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ABSTRACT: 

 

Building footprint extraction (BFE) from multi-sensor data such as optical images and light detection and ranging (LiDAR) point 

clouds is widely used in various fields of remote sensing applications. However, it is still challenging research topic due to relatively 

inefficient building extraction techniques from variety of complex scenes in multi-sensor data. In this study, we develop and evaluate 

a deep competition network (DCN) that fuses very high spatial resolution optical remote sensing images with LiDAR data for robust 

BFE. DCN is a deep superpixelwise convolutional encoder-decoder architecture using the encoder vector quantization with 

classified structure. DCN consists of five encoding-decoding blocks with convolutional weights for robust binary representation 

(superpixel) learning. DCN is trained and tested in a big multi-sensor dataset obtained from the state of Indiana in the United States 

with multiple building scenes. Comparison results of the accuracy assessment showed that DCN has competitive BFE performance 

in comparison with other deep semantic binary segmentation architectures. Therefore, we conclude that the proposed model is a 

suitable solution to the robust BFE from big multi-sensor data. 
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1. INTRODUCTION 

In recent years, robust automated algorithm development for the 

extraction of building footprints from remotely sensed data is a 

hot topic for research and commercial projects (Bi et al., 2019). 

In practice, there are two issues that are essential in building 

footprint extraction (hereafter called BFE for short). First, data 

source selection that plays an important role in information 

extraction. Second, the appropriate knowledge such as deep 

learning (DL) for accurate and efficient data processing 

 

1.1 Data Source 

The main factors of data source selection for BFE are related to 

separation between buildings from non-buildings (spatial 

resolution considerations), the confusing effect of vegetation-

cover on building detection (spectral resolution considerations), 

and the shade of building/non-building objects and lighting 

conditions (types of sensors considerations). 

The majority of related works that uses the multi-sensor data 

consist of very high spatial resolution multispectral images and 

light detection and ranging (LiDAR) data (Huang et al., 2019; 

Li et al., 2013; Rottensteiner et al., 2003; Volpi and Tuia, 2018; 

Yang et al., 2018). LiDAR data (also known as point clouds) 

and digital surface models (DSMs) generated by aerial platform 

equipped with airborne laser scanning, such as unmanned aerial 

vehicle or aircraft are applicable for the automatic BFE, because 

these data provide the geometrical features of buildings shapes 

(Cai et al., 2019; Jung and Sohn, 2019; Rottensteiner et al., 

2007; Sohn and Dowman, 2007). Moreover, fusion of LiDAR 

point clouds and very high spatial resolution multispectral 

images offers an efficient data source for BFE (Huang et al., 

2017). Hence, on the basis of the fresh information mentioned 

above, still, the use of these combined data can be a very 

convenient source of data for BFE and also has many key issues 

in processing unresolved, particularly suited to big multi-sensor 

data. Since the big multi-sensor data has a massive volume of 

geospatial aerial or satellite data, it is extremely difficult or 

impossible to process using traditional algorithms (Philip Chen 

and Zhang, 2014; Yang et al., 2017). 

 

1.2 Deep Learning 

In the past few years, DL approaches play a crucial role in 

analysing the big image data (Khoshboresh Masouleh and Shah-

Hosseini, 2019a; Maggiori et al., 2017; Masouleh and Shah-

Hosseini, 2018; Samuel R. et al., 2019). The DL approaches 

incorporate two influential concepts in an optimal big data 

analysis workflow for image data (Wu et al., 2018). Sparse 

topological connectivity in convolutional neural networks 

which is the most common type of DL and weight sharing 

across deep network can be used to improve the generalization 

in DL. DL allows computational algorithms of complex 

structures that are fused of various processing layers to learn 

features of input image with various levels of abstraction 

(LeCun et al., 2015). 

In remote sensing image processing, DL approaches have been 

widely used in classification of the land-use and land-cover 

using low-resolution images (Fu et al., 2017), segmentation and 

object detection from high-resolution image (Mou and Zhu, 

2018a), and extracting and interpreting ambiguous information 

from single image, such as DSM (Mou and Zhu, 2018b). 

Moreover, due to difficult challenges of extracting building 

from remotely sensed data, BFE is one of the most important 

objectives in geomatics science. Table 1 presents the overview 

of the methods recently published in applied DL for BFE, based 
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on highlighting characteristics with focus on research 

innovations. Although the related methods are powerful, but it's 

not still an outstanding performance for BFE, particularly, in 

robust BFE from big image data. 

 

Algorithm Highlight of characteristics 
ConvNet+ 

SignedDist 

(Yuan, 2018) 

- Integrating multi-layer information and a 

unique output representation 

- Combine signed-distance labels with ConvNet 

ABF+SegNet 

(Masouleh and 

Shah-Hosseini, 

2018) 

- Fusion of convolutional layer with adaptive 

bilateral filter 

- The minimum bounding rectangle were used 

for outline regularization 

SegNet-Dist-

Fused (Yang et 

al., 2018) 

- Combine signed-distance labels with SegNet 

 

- No requirement of post-processing 

Res-U-Net (Xu 

et al., 2018) 

- Feature extraction based on several residual 

blocks 

- A concatenation with the corresponding block 

from the encoding part is designed 

MC–FCN (Wu 

et al., 2018) 

- A bottom-up / top-down multi-constraint fully 

convolutional network 

- Basic structure based on fusion of U-Net and 

three extra multi-scale constraints 

GRRNet 

(Huang et al., 

2019) 

- Encoding stage based on residual learning 

network 

- Improving feature learning with a gated feature 

labelling unit 

Table 1. Overview of recent BFE researches using DL models 

In this study, we focus on the key challenges for creating robust 

BFE model. In this regard, the major contributions of this study 

to the robust BFE from big multi-sensor data using DL 

algorithms are as follows: 

 For the architectural structure, an efficient deep 

competition network (DCN) is proposed based on the 

encoder vector quantization with classified structure and 

superpixel for BFE from big multi-sensor data using very 

high spatial resolution multispectral images and LiDAR 

data. 

 In the feature learning step, the very high spatial resolution 

multispectral image superpixel-based features of big multi-

sensor data are combined with LiDAR data (i.e. DSM) 

superpixel-based features in variety of complex roof shapes 

and textures in large urban areas. 

This paper is organized as follows: section (2), provides 

essential context around the proposed method. The experiment 

results on big multi-sensor data are demonstrated in section (3). 

Insight discussion on gains from the study is presented in final 

section. 

 

2. METHODOLOGY 

In this study, two semantic segmentation methods based on DL 

architectures, including Res-U-Net (Xu et al., 2018), and 

ABF+SegNet (Masouleh and Shah-Hosseini, 2018), have been 

used for BFE results comparisons. The models have been 

selected because of their good performance in BFE from multi-

sensor data. 

 

2.1 Res-U-Net 

Res-U-Net is a new fully convolutional network for semantic 

binary segmentation. The architecture uses the modified 

versions of U-Net and ResNet (Xu et al., 2018). This model 

features a robust encoder-decoder structure for BFE, because 

upsampling features in the decoder block and the corresponding 

max-pooling features in encoder block are made separately and 

concatenated for other upsampling layers (Huang et al., 2019). 

 

2.2 ABF+SegNet 

Khoshboresh Masouleh and Shah-Hosseini (2018) proposed a 

fusion-based architecture, called ABF+SegNet for building 

outline enhancement using remote sensing big image data, 

where the SegNet model (Badrinarayanan et al., 2017) acts as 

the high-level features generator based on adaptive bilateral 

filter. ABF+SegNet achieves excellent performance on RGB 

images for building extraction. 

 

2.3 Deep Competition Network (DCN) 

In this paper, we proposed an efficient DCN architecture for 

BFE from big multi-sensor data. DCN is a deep superpixelwise 

convolutional encoder-decoder architecture using the encoder 

vector quantization (Kohonen, 1995) with classified structure 

for semantic binary segmentation. Our proposed DCN consists 

of five encoding-decoding blocks with convolutional weights 

for robust binary representation (feature) learning.  

Figure 1 shows the processing chain of the proposed algorithm. 

In this algorithm, a superpixel segmentation method called 

Simple Linear Iterative Clustering - SLIC (Achanta et al., 

2012), which is one of the mostly used image segmentation 

algorithms is used to generate basic processing unit. 

The competition function to BFE in DCN can be described as 

follows: 

                 21
arg min {|| ( ) ||}

2
in f I O                  (1) 

where  n = winner index 

 i = binary value 

                f = sigmoid function 

                I = input 

 O = prediction (output) 

In Equation 1, a loss function (e.g., sigmoid) is defined 

monotonically increasing as follows: 

                                   1
( )
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                                   (2) 

where  f = sigmoid function 

 e = Napier's constant (= 2.7182) 

In each block, batch normalization function (Laurent et al., 

2016), and dropout-based regularization technique have been 

used to improve performance in training stage with focus on 

reducing overfitting (Kingma et al., 2015). The activation 

function on this model is the rectified linear unit (ReLU) 

function (LeCun et al., 2015) and the proposed competition 

function appears in the final output layers. Batch normalization, 

and ReLU functions are computed as follows, respectively: 
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where  Ii = input 

 Bm = batch mean 

                Bv= batch variance 
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Figure 1. Architecture of the proposed DCN 

 

3. EXPERIMENTS AND RESULTS 

3.1 Big Multi-Sensor Data 

The experiments on big multi-sensor data consisting of:  

(1) Very high spatial resolution multispectral images with the 

four spectral bands (i.e. red, green, blue, and NIR) and a ground 

sampling distance (GSD) of 0.5 foot obtained from the State of 

Indiana in the US with multiple building scenes,  

(2) DSM generated from LiDAR point clouds with a GSD of 

0.5 foot by the Indiana Office of Information Technology,  

(3) The normalized difference vegetation index (NDVI) 

generated from red and NIR bands, and  

(4) OpenStreetMap shapefiles used as ground truth map to 

validate results. 

Figure 2 displays the research site of the big multi-sensor data. 

The research site covers about 950 km2 from the Indianapolis 

city in the US. Moreover, big multi-sensor data consist of RGB, 

DSM, NDVI and building footprint map without major 

misalignment in the projection of the North American Datum 

(NAD). Table 2 shows the splitting statistics of the big multi-

sensor data. 

 Tiles 

Training 256 

Validation 40 

Testing 3 

Total 299 

Table 2. Dataset splitting statistics 

For more information about the coordinate system of data, 

please see (http://gis.iu.edu/datasetInfo/statewide/in_2011.php). 

In Figure 2, the orange boundary indicates the study area. 

 

Figure 2. Location of study area 

 

3.2 DCN Implementation 

DCN was implemented using Keras (Chollet, 2018) on the free 

cloud Tesla K80 GPU and 12GB of RAM in google 

Colarboratory (Colab), but there is not enough RAM for big 
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data storage. For this reason, we integrated google drive (free 

cloud storage) with Colab for memory enhancing. Keras is a 

powerful and open source DL framework written in Python. 

DCN was trained and validated with adaptive moment 

estimation (ADAM) optimizer using the default parameters 

(Kingma and Ba, 2014) and with a batch size of 64 for 250 

epochs for BFE. Moreover, 299 tiles from Indiana each of the 

size 1024×1024 pixels are processed using a 128×128 pixels 

sliding window in order to reduce memory consumption. 

 

3.3 Building Footprint Extraction 

As shown in Figures 3-5, three representative samples are 

selected from the test area with densely distributed buildings for 

assessing the performance of the baseline models in comparison 

with our proposed model. The evaluation metrics of overall 

accuracy (OA) and intersection over union (IoU) are used to 

evaluate the performance of the models based on the values of 

true positive (white), false positive (red), false negative (blue), 

and true negative (black). The OA and IoU are the most used 

evaluation measures for BFE in many previous studies 

(Khoshboresh Masouleh and Shah-Hosseini, 2019b; Maggiori 

et al., 2017; Masouleh and Sadeghian, 2019; Volpi and Tuia, 

2018; Xu et al., 2018; Yang et al., 2018). The OA and IoU are 

defined as: 
 

                      TP TN
OA

TP FP FN TN




  
                 (2) 

 

                      TP
IoU

TP FN FP e


  
                 (3) 

 

where  TP = true positive 

 FP = false positive 

 FN = false negative 

 TN = true negative 

                   e = 10-15 (to avoid division by zero) 

 

In Table 3 we compared DCN’s performance with Res-U-Net 

and ABF+SegNet models for three test samples. Bold fonts 

denote the best results and the underlined fonts denote the 

second best results. The DCN model’s OA reaches 94%, 99% 

and 99% while the IoU reaches the 93%, 99% and 98% for each 

test samples, respectively. The results demonstrated that DCN 

model is a suitable solution to robust BFE from big multi-

sensor data, especially on the different types of roofs. 

 Model Res-U-Net ABF+SegNet DCN 

Case-1 
OA 91% 91% 94% 

IoU 89% 90% 93% 

Case-2 
OA 99% 99% 99% 

IoU 98% 98% 99% 

Case-3 
OA 96% 97% 99% 

IoU 91% 96% 98% 

Table 3. Quantitative evaluation on the test area 

 

3.4 Computational Cost Analysis 

Computational cost is an important factor in big data 

processing, particularly for real world applications such as BFE, 

because hardware limitations (e.g. memory consumption, 

processing system, etc.) in the real world. Therefore, selection 

of appropriate computational space for big data processing with 

optimal computational cost is necessity. Cloud computing is an 

internet-based space for reducing the computational cost in DL 

experiments. In this paper, we used Colab (cloud computing 

platform) for training efficiency and computational cost 

analysis. For this purpose, we trained all models (Res-U-Net, 

ABF+SegNet, and DCN) based on big multi-sensor data in 

Colab. The evaluation metric for computational cost analysis is 

defined as (Justus et al., 2018): 

 

                              
60

NE TT
CC


                                        (4) 

 

where  CC = computational cost (in min) 

 NE = number of epochs 

 TT = training time per epoch (in sec) 

The computational cost results are presented in Table 4. Bold 

font denotes the best result and the underlined font denotes the 

second best result. 

Model Res-U-Net ABF+SegNet DCN 

CC (min) 535 590 461 

Table 4. Computational cost results on the test area 

 

4. CONCLUSION 

In this paper, we focus on tackling the regularization of building 

outlines problem in very high spatial resolution remote sensing 

images by proposing a model based on DL and superpixel 

segmentation called DCN. Most important feature of this model 

is exploitation of vector quantization theory and convolutional 

layers in creating a DL network for BFE. In order to train the 

proposed model, INDIANA dataset was used. Results of 

applying the proposed method on three test samples indicate 

improvement in training speed and increase in accuracy and 

validity of BFE from big multi-sensor data that contains very 

high spatial resolution multispectral images and LiDAR data. 

DCN model, automatically extracts the buildings from input 

data based on the encoder vector quantization framework 

(supervised learning). In order to evaluate the results, we 

compared our model with two powerful DL models. Based on 

the statistical results shown in Table 3, the accuracy is 

somewhat better, but the IoU (a scale invariant metric) is 

obviously improved. Future studies can be conducted to 

increase performance of DCN through optimizing network 

depth and improving superpixel segmentation methods to 

reinforce BFE. 
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Figure 3. Comparison of BFE results using Res-U-Net, ABF+SegNet and DCN with ground truth in Case-1 

 
 

Figure 4. Comparison of BFE results using Res-U-Net, ABF+SegNet and DCN with ground truth in Case-2 
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Figure 5. Comparison of BFE results using Res-U-Net, ABF+SegNet and DCN with ground truth in Case-3
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