
A CONVOLUTIONAL NEURAL NETWORK FOR FLOOD MAPPING USING 

SENTINEL-1 AND SRTM DEM DATA: CASE STUDY IN POLDOKHTAR-IRAN 
 

 

B. Hosseiny 1, *, N.Ghasemian 1, J.Amini 1  

 
1 School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran - (ben.hosseiny, 

n.ghasemian, jamini) @ut.ac.ir 

 

Commission III, WG III/7 

 

 

KEY WORDS: Change detection, Deep learning, Classification, Satellite images, Synthetic aperture radar 

 

 

ABSTRACT: 

 

Flood contributes a key role in devastating natural and man-made areas. Floods usually are occurred when there is a considerable 

number of clouds in the sky making optic data useless. Synthetic aperture radar (SAR) images can be a valuable data source in earth 

observation tasks. The most important characteristic of the radar image is its ability to penetrate the cloud and dust. Therefore, 

monitoring earth in cloudy or rainy weather can be available by this kind of dataset. In the last few years by improving machine learning 

methods and development of convolutional neural networks in remote sensing applications we are facing with extremely high 

improvement in classification tasks. In this paper, we use dual-polarized VV and VH backscatter values of Sentinel-1 and Shuttle 

Radar Topography Mission (SRTM) digital elevation model (DEM) dataset in a proposed convolutional neural network to generate a 

land cover map of a flooded area before and after happening. Obtained classification results vary between 93.3% to 98.5% for different 

training sizes. By comparing the generated classified maps, flooded areas of each class can be extracted. 

 

 

1. INTRODUCTION 

Flood contributes a key role in devastating natural and man-made 

areas. In March 2019, a destructive inundation occurred in Iran 

which put down the demise of hundreds of people and extinction 

of properties. Flood mapping using remote sensing techniques 

has the merit of helping authorities to have a thorough overview 

of working out the amount of damage, and it alleviates the 

emergency procedures (Benoudjit and Guida, 2019; 

Domeneghetti et al., 2019). 

 

Floods usually are occurred when there is a considerable number 

of clouds in the sky making optic data useless. So, Flood mapping 

using SAR images can be a necessity. One way to map flood is 

by using Change detection approaches when two-time data of a 

region are available (Zhao et al., 2019). One of conventional 

change detection approaches is post-classification comparison 

technique where we compare the classification results of the data 

at two different times. SAR image classification can be a 

challenging task due to its complicated backscattering 

mechanism and the presence of speckle noise. Conventional 

classification algorithms like SVM and Neural Network cannot 

handle the disturbances and distortions existence in the SAR 

dataset and we need an integrated classification system capable 

of doing feature extraction and partitioning simultaneously. 

Convolutional Neural Networks (CNN) present an automatic 

feature extractor connected to a fully connected layer that 

partition the feature space after removing the uncertainties 

inherent in the input data. CNN is popular in remote sensing 

image classification because it alleviates the problem of big data 

analysis that has been always an issue in satellite image 

processing. 

 

Change detection techniques can be categorized to supervised 

and unsupervised (Zhao et al., 2019). Unsupervised techniques 

create a difference or log-ratio map and need further analysis to 

assign a threshold to change and no change areas. Supervised 

methods are more dependent on the availability of pure training 

samples. Recently, Deep Neural Network has acquired a great 

interest in change detection related tasks as they can be applied 

in both a supervised or unsupervised manner. Gong et al., 2015 

applied stacked Restricted Boltzmann Machines (RBM) for 

change detection of Synthetic Aperture Radar (SAR) images 

using Fuzzy C-Means (FCM) clustering as the pre-training stage. 

Also, in another research, the sparse autoencoder (SAE) and 

Convolutional Neural Networks (CNN) were integrated to 

present a ternary change detection method (Gong et al., 2017). 

Ternary here refers to classifying pixels to the positive change, 

negative change, and unchanged. Gao et al., (2016) utilized a 

kind of deep neural network, PCANet, for change detection of 

radar images. Firstly, FCM clustering and Gabor wavelets were 

applied to find pixels with a high probability of being changed 

and unchanged. Second, remaining pixels further processed using 

PCA filters to extract relevant features and an SVM classifier to 

partition the unlabeled pixels. Liu et al., (2016) designed a CNN 

called Symmetric Coupled Convolutional Network (SCCN), for 

change detection of heterogeneous optic and SAR images. After 

representation of two input images in suitable feature space using 

the mentioned network, the difference image was extracted, and 

change detection was done based on a Euclidean distance 

measure. Li et al. (2019) used PCANet to extract the prominent 

training samples for change detection of SAR images. In another 

research, RBM and tensor-based information were applied for 

change detection of hyperspectral images (Huang et al., 2019). 

Gao et al., (2019) made advantage of a kind of CNN, 

Convolutional-Wavelet, to monitor sea ice change. Mou et al., 

(2019) designed a recurrent CNN for extracting spatial, spectral, 

and temporal features of bi-temporal images simultaneously. 

While few works have focused on addressing flood mapping as a 

change detection problem with the aid of deep neural networks, 

we can refer to some recent works in this area. Nogueira et al., 

(2018) made advantage of the architectural diversity of dilated 

ConvNets and deconvolutional ConvNets to feed the resulted 

feature maps into an SVM classifier for mapping vulnerable areas 

to flood. Y. Li et al., 2019 proposed a temporal-ensembling CNN 

and a powerful self-learning framework to map flooded area 
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using intensity and interferometric features of Terra-SAR-X data. 

Also, stacked modules of CNN and one Recurrent Neural 

Network (RNN) were utilized to segment flooded areas 

(Rahnemoonfar et al., 2018). Kang et al., (2018) embedded eight 

convolutional, two deconvolutional, and fusing layers in their 

proposed CNN. They integrated deep (global) and shallow (local) 

features via fusion layers to map flooded areas using GaoFen-3 

SAR images. In another work, areas destructed by the tsunami 

were detected using an autoencoder by imposing the idea that for 

desired changes the reconstruction loss of the deep network is 

relatively high compared to trivial changes (Sublime and 

Kalinicheva, 2019). All of the studies mentioned above have one 

limitation in common, and it is a lack of training data. As far as 

supervised change detection using deep learning is concerned, 

training data plays an important role. Because of the lack of 

training data related to flood pixels, it is more straightforward to 

build the classification model based on unchanged pixels and 

after that apply this trained model to classify both images at two 

different times sequentially or in parallel. So, the most 

contribution of our work is using only one classification model 

for both images at two different times. This kind of model can 

reduce the inconsistency between the classification results 

always being claimed to be a dilemma in post-classification 

change detection. 

 

In this paper, we investigate the use of a 2D CNN in flood 

mapping of Pol-e-Dokhtar city, Lorestan, Iran using two –time 

Sentinel-1 dataset, taken before and after the flood, one at 3rd of 

March of 2019 and another at 2rd of April of the same year. Also, 

we used SRTM DEM data to increase the number of our input 

features. The Sentinel-1 dataset is freely available from the 

Copernicus Open Access Hub and SRTM DEM data are also 

available from USGS site at no charge.  

 

The next sections of this paper are organized as follows. In 

Sections 2 and 3, the theoretical background of the convolutional 

neural networks and our proposed architecture will be presented, 

respectively. Section 4 belongs to experimental results based on 

the proposed network.  In this section, we also compare the CNN 

classification result with a 1D CNN and a multi-layer perceptron. 

Finally, our conclusions will be presented in section 5. 

 

2. THEORETICAL BACKGROUND 

2.1 Convolutional neural networks (CNN) 

Convolutional neural networks (CNN) can be considered as one 

kind of the neural networks applied on grid-like topology data 

such as 2D satellite images. The name “convolutional” comes 

from their architecture using one kind of linear mathematical 

operation called convolution. These kinds of neural networks use 

convolution rather than matrix multiplication used in ordinary 

neural networks. 

 

Convolutional neural networks can handle distortions and 

disturbances using three concepts including, sparse connectivity, 

parameter sharing, and equivariant representations. 

 

2.1.1 Pre-Processing: Before importing the input data to the 

network, it is essential to make the data zero-centered and 

normalized. Zero centering is accomplished by subtracting the 

mean of the whole data (both train and test) from each data point 

and normalization is achieved by dividing the zero-centered data 

to the variance of each dimension. We can show the zero 

centering and normalization equations as follows (Khan et al., 

2018): 

 

                          𝑥′ = 𝑥 − �̂�           �̂� =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1                        (1) 

 

                                   𝑥′′ =
𝑥′

√∑ (𝑥𝑖−�̂�)2𝑁
𝑖=1

𝑁−1

                                       (2) 

 

In equation (1), xʹ is the zero-centered input feature vector, �̂� is 

the mean of the feature vector x. xʺ is the normalized feature 

vector in equation (2). The input to the CNN network is xʺ. 

 

2.1.2 Convolutional layer: Generally, convolution can be 

defined as an operation of two functions with real-valued 

arguments. In equation 3, the asterisk indicates the convolution 

operation.  

 

               𝑠(𝑡) = (𝑥 ∗ 𝑊)(𝑡) = ∫ 𝑥(𝑎)𝑊(𝑡 − 𝑎)𝑑𝑎         (3) 

 

The first argument, the function x, is referred to as the input and 

the second, W, is called the kernel in a convolutional neural 

network.  

 

2.1.3 Non-linearity: The output of a convolutional or fully 

connected layer is fed into a non-linear or piece-wise linear 

function. This allows the network to learn non-linear mappings. 

If we eliminate this non-linearity, only modelling linear functions 

will be possible. Non-linearity also controls the degree of 

response of the neuron to a particular input. Non-linearity must 

be differentiable according to the backpropagation learning rule. 

The nonlinearity is used both after a convolutional layer and in a 

fully connected layer. In this work, we applied the Rectified 

Linear Unit (ReLU) activation function as the non-linearity of 

our proposed network.  

 

2.1.4 Pooling layer: Pooling operation is applied to the output 

of the non-linearity layer. It represents a statistical summary of 

the data and removes the distortions and disturbances in the 

primary feature map and also lessens the computational burden 

of the data. For example, max-pooling chooses the maximum unit 

in a rectangular neighborhood. Some other pooling operations 

include average pooling, L2 norm in a rectangular neighborhood 

or weighted average in a rectangular neighborhood with weights 

based on distance. Pooling layers ensure us that the learned 

function is invariant to the small changes in the input data and 

thus improve the generalization ability of the network.  Figure 1 

demonstrates an example of the max pooling operation on the 

input units. Pooling kernel size and stride are considered as 3 and 

2 respectively. For the last unit, a pooling size of 1 was applied 

in order to consider the information of all the units.     
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Figure 1: max pooling operation on the input units (Goodfellow 

et al, 2016). 

 

2.1.5 Fully connected layer: Fully connected layers are 

usually placed at the end of a CNN. These layers are the same as 

the weight layers of a Multi-Layer Perceptron and can be 

considered as a convolutional layer with a filter size of 1×1. The 

input data are multiplied by a weight matrix and are added to a 

bias vector and after passing through the activation function f the 

output vector is obtained. In Equation (4), y is the output the 

network which can be a classification label and f is the activation 

function. The W matrix and b vector are the trainable parameters 

of the fully connected layer and are referred to as the weight and 

bias vector.  

 

                                    𝑦 = 𝑓(𝑊𝑇𝑥 + 𝑏)                                         (4) 

 

 

3. PROPOSED METHOD 

Figure 2 shows the steps of the proposed method. In this paper, 

post-classification change detection method is implemented to 

extract flooded areas. The mentioned method contains three main 

steps: 1) Data pre-processing and preparation, 2) Classification, 

3) Change detection.  In the first step, radiometric and geometric 

calibrations are implemented on the acquired satellite images to 

obtain sigma naught values of each pixel in the azimuth and 

ground range directions. Each calibrated data is stacked with the 

SRTM DEM and then, in order to feature scaling all the feature 

layers are normalized. In the second step, for each dataset, the 

classification model is trained and the classified map is 

generated, separately. In the last step, the change map can be 

extracted by comparing the classified maps.  

 

Our proposed classifier network in this work contains two 

convolutional layers connected to a multi-layer perceptron with  

two fully-connected hidden layers as a classifier. Each 

convolutional layer contains two-dimensional 3 by 3 filters that 

convolve with input patches. In order to increase nonlinearity of 

the model, rectified linear unit (ReLU) function is used as 

activation function in every layer of the network. Drop-out and 

batch-normalization layers are considered in order to increase the 

network’s stability and generalization ability. Layers are ordered 

as: 

 

 Input patch with the size of 5×5 equivalent to 50m×50m on 

the ground 

 

 First convolutional layer: 

50 filters with 3×3 kernel size, 

ReLU activation function, 

10% dropouts and batch normalization 

 

 Second convolutional layer: 

50 filters with 3×3 kernel size, 

ReLU activation function, 

10% dropouts and batch normalization 

 

 Flattening convolutional layers output in a one-dimensional 

vector 

 

 First fully connected layer: 

100 dense neurons 

ReLU activation function 

50% dropouts and batch normalization 

 

 Second fully connected layer: 

100 dense neurons 

ReLU activation function 

50% dropouts and batch normalization 

 

 Output layer: 

Neurons equal to the number of labels 

Softmax activation function 

 

4. RESULTS AND DISCUSSIONS 

In this section, we examine our proposed network on a case 

study from a flooded area in Poldokhtar, Iran. Figure 3 

demonstrates the google earth view, digital elevation model, 

and VV polarized decibel image of Sentinel-1 data before 

and after occurring flood of our study area. This area 

contains the urban area, agricultural lands, bare soils, 

vegetated area and river, and wetlands. Therefore, our 

selected labels are Water, Vegetation, Bare soils, and Urban 

area. Our available data are dual-polarized ground range 

detected (GRD) Sentinel-1 data (VV-VH) and SRTM
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Figure 2. Flowchart of the proposed method 

 

digital elevation model (DEM). Table 1 summarizes the main 

specifications of the used data. We use these three layers of the 

data (VV, VH, and DEM) as input feature cube to the proposed 

network. The acquired results from our CNN-based network are 

compared with two other simpler networks: the first network is a 

convolutional network with a similar architecture to our proposed 

network but with one-dimensional filters, and the second is a 

simple multi-layer perceptron network with the completely 

similar architecture of our proposed network’s fully-connected 

section. 

 

 

 

 

 

 

 

 
Satellite 

Imagery 

Acquisition 

date 

Frequency 

Band 

(GHz) 

Polarization Resolution 

(Range×Az.) 

(m) 

Sentinel-1 2019/03/03 C (5.4) VV/VH 20×22 

Sentinel-1 2019/04/02 C (5.4) VV/VH 20×22 

DEM Ground Resolution (m) Vertical Precision (m) 

SRTM 30×30 16 

Table 1. Used data specifications 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. Study area in Poldokhtar, Iran (a) Google Earth view 

(b) SRTM DEM (c) Sentinel-1-VV, before occurring flood (d) 

Sentinel-1-VV, after occurring flood 

 

We examined the performance of our proposed network with 

different training sizes. Obtained overall accuracy (OA) of the 

test data with different training sizes for three different artificial 

neural network architectures are gathered in table 2. The second 

column of this table belongs to our proposed network and third 

and fourth columns belong to results obtained from 1-D CNN and 

MLP. All three networks were trained with the learning rate of 

0.00003 in 400 epochs. By changing the training size, test overall 

accuracy of the 1D and 2D CNN-based classifiers vary between 

91.03% ~ 93.57% and 94.90% ~ 98.5%, respectively. However, 

test overall accuracies obtained from the simple MLP network 

varies between 69.4% ~ 83.07%. By comparing these results, we 

can notice that convolutional layers improve the classification 

results more than 10% in every case. In addition to that, it is 

noticeable that CNN-based models are robust to training data 

size. 

 

Train 

Samples 

Test OA (%) 

2D CNN+MLP 1D CNN+MLP MLP 

100 94.90 91.03 69.4 

200 97.23 92.31 76.88 

300 98.5 93.57 83.07 

Table 2. Obtained classification results for different training 

samples 

 

Tables 3-5 indicate obtained classification results for every class, 

based on simple MLP, 1-D CNN-FC, and 2-D CNN-FC 

classifiers, respectively. As table 3 shows, classification results 

of the simple MLP contains poor results in some classes such as 

vegetation. Thanks to deep and nonlinear feature extraction of 

convolutional layers, acquired results of the CNN-based 

classifiers (tables 4, 5) are superior to the simple MLP model. 

Also, 2-D CNN-FC classifier due to deep spatial feature 

extraction in each input layer has obtained the best classification 

result compared to other mentioned methods.  

 
Train Samples 100 200 300 

 Test OA (%) 

Water 88.4 88.2 87.9 

Vegetation 19.6 56.3 65.6 

Bare soil 89.3 84.4 90.6 

Urban 82.3 86.9 87.4 

Table 3. Obtained classification results of every class for 

different training sizes for the simple MLP 

 
Train Samples 100 200 300 

 Test OA (%) 

Water 99.1 99.1 99.3 

Vegetation 87.4 92.4 96.2 

Bare soil 89.6 91.5 91.7 

Urban 92.5 92.3 93.1 

Table 4. Obtained classification results of every class for 

different training sizes for the proposed 1-D convolutional 

network 

 
Train Samples 100 200 300 

 Test OA (%) 

Water 99.1 99.1 99.7 

Vegetation 93.7 98.1 99.6 

Bare soil 96.1 96.9 98.9 

Urban 94.2 96.8 97.5 

Table 5. Obtained classification results of every class for 

different training sizes for the proposed 2-D convolutional 

network 

 

After evaluating the proposed network’s performance, All the 

ground truth data from the first and second dataset are fed to the 

classifier network to train each model separately. Table 6 shows 

the classification results of the second dataset based on the 

proposed 2-D CNN-FC method. Figure 4 (a) shows the ground 

truth map of the study area, which is collected with the help of 
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Google earth’s high-resolution visible imagery. Figure 4 (b, c) 

show the generated land cover map of the study area before and 

after occurring the flood, respectively. 

 
Train Samples 100 200 300 

 Test OA (%) 

Water 98.2 98.2 99.3 

Vegetation 92.4 96.3 98.7 

Bare soil 95 98.3 97 

Urban 88.3 93.6 97.5 

OA 93.3 96.29 97.62 

Table 6. Classification results of the second dataset for the 

proposed 2-D convolutional network 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4. (a) Ground truth map and (b) Classified map of the 

study area before the flood (c) Classified map of the study area 

after flood 

 

By comparing the two classified maps we can estimate the water 

inundated areas. Figure 5 shows water inundated areas after 

happening flood in our study area, where white areas indicate the 

water-covered area after occurring the flood. In order to reduce 

the influence of the classification error, water inundated map is 

used as a mask and only the flooded area is studied. The final 

change map is shown in figure 6. Also, Table 7 indicates areas of 

changed classes to water class individually in squared meters, by 

considering that every pixel-size is 10m×10m. Based on this table, 

about 2591100 (m2) of vegetated areas are covered by water. 

Also, 19500 (m2) of bare lands and 29400 (m2) of urban areas are 

covered by water after occurring flood.  

 

 

 
Figure 5. Water inundated map 

 

 
Figure 6. Change map 

 

 

Class labels Vegetation Bare soil Urban 

Changed area (m2) 2591100 19500 29400 

Table 7. Water covered areas after occurring flood divided by 

every class 

 

5. CONCLUSION 

This paper presented a classification method based on two-

dimensional convolutional neural networks in order to classify 

and extract flooded areas from Sentinel-1 satellite radar imagery 

and SRTM digital elevation model. The proposed network was 

applied for land cover mapping of a study area, before and after 

occurring flood. The results of the proposed network compared 

with results of one dimensional CNN and a simple MLP network 

indicate more than 10% of improvement in classification 

accuracy. After classifying before and after flood images, water 

inundated areas were extracted and divided by each class. 
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