, 

two quality factors of completeness, which measures the ability 

of linear segment recognition, and the accuracy to measure the 

quality of the extracted segments were calculated.  

 

 
 

Figure 10. Comparison of the ground truth wall segments (red) 

and the extracted segments by the proposed algorithm (blue). 

Original points of each segment are shown in black. 

 

For completeness evaluation, the total length of all extracted 

segments was compared to the total length of the ground truth 

polylines. The length of the reference lines was 94.971 m, while 

the total length of the extracted segments was 82.580 m. 

However, 2.974 m of the segments were lost due to the 

occluded area. As a result, our proposed algorithm recognized 

about 90% of the walls in the dataset.   

 

To evaluate the accuracy of the reconstructed segments, the 

average distance from the reference polylines were evaluated.  

The average error of about 3 cm was seen for the most number 

of walls, which is a good performance due to the proper voxel 

size (0.1 m). Figure 11 illustrates the error distance of the 

extracted segments and the reference polylines. As can be seen 

from this figure, the maximum error of 0.2 m was appeared for 

segment D16 that may be the sign of  linear feature detection 

error.   

 
Figure 11. Error distance of the extracted segments and 

reference polylines. 

 

Because of the random nature of the RANSAC algorithm 

another experiment was performed to check the reliability of the 

method. The algorithm was repeated 10 times, and the output 

was evaluated each time. In this test, the average completeness 

of 90% with a sligh difference was reported.  
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4.4 Discussion 

The proposed method has several parameters that should be 

adjusted; voxel size parameter, gap parameter, noise threshold. 

In order to find the optimal voxel size, different numbers were 

examined. By increasing the voxel size, in the lines 

reconstruction stage, some lines were missed. On the other 

hand, by increasing gap parameter, the lines were reconstructed 

in a wrong way. Apart from this and as a matter of fact, 

increasing the noise threshold parameter to remove small lines 

leading to losing the longer lines which might be reconstructed 

correctly.  

 

Therefore, a series of experiments were performed to determine 

the effect of each parameter on the performance of the 

algorithm. The optimal voxel size  parameter entered by the user 

into the algorithm was assumed to be 10 cm during the 

investigation, and the optimal gap parameter in RANSAC 

algorithm was 5 voxels. Also, the optimal noise threshold in 

RANSAC algorithm which refers to the smallest acceptable 

length of recognized lines is 3 voxels. In fact, lines with less 

than 3 voxels were considered as noise and were eliminated. 

 

Besides, the proposed RANSAC algorithm has many 

advantages such as; easy-to-implement procedure, low 

computation, fast in handling huge data, robust against outliers, 

flexible in dealing with different structures, and high reliable of 

its results.  However, manually floor points separation step is 

one of its drawback which reduce the level of automation, and 

should be considered in furture studies.  

 

5. CONCLUSION 

In this research, a new method for extracting a 2D floor plan of 

a building from a SLAM-based point cloud was presented.  The 

proposed algorithm extract a building floor plan in four steps of 

floor points selection, binary voxel generation, optimal section 

selection, and linear features extraction. The method was tested 

on a collected point cloud using GeoSLAM sensor, and 90% of 

the average completeness was reported. Using the RANSAC 

method to recognize line segments and working with one 

optimal section may be the main advantages of the proposed 

method.   

 

In fact, recognition and reconstruction of linear segments are 

two different subjects, and we achieved a fairly good 

approximation in this study. But to improve the result, we want 

to reconstruct the linear segments based on original point cloud 

via an optimization process which gives much higher accuracy 

than 2D grid points. 
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