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ABSTRACT: 

 

Three-dimensional building models are important in various applications such as disaster management and urban planning. In this 

paper, a method based on the fusion of LiDAR point cloud and aerial image data sources has been proposed. The first step of the 

proposed method is to separate ground and non-ground (that contain 3d objects like buildings, trees, …) points using cloth 

simulation filtering and then normalize the non-ground points. This research experiment applied a 0.1 threshold for the z component 

of the normal vector to remove wall points, and 2-meter height threshold to remove off-terrain objects lower than the minimum 

building height. It is possible to discriminate vegetation and building based on spectral information from orthoimage. After 

elimination of vegetation points, the mean shift algorithm applied on remaining points to detect buildings. This method provides 

good performance in dense urban areas with complex ground covering such as trees, shrubs, short walls, and vehicles. 
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1. INTRODUCTION 

The automatic extraction of accurate building boundaries is 

important geospatial information that is indispensable for 

several applications (Gilani, Awrangjeb, & Lu, 2015). Building 

information is extremely important for many applications such 

as urban planning, telecommunication, or environmental 

monitoring, etc. Automated techniques and tools for data 

acquisition from remotely sensed imagery are urgently needed. 

This paper presents an automatic approach for building 

extraction from airborne LIDAR data. 

Researches performed according to different performance 

criteria such as: data sources, level of user interaction, 

geometrical accuracy, model integrity, and applications. 

Although modeling systems differ according to these criteria, 

obtaining data seriously affects the characteristics and utility of 

the models. With the development of laser scanner technology, 

the system has become a viable and conventional data source 

for detailed mapping of structures. With the evolution of 

technology related to light detection and distance detection, 

density and accuracy of points cloud have been steadily 

increasing. In recent years, several methods have been proposed 

for building extraction. The algorithms comprise methods that 

only employ LIDAR point cloud for model generation (M. 

Awrangjeb, Fraser, & Lu, 2015; Feng, Zhang, Li, Jin, & Xia, 

2019; R. Huang et al., 2018; Tomljenovic, Tiede, & Blaschke, 

2016; Varghese, Shajahan, & Nath, 2017) while some others 

use additional data sources such as aerial or satellite imagery 

(Akbulut, Özdemir, Acar, & Karsli, 2018; Mohammad 

Awrangjeb, Zhang, & Fraser, 2013; Dal Poz & Fernandes, 

2017; Dong, Kyoung, & Sang, 2008; J. Huang, Zhang, Xin, 

Sun, & Zhang, 2019; Maltezos & Ioannidis, 2015; Moussa, 

2012; Teo & Chen, 2004; Zhou, Member, & Zhou, 2014). 

Therefore, different methods can be categorized into sources 

based on photogrammetric sensors, active sensors, and 

combinations of them (Hu, You, & Neumann, 2000). 
The most challenging factor confronted in boundary delineation 

is building shape variability and surrounding environment 

complexity. In order to deal with various building types, a new 

method for automatic building detection through effective 

integration of LiDAR data and multispectral imagery  (Gilani et 

al., 2015). A data-driven approach was proposed, yields the 

complementary advantages from both the LiDAR data and 

multispectral image. The initial building positions are obtained 

after connected component analysis carried on LiDAR data. 

Then, the multispectral image is used to eliminate false objects 

and vegetation, detect buildings, and delineate the 

corresponding building boundaries. The final building boundary 

is obtained by extending the initial position using both the data 

sources.  The extracted line features are essential elements to 

form building outlines and can be useful to reconstruct 3D 

building models(Tseng & Hung, 2016). Although most building 

boundary lines were extracted, building outlines seem to 

incomplete due to some missing lines. The use of first and 

intermediate laser returns can significantly improve the 

detection of building outlines. However, misdetection and 

double edges cannot be avoided due to some complicated roof 

structures. Insufficient point density of the could be one of the 

reasons of getting bad results.  An automatic method for the 

extraction of building roof boundaries with the integration of 

LiDAR data and the aerial image was presented (Awad, 2017). 

Polylines extracted from LiDAR data that represent 

aboveground objects are projected onto the image to extract the 

same objects in image space. The process of identifying 

polylines that represent building roof boundaries is performed 

through the GA algorithm of the MRF-based energy function. 

Some types of segmentation failures of the LiDAR data caused 

the incorrect segmentation of the selected sub-image.  

A new top-down strategy method is proposed to extract 

buildings solely based on airborne LiDAR point clouds (R. 

Huang et al., 2018). They separate the ground and non-ground. 

Then, a top-level processing is used to recognize building 

regions via surface characteristics and penetrating capacities, 

which are calculated based on the object entity replacing the 

point and segment entities. Finally, non-building points are 

removed from building regions by a down-level processing. 
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However, a few buildings may be erroneously removed when 

the point density is too low or the size is too small. Also, an 

active contour algorithm is used based on the fusion of  LiDAR 

data with imagery (Akbulut et al., 2018). In areas where the roof 

and its surroundings are spectrally similar, the addition of 

height information allows the roof and ground to be 

distinguished by the algorithm. Afterward, shadows and 

vegetation areas were removed from both LiDAR and image 

data by calculating band ratios to prevent active contour 

algorithm from expanding to these areas. Active contour 

algorithm needs mask locations which is created automatically 

from the image dataset by using morphological operations and 

optimum iteration number to extract buildings from integrated 

data. A novel method, DBCS, was proposed to extract buildings 

from airborne LiDAR point clouds (X. Huang, Cao, & Cao, 

2019). The algorithm is based on a density-based spatial 

clustering technique, using the spatial index to improve 

performance. Since the data acquired by LiDAR systems are 

usually non uniformly distributed, the average point spacing in 

along and across scan directions is not equal, neighborhood 

retrieving within an ellipse or a rectangle where its axes 

conform to the scanning direction may be preferable. Also, 

some buildings are connected to each other that cannot be 

differentiated from LiDAR data only.  

This paper focuses on the process of the segmentation of 

individual buildings from airborne LiDAR point clouds of an 

urban area which contain buildings, trees, cars shrubs, and other 

different regions. A density-based clustering method (mean 

shift) is utilized in the automatic individual building 

segmentation process. In this research, we have used a data-

driven method based on using irregular point cloud dataset. 

Also, orthoimage is used for the detection of vegetation points. 

 

 
 

 

Based on the RMBR algorithm, an IMBR algorithm proposed 

to extract a complete and accurate regularized boundary of a 

partially occluded building with orthogonal or parallel sides 

(Feng et al., 2019). The proposed algorithm avoids the 

influence of false initial boundary points on the MBR during 

each step and obtains an accurate regularized boundary. The 

IMBR algorithm automatically determines the false initial 

boundary points using the topological relationship between the 

tree boundary and the initial building boundary. 

2. PROPOSED METHOD  

Figure 1. presents the proposed workflow for the extraction of 

buildings from the LiDAR point cloud. 

2.1 Filtering 

Separating point clouds into the ground and non-ground 

measurements is an essential step to the detection of buildings 

on the terrain surface from LiDAR data. However, most 

filtering algorithms need to carefully set up a number of 

complicated parameters to achieve high accuracy.   

 

Figure 2. Overview of the cloth simulation algorithm (Zhang et 

al., 2016) 

 

 

 

 

 

 

 

 

 

 

 

 

In this research, we used a filtering method which only needs a 

few easy-to-set integers and Boolean parameters  (Zhang et al., 

2016). Within this approach, a LiDAR point cloud is inverted, 

and then a rigid cloth is used to cover the inverted surface. By 

analyzing the interactions between the cloth nodes and the 

corresponding LiDAR points, the locations of the cloth nodes 

can be determined to generate an approximation of the ground 

surface. Finally, the ground points can be extracted from the 

Figure 1. Flowchart of the proposed method 
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LiDAR point cloud by comparing the original LiDAR points 

and the generated surface. The output of the filtering method is 

illustrated in figure 3. 

 

Figure 3. Result of filtering, blue (ground points) and red 

(above ground points such as: tree, building, car, …) 

2.2 Elimination of near ground and wall points 

In order to eliminate wall points, the third element of the normal 

vector. In this paper PCA (Liu & Mason, 2009) algorithm has 

been used to calculate the normal vector and the experiment 

applied a 0.1 threshold on the third component of the normal 

vector for eliminating wall points, also 2-meter height threshold 

to remove non-ground objects lower than the minimum building 

height. Figure 4 shows the output of this stage. 

 

 
Figure 4. Dataset after elimination of points that belong to 

vertical objects such as: wall points 

2.3 Vegetation detection 

Additional reflectance information delivered by some airborne 

laser scanner sensors or multi-spectral imagery may be useful to 

distinguish vegetation from buildings. In this paper buildings 

and vegetation are discriminated by utilization of “EXG” 

vegetation index. In figure 5 vegetations are represented by 

green points. 

EXG = 2*ρgreen – ρred – ρblue   (1) 

 

Figure 5. Detection of trees and vegetation points  

2.4 Mean Shift Segmentation 

Mean-shift is an algorithm for nonparametric density gradient 

estimation using a kernel. A mode means a local density 

maximum. It was first proposed by Fukunaga and Hostetler to 

calculate density gradient (Fukunaga & Hostetler, 1975). 

The main idea behind the mean shift is to treat the points in the 

d-dimensional feature space as an empirical probability density 

function where dense regions in the feature space correspond to 

the local maxima or modes of the underlying distribution 

(Derpanis, 2005). For each data point in the feature space, one 

performs a gradient ascent procedure on the local estimated 

density until convergence. The stationary points of this 

procedure represent the modes of the distribution. Furthermore, 

the data points associated (at least approximately) with the same 

stationary point are considered members of the same cluster. 

 

Figure 6. Mean shift procedure (Derpanis, 2005) 

 

 

3. EXPERIMENT AND RESULT 

The presented algorithm is applied to the Vaihingen test data set 

provided by DGPF also contains Airborne Laserscanner (ALS) 

data. The entire DGPF data set consists of 10 ALS strips 

acquired on 21 August 2008 by Leica Geosystems using a Leica 
ALS50 system with 45° field of view and a mean flying height 

above ground of 500°m. The median point density is 6.7 points 

/ m2. Point density varies considerably over the whole block 

depending on the overlap, but in regions covered by only one 

strip, the mean point density is 4 points / m2. Figure 7 

illustrates the LiDAR data of residential areas and orthoimage 

of the test area is shown in Figure 8. 
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Figure 7. The ALS data of the Vaihingen test site 

 

Figure 8. The orthoimage of the test site 

 

Figure 6 illustrates the final result of extracted buildings by the 

proposed approach. Ground reference data for existing 

buildings in the study area is also shown in Figure 7. By 

comparing these two images, the efficiency and capability of the 

proposed method can be visually evaluated. 

 

 

Figure 9. Detected buildings by the proposed method 

 

Figure 10. Reference data for building extraction 

 

 

3.1 QUANTITATIVE CRITERIA  

For evaluation of the building extraction quality, the results of 

the automatic procedure and also the reference building 

database were compared. The extracted buildings were 

compared one by one to the buildings in reference data (ground 

truth). The standard statistical parameters are defined and 

measured as follows (Haala and Brenner, 1999): 

1. True positive (TP) – both the automated method 

and the reference building database label a point as a 

building;  

2. True negative (TN) –both the automated method 

and the reference building database label a point as 

background (non-building);  

3. False-positive (FP) –only the automated method 

labels a point as a building;  

4. False-negative (FN) –only the reference 

building database labels a point as a building;  

Using these four categories, the following statistical measures 

were computed to evaluate the performance of the automated 

building extraction process. 

 

Number of buildings in ground reference data: 57 

Number of detected buildings: 46 

TP = 45 

FP = 1 

FN = 12 

Branching Factor = 0.022 Detection Ration = 0.789 

Correctness = 0.978 Completeness = 0.789 

Miss Factor = 0.267 Quality Ration = 0.776 
 

As shown in Figure 9 and Figure 10 most of the buildings that 

are not identified by the method are small buildings. This is due 

to the definition of the altitude threshold and the minimum 

number of points in each section. 
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4. CONCLUSION 

In this study, using different features of irregular lidar point 

cloud and orthoimage, a method was proposed for building 

detection and extraction. First, using the simulation filtering 

method, the point cloud is divided into two groups of and non-

ground points, and then the lidar point cloud is converted into 

normalized points by the difference of the height of the ground 

points from the non-ground points. Then, using a height 

threshold, points less than 2 m in height are excluded from the 

dataset. Then, using normal vector analysis, the points on the 

walls and vertical facets are also eliminated. In the next step, 

lidar points were transformed to the image space and the 

vegetation index of each point is calculated using spectral 

values and using a certain threshold value, the points that are 

identified as vegetation and trees are eliminated from the data 

set. In the final step, by applying the mean shift segmentation 

algorithm, the set of candidate points of the building are 

subdivided into separate buildings. As shown in results the 

proposed method is efficient to the extraction of usual building, 

although some small buildings with lower heights are not 

identified and extracted. 
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