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ABSTRACT: 

 

Aeolian erosion is a serious environmental threat that damages soils. Dust storms are one example of the consequences of aeolian 

erosion in dry and semi-arid areas across the world. In this regard, soil surface roughness is an important parameter for monitoring 

climate changes on the Earth and modelling aeolian erosion. Synthetic Aperture Radar (SAR) systems are valuable resources for 

estimating soil surface roughness. In arid soils, SAR backscatter is sensitive to the soil surface roughness at higher frequencies and 

higher incident angles. Based on these facts and lack of studies in the field of dust and erosion using remote sensing methods, an 

Artificial Neural Network (ANN) along with Sentinel-1 images in two polarizations (VV and VH) were initially applied to estimate 

surface roughness for the first time in Bandar-e Emam-Omidiye, Khuzestan, Iran. Subsequently, the results were used to investigate 

potential dust sources. The parameters used to train the ANN included the radar backscatter coefficient, incident angle, and in-situ 

roughness. The training accuracy of the proposed ANN was relatively high with an RMSE of 0.8821 and RMSE=0.8804 for VH and 

VV polarizations respectively. These data were subsequently used to identify areas prone to dust. The results obtained from the 

investigation of 25 stations located in areas with five different land covers indicated accurately that locals on clay flats (RMSE=1.08) 

are the most prone to aeolian erosion in the form of dust. 
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1. INTRODUCTION 

Dust storms are a major consequence of aeolian erosion in dry 

and semi-arid areas (Marticorena and Bergamet, 1995; 

Kemppinen et al., 2015). 

 

Aeolian erosion of an area is controlled by vegetation density, 

topographic irregularities, and soil surface roughness 

(Marticorena et al., 2006; Shao, 2008; Sharratt and Feng, 2009; 

Webb and String, 2011). Soil roughness is characterized by 

disturbances or irregularities of the soil surface at a scale which 

is generally too small to be detected by a conventional 

topographic map or survey (Govers et al., 2000). Surface 

roughness affects the separation of water flow into infiltration 

and runoff. Moreover, monitoring the evolution of surface 

roughness is one approach to estimate erosion risk, particularly 

in agricultural areas (Zribi and Dechambre, 2003). One of the 

challenges in analysing surface roughness and erodibility in 

dust source regions is that field observations are relatively 

limited in space and time, and do not necessarily observe the 

conditions most conducive for dust emission. This limitation 

can be overcome to some extent using remote sensing methods, 

which usually produce observations with substantially higher 

spatial and temporal resolutions compared to field-based 

approaches. For example, multispectral and hyperspectral 

datasets have been extensively used to investigate the 

relationship between erodibility and soil surface properties such 

as crusting (Katra and Lancaster, 2008; de Jong et al., 2011). 

There are generally two methods for soil roughness estimation: 

in situ measurements and remote sensing approaches. In situ 

methods are time-consuming, cost-inefficient, and labour 

intensive. However, remote sensing offers up-to-date, cost-

effective, and large coverage of vast areas. Moreover, multi-

temporal remote sensing datasets are considerably valuable for 

change detection analysis. Importantly, Synthetic Aperture 

Radar (SAR) systems are proficient resources for determining 

soil surface roughness because there is a high correlation 

between the surface roughness and SAR backscattering 

coefficient (Prigent et al., 2005; Srivastava et al., 2008; 

MirMazloumi and Sahebi, 2016; Zhang et al., 2016; Alexakis et 

al., 2017).  

 

The incorporation of remote sensing datasets into Artificial 

Neural Networks (ANN) has been extensively used for various 

applications. ANNs can easily integrate the data collected from 

different remote sensing sources into an efficient algorithm. 

Notably, the input data in an ANN algorithm need not follow a 

normal distribution to be transformed into the output layers 

(Elshorbagy and Parasuraman, 2008; Santi et al., 2016). One of 

the most commonly used ANN models is Multi-Layer 

Perceptron (MLP). In this model, sequential neuron layers are 

interrelated, the weights of which control the connection power 

(Paloscia et al., 2013; Alexakis et al., 2017). ANNs along with 

SAR data have also been extensively used for soil roughness 

estimation. For instance, Sahebi et al. (2004) used an ANN 

inversion technique to estimate bare soil surface parameters 

from the HH polarization of Radarsat-1 images. Additionally, 
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Baghdadi et al. (2012) improved roughness estimation to 0.5 cm 

using SAR data incorporated into the Calibrated Integral 

Equation Model (CIEM) for a wide range of soil conditions. 

Finally, Maleki et al., (2019) presented a two steps inversion 

method based on an MLP ANN. The accuracy of roughness 

estimated from the TerraSar-X image in the HH polarization 

improved from about 0.9 cm in the case of no prior information 

on roughness, to 0.57 cm for soil surface roughness lower than 

2 cm and 0.54 cm for roughness between 2 and 4 cm, 

respectively, when prior information on roughness was 

considered. 

 

Different empirical models have been developed in the previous 

studies which investigated the sources of dust and soil erosion 

using SAR data. For example, Wadge and Archer (2002) 

developed an empirical equation between backscattering 

coefficient from the European Remote Sensing (ERS) and the 

root mean square variation of surface height profiles measured 

using a pin profilometer in a Tunisian playa. Prigent et al. 

(2005) and Marticorena et al. (2006) also determined linear 

relationships between the backscattering coefficient from the 

ERS satellites and the logarithm of aerodynamic roughness 

length. Moreover, Prigent et al. (2005) used aerodynamic 

roughness length measurements from arid regions in North 

America and Africa to derive a relationship between the 

backscattering coefficient and roughness. Finally, Tollerud and 

Fantle (2014) investigated surface temporal variability in the 

Black Rock playa, Nevada, USA using SAR satellite data 

between 2004 and 2010. They reported that water was a critical 

factor controlling playa surface evolution, and the annual time 

scale was crucial for investigations of playa erodibility.  

 

The most important shortcoming of the above studies was the 

fact that the results of empirical models are usually less reliable 

in comparison to semi-empirical or theoretical models 

(Baghdadi et al. 2012; MirMazloumi and Sahebi, 2016). 

Therefore, an ANN method was used in this study to increase 

the accuracy and reliability of soil surface roughness retrieval. 

 

Based on the above explanation, it is important to combine the 

soil roughness estimated from remote sensing methods and 

meteorological datasets to evaluate dust storms. Thus, this 

study, the first comprehensive study of the temporal evolution 

of surface roughness and aeolian erosion in Iran, aims to 

correlate meteorological datasets, dust concentration, and 

surface roughness changes obtained from SAR images to 

investigate the origin of dust and identify the potential dust 

storms in Khuzestan province, Iran. Therefore, the current study 

employs in situ measurements and SAR-derived surface 

roughness deserts within an ANN algorithm acquired from 

April 2017 to March 2018 to identify potential sources of dust 

storm Bandar-e Emam-Omidieh, Iran. The results of these 

analyses were finally validated using local meteorological 

datasets and were observed that clay flats are the main source of 

the dust storm in this region.  

 

2. METHOD AND MATERIALS 

2.1 Study area 

The study area is Bandar-e Emam-Omidiye in Khouzestan 

province, Iran,  with an area of approximately 84,147 hectares 

(Figure 1). In this study, the dust-possible regions in Bandar-e 

Emam-Omidiye were assessed in 2017. The average 

precipitation in this area was 127.7 mm in 2017, with a 

maximum and minimum precipitation recorded in October (73.4 

mm), and May (0.2 mm), respectively. This area has a warm and 

dry climate, with low relative humidity and high temperatures. 

Thus, evaporation is considerably high in this area. Based on 

the Department of Environment of Khuzestan province report 

(EPA 2012), the dust concentration was higher than permissible 

for a total of 53 days in this area in 2017. The longest dusty 

period in 2017 was 19 days and occurred in January. 

 

 
 

Figure 1: Study area along with various land covers found in 

Bandar-e Emam-Omidieh, Iran. 

 

  

2.2 Field data 

The field samples were collected simultaneously with the time 

of acquisition of Sentinel-1 images on 20 and 21 October 2017. 

The sampling stations were selected considering the land cover 

map of the study area (see Figure 1). As clear from this figure, 

various land covers, including Clay flat, Barren, Wetland, 

Agriculture, and Pasture (V3 and VR3) are found in this area. 

At each station, two vertical variation samples of soil roughness 

(Hrms) were collected over approximately 100 m in two 

directions: along and perpendicular to the plow direction. To 

calculate the surface roughness, a total of 100 images were 

taken. The digital images were then analyzed by the Get Data 

Graph software to derive the heights of the grid board images. 

Then, surface roughness was calculated for all the images 

according to the following equation: 

 

(1) 

 

where N is the number of height points on the grid board,  is 

the point height, and  is the total height. 

 

2.3 Satellite data 

A total of 12 Sentinel-1 images were employed in this study. 

The images were in the Ground Range Detected (GRD) level of 

processing with the Interferometric Wide (IW) swath mode. 

This mode provides dual polarisation (VV and VH) imagery at 

a resolution of 10 m with a swath of 250 km. The incidence 

angle over the surveyed fields varies between 38 to 41°.  Table 

1 provides more properties of the images, which were used in 

this study. 

 

Property Description 

Lifetime 7 years (consumables for 12 years) 
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Orbit 

Near-polar sun-synchronous orbit at 693 

km altitude; 12-day repeat cycle; 175 

orbits per cycle 

Mean local 

solar time 
18:00 at ascending node 

Orbital 

period 
98.6 min 

Maximum 

eclipse 

duration 

19 min 

Attitude 

stabilization 
3-axis stabilized 

Attitude 

accuracy 
0.01◦(each axis) 

Instrument 
Right looking with respect to the flight 

direction 

Steering 
Zero Doppler yaw steering and roll 

steering (-0.8◦ to +0.8◦) 

Attitude 

profile 
Geocentric and geodetic 

Orbit 

knowledge 
10m (each axis, 3𝛔) using GPS 

Operative 

autonomy 
96h 

Launch mass 
2300 kg (including 130 kg mono-

propellant fuel) 

Dimensions 

(stowed) 
3900×2600×2500mm 

Solar array 

average 

power 

5900 W(end-of-life) 

Battery 

capacity 
324Ah 

Satellite 

availability 
0.998 

S-band 

TT&C data 

rates 

64 Kbit/s telecomm and; 

128 Kbit/s – 2 Mbit/s telemetry 

(programmable) 

X-band 

downlink 

data rate 

2×260 Mbit/s 

Launcher Soyuz from kourou 

Table 1: Sentinel-1 satellite characteristics (ESA 2017) 

 

2.4 Pre-processing of Satellite data 

The Level-1 GRD products were first calibrated to obtain the 

backscatter coefficient, using the Calibration module in the 

Sentinel Application Platform (SNAP) software. Then, the data 

were multi-looked with a window size of 2 × 2 using the Multi-

looking module in SNAP to reduce the effects of speckle noise. 

Terrain correction was subsequently applied for reducing 

geometric distortions (i.e., foreshortening, layover, and shadow) 

using the Range-Doppler Terrain Correction module in SNAP. 

For this, the Digital Elevation Model (DEM) from the Shuttle 

Radar Topography Mission was used. Finally, a speckle filter 

was applied to further reduce speckle effects while preserving 

the spatial resolution of the images. 

 

 
 

Figure 2. The flowchart of proposed method 

 

2.5  Implementing and training the artificial neural 

network 

      

ANN has demonstrated high potential in various remote sensing 

studies. ANN is a strong alternative for commonly used 

numerical modelling techniques which sometimes are limited by 

rigid normality and linearity. An ANN consists of a number of 

hidden neurons or nodes that work in parallel to convert data 

from an input to the output layer. As an example, in MLPs, 

successive layers of neurons are interconnected, with 

connection weights that control the strength of the connection.  

 

An ANN system was trained to estimate the surface roughness 

from the VV and VH polarizations of the Sentinel-1 images. 

The parameters used to train ANN were the radar backscatter 

coefficient, Sentinel-1 image incident angle, and in-situ surface 

roughness derived from the grid panel. The result of ANN 

training was RMSE= 0.8821 and RMSE=0.8804 for VH and 

VV polarizations respectively. 
 

To obtain an optimized ANN architecture in terms of the total 

number of neurons and hidden layers, a simple ANN 

architecture was initially considered. Then, the errors of ANN 

were compared by increasing the neurons and hidden layers to 

obtain a more accurate ANN. The main purpose of the training 

process was to minimize the error between ANN output and 

input data by adjusting the correlation weights among them. 

Finally, an MLP design with three layers – (a) one input layer, 

(b) 10 neuron hidden layers, and (c) one output layer – was 

used in this study. It is also worth mentioning that 80%, 10%, 

and 10% of all field samples were randomly used for training, 

testing, and validation, respectively. Finally, after collecting and 

preparing field and satellite datasets, as well as training the 

ANN, the model was correlated with meteorological datasets to 

investigate the most potential dust sources. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W18, 2019 
GeoSpatial Conference 2019 – Joint Conferences of SMPR and GI Research, 12–14 October 2019, Karaj, Iran

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W18-623-2019 | © Authors 2019. CC BY 4.0 License.

 
625



 

3. RESULTS AND DISCUSSION 

Figure 3 illustrates the backscattering values (for both VV and 

VH polarizations) for various land covers in different months 

from April 2017 to March 2018. In 2017, the highest 

backscattering value was -11.51 dB at VV polarization in 

October in a Wetland area (Figure 3a). Moreover, the lowest 

backscattering value at the VV polarization was recorded as -

17.55 dB in November in a Clay flat area (Figure 3b). 

Additionally, the highest backscattering coefficient in the VH 

polarization was -19.85 dB in October in an Agricultural area, 

while the lowest VH backscatter coefficient was -24.38 dB in a 

Barren region. 

 

 
(a) 

 

 
(b) 

 

Figure 3. Backscattering Coefficients obtained from (a) VV and 

(b) VH polarizations between April 2017 and March 2018. 

 

 

Figure 4 illustrates the estimated surface roughness from the 

ANN in the VV and VH polarizations. As is clear, the greatest 

surface roughness values in the VV polarization was 11.60 cm 

in a Wetland area on October 2017. Moreover, the lowest 

roughness in this polarization was recorded as 0.67 cm in June 

2017 in a Clay flat region (see Figure 4 (a)). Based on Figure 4 

(b), Pasture and Clay flats had the least roughness compared to 

Agriculture and Barren regions in the VH polarization. In the 

VH polarization, the greatest surface roughness was 7.90 cm in 

March in a Wetland area, while the lowest was 0.0006 cm in a 

Pasture area. 

 

 

 

(a) 

 

 
 

(b) 

 

Figure 4. Estimated Surface Roughness obtained from (a) VV 

and (b) VH polarizations between April 2017 and March 2018 

 

In the current study, the greatest backscattering values in both 

VH and VV polarizations were recorded for wetlands. In 

addition, based on the field surveys and land cover map of the 

study area (Figure 1), the most dominant land cover over the 

study area is Clay flat. Because pronounced levels of soil 

extraction cause lack of vegetation, the reducing trend of 

surface roughness in areas where aeolian erosion is high, such 

as clay flats, in the study area was justified. Based on the results 

provided in Tables 2 and 3, the backscattering coefficient and 

soil roughness values of Wetland areas in the VV polarization 

vary between -12.06 to -16.36 dB and 5.64 to 11.82 cm, 

respectively. However, the changes in the backscattering 

coefficients (-16.45 to -14.33 dB) and soil roughness values 

(0.66 to 1.39 cm) for the Clay flat regions were small. This 

indicates the sensitivity of backscattering to soil roughness. 

Given the high moisture content in wetlands, the sensitivity of 

the backscattering coefficient to soil surface moisture seems to 

be higher than surface roughness. In addition, for arid soils, the 

backscattering values were more sensitive to roughness at 

higher incident angles. In this study, the lowest incident angle 

among the investigated land covers was 33.32° for the Barren 

class. This may also explain the difference between the surface 

roughness calculated for the Barren land cover and those 

calculated for other land cover classes.  

 

 

4. CONCLUSIONS 

Remote sensing has a high potential to assess soil erosion 

caused by aeolian processes. Surface roughness is influenced by 

wind and this fact significantly affects radar backscattering 

values. For arid soils, in particular, the backscattering 

coefficient is very sensitive to soil surface roughness. According 

to the results presented here, the average soil surface roughness 

of Wetland areas was 8.47 and 6.84 cm more than Clay flats in 

VV and VH polarizations, respectively. In addition, the results 

demonstrate that Clay flats exhibited the least roughness when 

compared to all other land cover classes. Therefore, in our study 

area, Clay flats are the most prone to dust compared to the other 

land cover types investigated in this study. 

 

 

 
Land Cover 

Backscattering Coefficient 

(dB) 
Estimated Surface 

Roughness (cm) 

Average            Changes  Average         Changes  
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Clay flat -16.45 to -

14.33 
-15.21 0.66-1.39 0.87 

Agriculture -14.43 to -

11.91 
-13.61 0.73-7.58 2.69 

Pasture 

R3 
-15.21 to -

13.78 
-14.55 1.18-2.02 1.46 

VR3 -15.54 to -

12.59 
-14.06 0.85-5.58 1.38 

Barren -14.98 to -

11.64 
-12.97 5.62-7.3 6.52 

Wetland -16.36 to -

12.06 
-13.9 5.64-11.82 9.34 

Table 2. Backscattering coefficient and estimated surface 

roughness in VV polarization 

 

 

 
Land Cover 

Backscattering Coefficient 

(dB) 
Estimated Surface 

Roughness (cm) 

Average          Changes  Average        Changes  
Clay flat -22.34 to -23.15 -22.71 1.17-0.46 0.91 

Agriculture -19.85 to -22.24 -21.55 
1.04-

0.0001 
1.36 

Pasture 
R3 -22.53 to -23.07 -22.80 2.02-1.18 0.58 

VR3 -21.37 to -22.10 -21.75 
0.0007-

0.0001 
0.0001 

Barren -22.37 to -24.38 -22.68 6.78-5.15 6.27 

Wetland -21.43 to -22.38 -22.17 91.7-6/.9 7.75 

Table 3. Backscattering coefficient and estimated surface 

roughness in VH polarization 
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