
BUILDING OUTLINE EXTRACTION FROM AERIAL IMAGES USING 

CONVOLUTIONAL NEURAL NETWORKS 
 

 

F. Alidoost 1, H. Arefi 1, *, F. Tombari 2 

 
1 School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Iran -  

(falidoost, hossein.arefi)@ut.ac.ir  
2 Chair for Computer Aided Medical Procedures & Augmented Reality, Faculty of Informatics, Technical University of Munich, 

Germany - tombari@in.tum.de 
  

 

 

 

KEY WORDS: Building Detection, Deep Learning, Active Contour Models, Selective Search, Depth Prediction 

 

 

ABSTRACT: 

 

Automatic detection and extraction of buildings from aerial images are considerable challenges in many applications, including disaster 

management, navigation, urbanization monitoring, emergency responses, 3D city mapping and reconstruction. However, the most 

important problem is to precisely localize buildings from single aerial images where there is no additional information such as LiDAR 

point cloud data or high resolution Digital Surface Models (DSMs). In this paper, a Deep Learning (DL)-based approach is proposed 

to localize buildings, estimate the relative height information, and extract the buildings’ boundaries using a single aerial image. In 

order to detect buildings and extract the bounding boxes, a Fully Connected Convolutional Neural Network (FC-CNN) is trained to 

classify building and non-building objects. We also introduced a novel Multi-Scale Convolutional-Deconvolutional Network (MS-

CDN) including skip connection layers to predict normalized DSMs (nDSMs) from a single image. The extracted bounding boxes as 

well as predicted nDSMs are then employed by an Active Contour Model (ACM) to provide precise boundaries of buildings. The 

experiments show that, even having noises in the predicted nDSMs, the proposed method performs well on single aerial images with 

different building shapes. The quality rate for building detection is about 86% and the RMSE for nDSM prediction is about 4 m. Also, 

the accuracy of boundary extraction is about 68%. Since the proposed framework is based on a single image, it could be employed for 

real time applications.  

 

 

1. INTRODUCTION 

One of the most important applications of remotely sensed data 

focuses on the detection/extraction, identification, localization 

and characterization of man-made structures including buildings. 

Precise and up-to-date information regarding the buildings’ 

locations are essential and invaluable for various application such 

as search and rescue, monitoring, security and surveillance, 

navigation, and civil infrastructure inspection. On the other hand, 

with the advent of remote sensing technologies and artificial 

intelligent techniques, demands and interests of using aerial 

images for 3D localization and mapping are keep increasing. 

Compared with satellite images applied to remote sensing 

applications, aerial images, acquired by both aircrafts and 

Unmanned Aerial Vehicles (UAVs), offer an affordable, fast and 

effective approach for acquisition of high resolution multi-view 

aerial images over small areas. However, because of spatial 

variation of buildings, including shape, size, materials, colour, 

structure, and interference of building shadows, building 

detection and extracting building boundaries from single aerial 

images are often challenging and need manual works (Alidoost 

and Arefi, 2018). 

Several methods are available for extracting buildings from a 

single image. Some of these recent algorithms include an energy 

based optimization algorithm using the Local Gradient 

Orientation Density (LGOD) (Benedek et al., 2012), a graph-

based algorithm using shadow information of buildings (Izadi 

and Saeedi, 2012; Ok et al., 2013), a combination of the k-means 

clustering algorithm and a Purposive FastICA model (Ghaffarian 

and Ghaffarian, 2014), the multi label graph partitioning strategy 
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(Manno-Kovacs and Ozgun Ok, 2015), a combination of 

Gaussian Mixture Model (GMM) clustering and Conditional 

Random Field (CRF) classification algorithms (Li et al., 2015), a 

self-supervised decision fusion framework (Senaras and Yarman 

Vural, 2015), and a supervised segmentation algorithm based on 

the image descriptors (Dornaika et al., 2016). 

Compared to those traditional methods applied to building 

detection, the Deep Learning methods such as Convolution 

Neural Networks (CNNs) are recently employed for urban image 

classification (Alidoost and Arefi, 2016; Makantasis et al., 2015; 

Saito and Aoki, 2015; Vakalopoulou et al., 2015; Yuan, 2016; 

Zhang et al., 2016). Kaiser et al. (Kaiser et al., 2017) employed 

the Fully Convolutional Networks (FCNs) including skip 

connection layers to classify the buildings and roads in aerial 

images. Persello and Stein (Persello and Stein, 2017) developed 

a FCN, in which novel convolutional layers including dilated 

kernels were used for binary segmentation of satellite images 

which was resulted in two building and non-building segments. 

Wen et al. (Wen et al., 2019) modified the Mask Region CNN to 

extract the oriented bounding boxes of buildings. Srivastava et al. 

(Srivastava et al., 2017) proposed a pyramidal encoder-decoder 

CNN for both building extraction and DSM prediction to jointly 

estimate height and semantically label monocular aerial images.  

In this study, we propose to address the problem of building 

outline extraction by exploiting the Convolutional Neural 

Networks as well as Active Contour Models. To this end, the 

CNNs-based classification is employed to detect buildings 

automatically resulting the initial boundaries of buildings (e.g. 

bounding boxes), while the CNNs-based regression is used to 
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provide the height information (e.g. nDSMs) from a single RGB 

image. The precise building outlines are then extracted by 

integration of extracted initial boundaries and nDSMs using an 

Active Contour Model. This work’s contributions are as follows.  

 It proposes an automatic CNN-based framework (FC-CNN) 

for individual building detection. 

 It proposes an automatic CNN-based framework (MS-

CDN) for depth prediction of single aerial images. 

 Since ACMs need initial values of objects’ boundaries, the 

proposed method uses the combination of the selective 

search algorithm and FC-CNN’s results to provide bounding 

boxes of buildings.  

 The ACM uses depth information instead of spectral 

information to provide more accurate boundaries.  

 

 
Figure 1. The proposed method 

 

2. PROPOSED METHOD 

In this paper, a sequential framework is proposed for automatic 

building localization and outline extraction using supervised 

CNNs as well as Active Contour Models as shown in Figure 1. 

The main steps include training data preparation, CNNs training, 

and boundary extraction. First, two training datasets are 

generated for building detection and nDSM prediction, 

respectively. Next, the training data for building detection is 

employed to train a Fully Connected Convolutional Neural 

Network (FC-CNN), while the training samples for nDSM 

prediction is used to train a Multi-Scale Convolutional-

Deconvolutional Network (MS-CDN). The third step is 

composed of four sub-steps. The nDSM of single aerial images 

are first predicted using the trained MS-CDN. Next, the selective 

search algorithm is employed to extract bounding boxes of all 

objects. The image tiles, related to the bounding boxes, are then 

fed into the trained FC-CNN to classify building objects and non-

building objects. Finally, the bounding boxes of buildings and 

nDSMs are fed into an Active Contour Model (ACM) to generate 

the outlines of buildings. The summary of each step and their 

main components are given in the following sub-sections.  

 

2.1 Training data preparation 

Since the proposed method includes two different goals as 

building detection and height prediction, two different training 

datasets are required. For building detection, a dataset including 

building and non-building objects is generated by manually 

cropping the high resolution aerial images. Therefore, the 

building and non-building classes contain several image tiles 

with the same size of 224×224×3. For height prediction, the 

training dataset is composed of the aerial images with the size of 

224×224×3 and corresponding nDSMs with the size of 

224×224×1. However, the number of image tiles is not sufficient 

to train all of CNN’s parameters. To overcome this issue the data 

augmentation technique is also applied to both training datasets. 

The data augmentation include scaling, cropping randomly, 

rotating randomly between [-5, 5] degrees, and flipping 

horizontally and vertically.  

     

2.2 CNNs training 

For building detection, a CNN with a fully connected layer at the 

end (e.g. FC-CNN) is utilized which is based on the ResNet-50 

architecture (Kaiming et al., 2016). The input of the network 

includes the image tiles in two classes of building and non-

building objects and the output of the network is a score matrix 

in [0, 1]. The dimension of the score matrix is S×C, where S and 

C stand for the number of image tiles and the number of classes, 

respectively. For each image tile, the maximum score 

demonstrates the corrected label. The network is trained from the 

scratch using random initial values for the learnable parameters. 

Moreover, the mini batch Stochastic Gradient Descent (SGD) 

algorithm and the softmax log loss function, given by Eq. 1, are 

used for training the FC-CNN. 

 

𝐿(𝑥, 𝑐) = −log⁡(exp⁡(𝑥(𝑐))/∑𝑒𝑥𝑝(𝑥(𝑞))) (1) 

 

where c is the reference label and the x is the predicted label. 

For depth prediction, a modern Multi-Scale Convolutional-

Deconvolutional Network (MS-CDN) is proposed including 

coarse and fine prediction scales. The details of the proposed 

architecture is shown in Figure 2. The coarse prediction scale 

includes the convolutional and de-convolutional sub-networks to 

predict the global depth information, while the fine prediction 

scale is used to enhance the details of predicted coarse depth 

maps. To boost the performance of the network, we also added 

three skip connection layers for each encoder and decoder parts. 

To train the MS-CDN, the reverse Huber (berHu) function is 

employed, inspired by (Laina, et al. 2016). The berHu function 

considers the L1 norm and the L2 norm based on the Eq. (2). 

  

𝐵(𝑥) = ⁡ {
|𝑥|⁡⁡⁡⁡⁡⁡⁡⁡|𝑥| ≤ 𝑐
𝑥2+𝑐2

2𝑐
⁡⁡⁡⁡|𝑥| > 𝑐

                                                              (2) 

 

where x is the pixel-wise difference between the predicted depth 

map and the ground truth and the c is selected as 20% of the 

maximum error for each training batch.  
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Figure 2. The proposed MS-CDN for height prediction 

 

2.3 Boundary extraction  

In the final step of the proposed method, a test dataset including 

aerial images is selected outside the training datasets. As shown 

in Figure 1, the candidate regions are first extracted from the test 

dataset using the selective search algorithm (Felzenszwalb and 

Huttenlocher, 2004), which is based on a graph segmentation 

method. The output of this step are bounding boxes including 

several objects at all scales and with the different sizes. 

Therefore, the candidate regions, which are image tiles, can be 

generated by cropping the test image for each bounding box. 

Next, the extracted candidate regions are fed into the trained FC-

CNN and subsequently the candidate regions’ score matrix is 

calculated. The maximum score in each class is the final label for 

each candidate region and consequently, the candidate regions 

are classified into two classes of building and non-building 

objects. The advantage of the selective search algorithm is to 

generate the bounding boxes which are appropriate initial values 

for the building boundaries. As a primary result, the buildings as 

well as the initial boundaries are extracted from a single image. 

On the other hand, the MS-CDN is applied to the test image to 

predict the nDSM. Since the ACM (Chan and Vese, 2001) needs 

the initial values to detect the object boundaries, the extracted 

bounding boxes are then used as the initial values and the ACM 

is applied to the predicted nDSM to detect the building 

boundaries. The experiments show that the ACM leads to the 

better results using nDSMs, instead of RGB images. The outputs 

of the ACM are initial polygons of building blocks which are not 

regular polygons. Therefore, in the next step, the Minimum 

Bounding Rectangle (MBR)-based technique (Arefi and 

Reinartz, 2013) is employed for approximation. The MBR-based 

technique is an iterative method based on searching the best 

rectangular polygon by fitting the bounding boxes to the initial 

polygon at each iteration. The outputs of MBR-based techniques 

are the final building outlines with regular and geometric shapes. 

 

3. EXPERIMENTS AND RESULTS 

Two datasets of this study includes aerial images from Stuttgart 

and Potsdam, Germany consisting of true ortho-images with a 

GSD of 20 cm and 5 cm respectively as well as corresponding 

nDSMs. These datasets are divided into two test and training 

subsets. For FC-CNN learning, the training subset from Stuttgart 

was selected and cropped manually into 500 image tiles per class 

of building and non-buildings. A sample of those aerial images 

as well as a sub-set of generated training dataset are shown in 

Figure 3. For MS-CDN learning, the training subset of the 

Potsdam is selected and both ortho images and nDSMs are 

cropped randomly (Figure 4). To increase the size of generated 

training datasets, the data augmentation process is employed like 

random cropping, rotating, scaling, and flipping. After the data 

augmentation process, the training datasets include 15000 and 

35000 image tiles, respectively. 

 

 
(a) (b) 

Figure 3. Training data for the building detection including 

buildings (a); and non-buildings (b) objects 

 

(a) (b) 

Figure 4. The training samples including ortho-images (a); and 

the corresponding nDSMs (b) 

 

Both FC-CNN and MS-CDN are trained using the MATLAB 

Deep Learning toolbox on a single NVIDIA GeForce GTX 1080 

Ti and with a batch size of 16 for 100 epochs for the building 

detection and height prediction tasks. The learning rate and the 

momentum are about 0.01 and 0.9, respectively.  

The trained networks are applied to a test dataset including a 

single RGB image (Figure 5a) from Potsdam images and outside 

of the training samples. The results of extracted buildings and 

bounding boxes (Figure 5c), predicted nDSM (Figure 5d), 

ACM’s output (Figure 5e), and final outlines of buildings (Figure 

5f) are illustrated in Figure 5. 

In the building detection step, the results are evaluated using the 

standard quality measures of Completeness (or Recall), 

Correctness (or Precision), and Quality (McGlone and Shufelt, 

1994; McKeown et al., 2000) as given in Eq. (3).  
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TP
Qual

FPTP

TP
Corr

FNTP

TP
Comp








 .;.;.        (3) 

where TP is True Positive (the number of correctly detected 

buildings), FP is False Positive (the number of non-building 

objects detected as buildings), and FN is False Negative (the 

number of undetected buildings). To evaluate the predicted 

nDSMs, the error metrics such as the Relative Error (REL), Root 

Mean Squared Error (RMSE) and Root Mean 

Squared Logarithmic Error (RMSLE) are used as Eq. (4).  

 

𝑅𝐸𝐿 =
1

𝑇
∑ |𝑦 − 𝑦̃|𝑖,𝑗 𝑦⁄ ; ⁡𝑅𝑀𝑆𝐸 = √

1

𝑇
∑ |𝑦 − 𝑦̃|2𝑖,𝑗 ;               (4) 

𝑅𝑀𝑆𝐿𝐸 = √
1

𝑇
∑|𝑙𝑜𝑔𝑦 − 𝑙𝑜𝑔𝑦̃|2

𝑖,𝑗

 

 

where y is the ground truth, ỹ is the predicted nDSM, and T is the 

number of pixels. The quantitative values of different metrics are 

reported in Table 1.  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 5. The test data and the results: a) the test RGB image, b) 

the ground truth nDSM, c) the detected buildings and bounding 

boxes, d) the predicted nDSM, e) the ACM’s output, and f) the 

final outlines of buildings 

 

As shown in Table 1, the accuracy of building detection is about 

86%. This accuracy is acceptable because the FC-CNN is trained 

on the Stuttgart dataset and applied to the Potsdam test data 

which shows the generalization capability of the trained network. 

However, most of the large building blocks are detected correctly 

and the errors are related to the small or ambiguous buildings. In 

addition, the accuracy of the predicted nDSM is about 3.57 m 

which is a promising results for depth prediction from a single 

RGB image. To evaluate the quality of final building boundaries, 

the Intersection over Union (IoU) metric is calculated to quantify 

the overlap percentage between the extracted boundaries and 

reference boundaries, which is obtained about 68%. The low 

accuracy is because of non-buildings objects such as trees (i.e. 

red polygons in Figure 5f) which are detected by the ACM. The 

difference map between the final outlines of buildings (Figure 6a) 

and the ground truth (Figure 6b) per-pixel level is shown in 

Figure 6c. The green segments are true positive pixels, the red 

segments are false negative pixels, and the blue segments are 

false positive pixels. Consequently, there is a similarity ratio of 

about 91% between the extracted boundaries and reference 

boundaries. As shown in Figure 6, the large differences are 

corresponding to the non-building objects such as trees. 

 

Task Accuracy metrics 

 Comp. Corr. Qual. 

Building detection 86 % 100 % 86 % 

 REL RMSE RMSLE 

Height prediction 0.4% 3.57 m 0.23 m 

Table 1. The quantitative results of the proposed method 

 

 
(a) 

 
(b) 

(c) 

Figure 6. The difference map (c) between the extracted outlines 

(a) and the ground truth (b) 

 

4. CONCLUSIONS 

In this study, we proposed a novel ensemble approach based on 

supervised deep learning techniques to extract the precise 

outlines of buildings from a single aerial image. Unlike current 

methods in photogrammetry and remote sensing that require both 

ortho images as well as high resolution DSMs, the proposed 

method uses the single images and the power of CNNs to extract 

the valuable information like building boundaries and height 

values. Although we had some limitations to produce the proper 

training datasets, the results showed the reasonable performance 
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of the proposed CNNs to detect buildings with the quality rate of 

86%, extract the initial bounding boxes and predict the nDSMs 

with the RMSE of 3.57 m. Moreover, the precise outlines of 

buildings are extracted with the accuracy of 91% which shows 

the effectiveness of the proposed framework.  
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