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ABSTRACT:  
 

High spectral dimensionality of hyperspectral images makes them useful data resources for earth observation in many remote sensing 

applications. In this case, the convolutional neural network (CNN) can help to extract deep and robust features from hyperspectral 

images. The main goal of this paper is to use deep learning concept to extract deep features from hyperspectral datasets to achieve 

better classification results. In this study, after pre-processing step, data is fed to a CNN in order to extract deep features. Extracted 

features are then imported in a multi-layer perceptron (MLP) network as our selected classifier. Obtained classification accuracies, 

based on training sample size, vary from 94.3 to 97.17% and 92.35 to 98.14% for Salinas and Pavia datasets, respectively. These 

results expressed more than 10% improvements compared to the classic MLP classification technique.  
 

 

1. INTRODUCTION 

Hyperspectral images mostly contain hundreds of spectral bands 

that can make a continuous spectral signature for every 

observed pixel (Chang, 2003). This property makes them useful 

for earth observation, and remote sensing tasks such as image 

classification, anomaly detection, and target detection. 

However, high dimensional data needs a high amount of labeled 

samples to obtain reliable results. This problem, known as the 

Hughes phenomenon, may cause redundancies and disturbances 

(Hughes, 1968; Yu et al., 2017). Therefore, the classification of 

hyperspectral images has always been an important and 

challenging problem in remote sensing communities.  

 

In the last two decades, various classification algorithms, 

specifically based on machine learning techniques, have been 

proposed for hyperspectral image classification. Recently, the 

state-of-the-art deep-learning (DL) based methods have 

contributed a great improvement (Zhang et al., 2016). For 

example, Chen et al., (2014) employed stacked autoencoder 

containing five layers as deep architecture to a hyperspectral 

image transformed by Principal Component Analysis (PCA) in 

order to extract deep features to be fed in Support Vector 

Machine (SVM) classifier. Also, Yue et al., (2015) proposed a 

CNN-based spectral-spatial classifier for hyperspectral data 

classification after transforming the data using the PCA in order 

to cancel data redundancy and dimension reduction. The 

transformed image was fed to a four-layer CNN and logistic 

regression network to classify each pixel of the image. In (Hu et 

al., 2015), the authors trained a feed-forward neural network 

with five layers including an input layer, one-dimensional (1-D) 

convolutional layer, a max-pooling layer, a fully connected 

layer, and an output layer.  

 

Handling the overfitting problem in hyperspectral image 

classification has been investigated in many studies. For 

instance, (Chen et al., 2016) proposed a deep CNN architecture 

containing L2 regularization terms and dropouts to avoid 

overfitting. In another study, Chen et al., (2017) combined 

Gabor filtering with CNN to converge faster and avoid 

overfitting. Limited training samples in relation to high 

parameters of CNN was also studied in (Yu et al., 2017) by 

considering data augmentation, appropriate convolutional 

kernel size, larger drop rates in the dropout layers, discarding 

the most commonly used max-pooling layers and fully 

connected layers. Another DL-based classification method 

named RPNet (Random Patches Network) was designed by Xu 

et al., (2018). In their network, convolutional kernels are 

selected randomly from input patches without any training. 

Recently, a novel framework called multiple convolutional 

layers fusion, which aims to fuse extracted information from 

different convolutional layers for HSI classification, was 

proposed by Zhao et al., (2019). Moreover, the multiscale 

convolution and diversified metric to obtain discriminative 

features for hyperspectral image classification was developed by 

Gong et al., (2019). Their CNN consists a multiscale filter bank, 

a concatenate layer to combine these multiscale features, and a 

fully connected layer to extract global features.  

  

In this paper, we are going to investigate the classification of 

hyperspectral imagery by exploiting convolutional neural 

networks as a deep feature extractor. The remainder of this 

paper is organized as follows: Section 2 explains the theoretical 

background, and the methodology utilized in the paper. Section 

3 describes the investigated datasets. Experimental results and 

discussions are gathered in section 4, and finally, the 

conclusions of the paper are presented in section 5. 

 

2. METHODOLOGY 

Figure 1 shows the framework of the proposed method for 

hyperspectral image classification. As can be seen from this 

figure, the proposed method includes data pre-processing, 

feature extraction, and classification. The pre-processing step 

consists of normalization, denoising, and dimensionality 

reduction. In the feature extraction step, a number of useful 

descriptors are extracted from the input data and are then fed to 

the classifier step in order to discriminate different classes and 

generate the classified map. More details of each step are 

described in the following subsections. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W18, 2019 
GeoSpatial Conference 2019 – Joint Conferences of SMPR and GI Research, 12–14 October 2019, Karaj, Iran

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W18-535-2019 | © Authors 2019. CC BY 4.0 License.

 
535



 

 
Figure 1. The proposed framework for classification of 

hyperspectral images.  

 

2.1 Data Pre-processing 

Raw input data usually includes noise, disturbance, and 

redundancy that needs to be fixed before entering to the main 

processing steps. Also, input layers may have a different scale 

and dynamic ranges that can affect other layers. Inherently 

scaling and whitening the input data, PCA can transform the 

input data into a space that data has the largest variations in 

every axis (Theodoridis and Koutroumbas, 2009). As a result, in 

our proposed classification method, after normalization of the 

input data, the PCA transformation is also performed. 

 

2.2 CNN as Deep Feature Extractor 

Complex scattering mechanisms, atmospheric effects, intraclass 

variabilities, and low signal-to-noise ratio (SNR) in 

hyperspectral images may deform the spectral characteristics of 

the object of interest, and make it difficult to extract effective 

features (Chen et al., 2016). Therefore, in the proposed 

framework, CNN is used as a deep feature extractor to extract 

high-level and robust features. A typical layer of a 

convolutional network consists of three stages. In the first stage, 

the layer performs several convolutions in parallel to produce a 

set of linear activations. Second, each linear activation is run 

through a nonlinear activation function such as the rectified 

linear activation function. This stage is sometimes called the 

detector stage. In the third stage, a pooling function is used to 

modify the output of the layer (Goodfellow et al., 2016; Hu et 

al., 2015).  

 

The input cube-data is decomposed to a 3D patch of dimensions 

r×c×d, where r and c correspond to the rows and columns of the 

patch and d to its depth (number of input bands). Each of these 

patches contains spectral and spatial information of centered 

pixel and its neighbors. Each patch is fed to network and after 

convolving with filters at every convolutional layer, deep 

features are eventually extracted in the final layer. These 

features are then fed to the MLP classifier which is responsible 

for the classification task. 

  

2.3. Multi-layer perceptron classification 

The last step after feature extraction is to classify the feature 

map into labels of interest. The MLP is a suitable choice in 

solving classification problems especially in the case of using 

deep features. In this case, deep feature extractor and the 

classifier can be stacked to generate an integrated system for 

classification. MLP generally consists of three main parts. The 

first part is the input layer that gets a vector containing features 

of interest. The second part involves hidden layers with plenty 

of fully connected neurons and activation function to apply non-

linearity to linear matrix multiplications. The third phase is the 

output layer that usually includes neurons equal to the number 

of labels. Each neuron of the output layer represents a class 

label and represents a probability value. The winner neuron or 

the selected label for an input feature vector would be the 

neuron with the highest probability (Theodoridis and 

Koutroumbas, 2009). 

 

3. DATASET 

In this research, the proposed method is tested on two famous 

datasets. The first one is Salinas dataset collected by the 224-

band AVIRIS sensor over Salinas Valley, California, and is 

characterized by high spatial resolution (3.7-meter pixels). The 

water absorption bands, in this case, bands: [108-112], [154-

167], 224 are discarded. Salinas ground truth contains 16 

classes. The color composite of this image and the 

corresponding ground truth data are shown in Figure 2-a and 2-

b, respectively.  
 

  
(a) (b) 

  
(c) (d) 

Figure 2. Salinas and PaviaU datasets (a) False color of Salinas (b) 

Ground-Truth of Salinas (c) False color of PaviaU (d) Ground-Truth 

of PaviaU 
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The second dataset, named Pavia University (PaviaU), was 

captured over an urban area surrounding the University of 

Pavia, Italy, and was recorded by the ROSIS-03 sensor. The 

image is of size 610×340×115 with a spatial resolution of 1.3 m 

per pixel, and spectral coverage ranging from 0.43 to 0.86 m. In 

the experiments, 12 noisy bands have been removed and the 

remaining 103 spectral channels were used for classification. 

Nine classes of interest are considered in the ground truth of 

this image. The color composite of this data and the 

corresponding ground truth the  in Figure 2-c and 2-d. 

 

4. RESULTS AND DISCUSSION  

After preparing input data by normalizing every layer and PCA 

transform at the pre-processing step, different network 

configurations on the mentioned datasets were performed. Mini-

batch Adam optimizer (Kingma and Ba, 2014) was used  

with a learning rate of 0.00005 and batch-size of 50. 

Categorical cross-entropy was used as loss function in order to 

calculate classification error in every epoch. Also, 100 training 

samples were used to train neural networks. Input data to 

network is the first ten bands of PCA-transformed hyperspectral 

image that include more than 99.9% of the information of the 

original data. In this paper, different architectures based on the 

number of convolutional and fully-connected layers are 

investigated. For this purpose, in single-layered scenarios such 

as using only one convolutional layer, 100 filters are 

implemented, but when using two convolutional layers, the 

number of filters implemented for each layer is 50. Similar to 

that, for fully-connected section of the network, 100 neurons are 

used in single-layered scenarios and in double-layered 

scenarios, 50 neurons are implemented in each hidden layer. 

Also, in order to improve the network’s stability and 

generalization 10% dropout and batch normalization were 

considered. ReLU activation function was used in every layer to 

increase nonlinearity of the generated model. Convolutional 

filters are 3×3 filters, and outputs were zero-padded after every 

convolutional layer to keep data patches at the fixed 

dimensions. Table 1 summarizes the constant parameters that 

are used in the implemented networks. 

 

Optimizer Adam 

Learning rate 0.00005 

Mini-batch size 50 

Loss function 
Categorical Cross-

Entropy 

Epochs <1000 

Training Samples 100 

Feature conditioning 0.999 

Dropout 10% 

Conv. Filters 100 (50+50) 

FC Neurons 100 (50+50) 

Activation Function ReLU 

Kernel size 3×3 

Padding same 

Table 1. Constant parameters used for investigating network 

performance 

 

Figure 3 shows the visual classification results of the Salinas 

dataset using simple MLP with one and two hidden layers. In 

this case, 100 random samples per each class, are selected and 

used as the training dataset. 

 

  
                         (a)                                          (b) 

Figure 3. Classification results of the Salinas with simple MLP 

containing (a) one hidden layer (b) two hidden layers 

 

Various combinations of the convolutional and fully-connected 

layers with different input patch sizes were tested in order to 

find the optimal classifier network architecture. Three input 

patch sizes with dimensions of 3×3, 5×5, 7×7 were tested. Also, 

number of the tested convolutional and fully-connected layers 

vary between 1-2 and 0-2, respectively.  

 

Figure 4 shows the visual classification results of the Salinas 

dataset based on the explained combinations. In this case, 100 

random samples per each class, are selected and used as the 

training dataset. Also, quantitative results of the conducted 

experiments are gathered in Table 2. Every cell of this table is 

the obtained overall accuracy of the Salinas dataset for a 

specific experimented classifier network. 

 

Exploiting 2-D convolutional layers makes the extraction of 

deep spatial features possible. Therefore, As Table 2 indicates, 

CNN has made about 10% improvement in the classification 

accuracy. Also, using bigger patch-size helps to extract more 

spatial features. However, the main drawback of the larger input 

patch size is increasing the number of trainable parameters of 

the network which cause much computational cost. Moreover, it 

can be noticed that the best result was obtained when the input 

patch-size is 7×7 and the network contains two convolutional 

and two fully-connected layers. Figure 5 shows the obtained 

optimum architecture in details.  

 

Patch 

Size 

CNN 

layers 

Fully-Connected Layers 

0 1 2 

Train 

(%) 

Test 

(%) 

Train 

(%) 

Test 

(%) 

Train 

(%) 

Test 

(%) 

P=3 
1 96.64 91.22 98.83 92.11 97.58 91.85 

2 96.56 90.49 97.27 90.15 98.12 92.20 

P=5 
1 96.72 90.82 99.22 92.61 97.5 91.71 

2 97.58 91.62 98.67 92.32 98.91 92.54 

P=7 
1 98.91 92.07 99.30 92.40 99.38 92.44 

2 99.06 91.86 99.45 92.80 98.91 94.3 

MLP 86.16 81.99 89.92 83.18 

Table 2. Obtained classification results of the Salinas dataset 

different network configurations 
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Figure 4. Classification results of the Salinas dataset by 2-D convolutional feature extraction with different input patch sizes. 

 

 
 

Figure 5. Architecture of the optimum network based on the 

results of Table 2. 

 

The obtained optimum network was also tested with various 

training samples. Figure 6 shows the classified maps of the 

Salinas dataset, obtained by training the optimum network with 

100, 200, 300, and 400 samples of each class. The evaluation 

results of each classified map are gathered in Table 3. It can be 

seen there is direct relation between the accuracy and the 

number of training sample. In other words, the higher the 

number of training data, the higher the accuracy obtained. In 

which, the overall accuracy of the test data has increased from 

94.3% to 97.17% by changing the number of training samples 

from 100 to 400.  

 

The optimum selected network was also trained on PaviaU 

dataset. The classified maps and accuracy assessment of the 

various training samples for this dataset are shown in Figure 7 

and Table 4. Based on these results, our proposed network has 

an overall accuracy of 98.14% when 400 samples of every class 

were used to train the network.  
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(a) (b) (c) (d) 

Figure 6. Classification results of Salinas with 7×7 input patch with 2 convolutional layers and 2 fully-connected layers trained with 

(a) 100 training samples (b) 200 training samples (c) 300 training samples (d) 400 training samples 

 

    
(a) (b) (c) (d) 

Figure 7. Classification results of Pavia with 7×7 input patch with 2 convolutional layers and 2 fully-connected layers trained with 

(a) 100 training samples (b) 200 training samples (c) 300 training samples (d) 400 training samples 

 

 

Training Samples Train OA (%) Test OA (%) 

100 98.91 94.3 

200 98.84 96.06 

300 99.74 96.23 

400 99.92 97.17 

Table 3. Results obtained for classification of Salinas after 

training different train samples 

 

Training Samples Train OA (%) Test OA (%) 

100 100 92.35 

200 98.75 95.28 

300 100 97.38 

400 100 98.14 

Table 4. Results obtained for classification of PaviaU after 

training different train samples 

 

5. CONCLUSION 

In this paper, convolutional neural networks were exploited in 

order to extract deep features from a hyperspectral image. The 

main process includes three steps: preprocessing, feature 

extraction, and classification. Different architectures of CNNs 

were investigated in order to extract deep features and obtain 

better classification results. In the end, extracted features were 

fed to an MLP network to classify input data. Salinas and 

PaviaU as two famous datasets of hyperspectral images were 

used in our experiments. By comparing the experimental results 

of CNN based classification architectures with simple MLP, 10-

15% of improvements in overall accuracy can be found. 
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