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ABSTRACT: 

Drought is one of the natural crises in each region. Drought has a direct relationship with vegetation. Various factors affect 

vegetation. The relationship between these factors and vegetation can be expressed using methods of machine learning algorithms. 

Nowadays, using remote sensing images can be used to measure the factors affecting vegetation and investigate this phenomenon 

with high precision. In this research, vegetation and various factors affecting this factor, which can be measured using satellite 

imagery, are selected. The factors include land surface temperature (LST), evapotranspiration (ET), snow cover, rainfall, soil 

moisture that which are derived from the active and passive sensors of satellite sensors as the products of land surface temperature 

(LST), snow cover and vegetation, using images of products of the MODIS sensor and  rainfall using the images  of the TRMM 

satellite and soil moisture using the images of the SMOS satellite  during a period from June 2010 to the end of 2018 for the central 

region of Iran has received  and after that,  primary processing was performed on these images. The vegetation index (NDVI) is 

modeled using artificial neural network algorithm for monthly periods. method have been able to achieve model with desirable 

accuracy. The average accuracy was RMSE=0.048 and R2=0.867. 

1. INTRODUCTION

Droughts can be divided into agricultural drought, social 

drought, meteorological drought, and hydrological drought 

(Wilhite and Buchanan, 2005). Using remote sensing we can 

have newer ways to monitor drought. One of the most important 

advantages of remote sensing data over meteorological data is 

that the meteorological data is harvested on a point-by-point 

basis while the remote sensing data is harvested on a 

continuously.  Also other advantages of this type of data can be 

acknowledged the spatial resolution, temporal resolution and 

availability of this type of information (Heumann, 2011). 

Agricultural drought is related to vegetation and occurs when 

soil moisture levels are lower than the amount of water needed 

for plant growth and health and vegetation is weaker than 

previous periods in the area. One of the most important 

parameters of agricultural drought is vegetation, which is one of 

the most important indicators to measure this factor is the 

Normalized Vegetation Difference Index (NDVI). Numerous 

studies have been conducted on a variety of drought indices 

using satellite data, including vegetation and thermal data in 

various regions of the world, but there are still challenges in 

increasing the accuracy of better prediction of this phenomenon. 

This phenomenon is more nonlinear while most studies use 

linear models (Bai et al., 2018). Various factors affect the 

drought, which can often be obtained by using remote sensing, 

such as rainfall, snow cover, land surface temperature, soil 

moisture, and vegetation cover(AghaKouchak et al., 2015). 

vegetation cover is very important in the production of energy 

and food sources. vegetation is affiliated and influenced by 

various factors such as natural factors such as seasonal changes, 

temperature, soil moisture, and also human factors, which 

ultimately can change ecosystems. The Normalized Vegetation 

Difference Index (NDVI) is based on the rule that the existing 

structure of plants can absorb red light and reflect infrared light 

(Pettorelli et al., 2005). Seonyoung Park et al in 2017, using 

MODIS data including land surface temperature, NDVI, 

Evapotranspiration (ET) and precipitation rates using satellite 

data TRMM from 2000 to 2012 in the United States of America 

has been modeling the Standardized Preciptaion Index (SPI) 

whit using three methods of machine learning such as Random 

Forest (RF), Boosted Regression Trees (BRT) and Cubist 

algorithm, and the results show that the method Random forest 

has better modeling than two other methods (Park et al., 2017). 

Alizade et al 2018, using data such as GPCP, CMAP, 

CHOMPS and TRMM, all relate to rainfall data, in order to 

model the SPI index from multilayer perceptron algorithms 

(MLP), Adjustable Neural Fuzzy Inference (ANFIS), Support 

Vector Regression  (SVR), and finally evaluated with SPI 

obtained with meteorological data (Alizadeh and Nikoo, 2018). 

Barua et al, 2012, at first, it developed a time series of 

Nonlinear Aggregated Drought Index (NADI) using 

precipitation data in Australian weather stations, and then by 

using recursive multistep neural network (RMNN) and Direct 

Multistep Neural Network (DMNN) forecast this index for up 

to six months. The results have shown that both methods have 

the most accurate and similar predictions for the monthly. But 

for the prediction of the two-month and three-month periods, 

the   RMNN method performs better than the DMNN method 

(Barua et al, 2012). Belayneh, 2013, at first, it obtained 

standardized precipitation index (SPI) using precipitation data 

at meteorological stations and then by using three machine 

learning methods including artificial neural network (ANN), 

support regression vector (SVR) and wavelet neural network 

(WA_ANN) predicted this time series over three and six months 

(SPI) periods, and the results showed that the wavelet neural 

network method was more accurate than the other two methods 

(Belayneh and Adamowski, 2013). 
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 In most studies, used the low number of sensor and satellite 

products, while in the drought, various factors can influence, 

including precipitation, soil moisture, evapotranspiration, snow 

and land surface temperature, which today is accessible globally 

through satellite imagery. Nevertheless, we need to be able to 

involve more influential factors in drought modeling so that it 

can accurately model and predict this phenomenon. therefore, in 

this study, data from SMOS satellite soil moisture data, TRMM 

satellite rainfall data and vegetation cover, land surface 

temperature, snow cover of MODIS sensor and using Artificial 

Neural Network (ANN) methods were used to model the NDVI 

index has been executed on a monthly basis from June 2010 to 

the end of 2018. 

 

2. STUDY AREA AND DATASETS 

2.1 Study site 

Esfahan province as an agricultural hub is located between 49° 

and 55°east longitude in center part of Iran. Fig. 1 shows the 

location of Esfahan province. Esfahan province has a total area 

of 107,029 Km2 (almost 9% of the country's area) with about 

three distinct climatic regions including the mountainous area of 

the west and southwest with moderate winters and summers, the 

central regions with hot dry summers and the area located in the 

north and southeast with cold winters and hot summers. 

 

 
 

Figure1.The location of Esfahan province 

 

2.2 datasets 

In this study, the SMOS satellite soil moisture  product, the 

TRMM satellite rainfall and MODIS sensor products have been 

used such as eight-day products of  land surface temperature 

(MOD11A2) , eight-day products of evapotranspiration 

(MOD16A2),  the monthly product of snow cover 

(MOD10CM), and the monthly vegetation product(MOD13A3), 

using images of products of the MODIS sensor and rainfall, 

using monthly images (3B43) of the TRMM satellite and soil 

moisture content using monthly images of  the satellite SMOS 

during the period from June 2010 to the end of 2018 for the 

region of Iran has received  and after that,  primary processing 

was performed on these images. The MODIS instrument is 

operating on both the Terra and Aqua spacecraft.  It has a 

viewing swath width of 2,330 km and views the entire surface 

of the Earth every one to two days. Its detectors measure 36 

spectral bands between 0.405 and 14.385 µm, and it acquires 

data at three spatial resolutions 250m, 500m, and 1,000m.  

The (MOD11A2) Version 6 product provides an average 8-day 

per-pixel Land Surface Temperature and Emissivity with a 1 

kilometer (km) spatial resolution in a 1,200 by 1,200 km grid. 

The MOD16A2 Version 6 Evapotranspiration/Latent Heat Flux 

product is an 8-day composite dataset produced at 500 meter 

(m) pixel resolution. The (MOD10CM) provides an average 

monthly per-pixel average snow cover with a .05 degree. The 

(MOD13A3) Version 6 product provides an average monthly 

per-pixel Vegetation Indices with a 1 kilometer (km) spatial 

resolution in a 1,200 by 1,200 km grid. 

Soil Moisture and Ocean Salinity, or SMOS, is a satellite which 

forms part of ESA's Living Planet Programme. It is intended to 

provide new insights into Earth's water cycle and climate. In 

addition, it is intended to provide improved weather forecasting 

and monitoring of snow and ice accumulation. 

The Tropical Rainfall Measuring Mission (TRMM) was a joint 

space mission between NASA and the Japan Aerospace 

Exploration Agency designed to monitor and study tropical 

rainfall. The term refers to both the mission itself and the 

satellite that the mission used to collect data. The TRMM 3B43 

data were obtained from the Goddard Earth Sciences Data and 

Information Service Center (GES DISC), USA; it combines 

three-hour TRMM 3B42 data, the Climate Anomaly Monitoring 

System (CAMS)’s global gridded precipitation, and Global 

Precipitation Climatology Center (GPCC)’s global gridded 

observed precipitation (Rhee and Im, 2017). 

 

3. METHODOLOGY 

3.1 Artificial Neural Networks 

Artificial neural networks, behave similar to the behavior of 

natural neural networks. Artificial neural networks can be 

trained using a series of empirical examples and used for new 

data(Mas & Flores, 2008). Artificial neural networks can be 

classified according to the network structure for example, multi-

layered perceptron neural networks (MLP-NNs) are one of the 

most used ANN. In these types of networks, the neurons are 

placed in a layer, and the signals flow from an input layer to an 

output layer along a network of communication lines (Dawson 

& Wilby, 2001). The ANN models used in this study have a 

feed forward Multi-layer perceptron (MLP). MLPs have often 

been MLPs consist of an input layer, one or more hidden layers, 

and an output layer. A usual three-layered neural network is 

composed of several elements namely nodes. These networks 

are made up of an input layer consisting of nodes representing 

different input variables, the hidden layer consisting of many 

hidden nodes, and an output layer consisting of output 

variables. The ANN models used in this study have a feed 

forward Multi-layer perceptron (MLP) architecture. MLPs have 

often been used in drought forecasting due to their simplicity. 

MLPs consist of an input layer, one or more hidden layers, and 

an output layer (Kim and Valdes, 2003). For ANN model 

development, the determination of the architecture of the model 

is very important this includes the number of neurons in the 

input layer, the number of neurons in the hidden layer, and the 

number of layers in the output layer. The number of neurons 

that provided the lowest RMSE values was chosen as the 

appropriate number. Generally, the number of hidden neurons 

for ANN models is selected via a trial and error method. 

Figure. 2 shows the structure of the multilayer feed-forward 

back propagation algorithm. 
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Figure.2 Structure of multilayer feed–forward back propagation 

algorithm. 

 

 

4. IMPLEMENTATION 

After performing the necessary pre-processing, the difference 

between land surface temperature data of the day and night are 

obtained from the land surface temperature images of the day 

and night. 

In this research, in order to model the NDVI index, the first, 

time series of products of LST, rainfall, snow cover, ET, soil 

moisture and NDVI index were introduced from June 2010 to 

December 2018 and then, Using the neural network 

algorithm(MLP_NNs), vegetation modeling in the area have 

produce. Seventy percent of monthly data Monthly data from 

June 2010 to the end of 2017 as the training data and thirty 

percent data Monthly data from June 2010 to the end of 2017 as 

the test and finally after network training in the best way, the 

NDVI index has been modeled for 12 months of the year. 

Performance Evaluation Criteria: Root mean square error 

(RMSE) and coefficient of determination (R2) were used as 

bench marks for the performance assessment of model (ANN). 

In this study, several different network structures have been 

tested. The best number of neurons in the hidden layer, that is, 

was determined 7 neurons. So the best network was (6 7 1) also 

the transfer function in the hidden layer was Tansig. Table 1. 

shows the values of RMSE and R2 for several different network 

architectures, with the results showing that the best number of 

neurons is for the hidden layer (7) and the best number of 

neurons for the input layer (6). Therefore, by increasing or 

decreasing the number of neurons of these two values in these 

two layers the accuracy decreased. 

 

ANN models RMSE R2 

6-5-1 0.035 0.85 

6-6-1 0.032 0.89 

6-7-1 0.028 0.92 

6-8-1 0.033 0.90 

5-7-1 0.041 0.81 

7-7-1 0.037 0.83 

8-7-1 0.032 0.88 

Table 1. The accuracy for several different network 

architectures. 

 

5. RESULTS AND DISCUSSION 

First, after network training and network evaluation using 

existing data from year 2010 to year 2017, vegetation index 

modeling for the area concerned as well as twelve months from 

year 2018 has been discussed. 

After creating the vegetation index (NDVI) model in the 12 

months of 2018 in order to evaluate the accuracy using the 

actual vegetation index data measured by the MODIS Sensor. In 

order to evaluate the accuracy of the models developed for 

NDVI index in the 12 months of 2018, two methods including 

Root Mean Square Error (RMSE) and coefficient and 

coefficient of determination(R2) have been used. 
The results show that the modeling has been done with a 

desirable accuracy, so that the highest accuracy is about July 

with accuracy of (RMSE=0.029, R2=0.921) and the average 

accuracy of the months in 2018 is (RMSE=0.042, R2=0.848). 

Table 1 shows the accuracy for 12 months from 2018. 

According to Table 1 for each month of the year, a precision 

value is obtained and there is one evaluation for almost every 

season of the year. The least accuracy is about July with 

accuracy of (RMSE=0.051, R2=0.793) that this is probably due 

to the significant fluctuation of the data around the mean. It can 

be said that the accuracy in both summer and winter seasons is 

lower than in autumn and spring seasons. 

Figure 1 shows the NDVI index in July 2018 and Figure 2 

shows the NDVI index modeled by ANN in July 2018. Figure 

5. Scatter plots for Observed NDVI and predicted NDVI. 

 

 

Month RMSE R2 Month RMSE R2 

January 0.033 0.874 July 0.029 0.921 

February 0.037 0.869 August 0.031 0.902 

March 0.040 0.843 September 0.032 0.897 

April 0.053 0.776 October 0.049 0.794 

May 0.051 0.793 November 0.045 0.826 

June 0.037 0.871 December 0.046 0.813 

Table 2. The accuracy for 12 months from 2018. 

 

6. CONCLUSION 

drought is one of the natural disasters that can have destructive 

and negative effects, including loss of vegetation, soil erosion 

and food shortages on an area. With the advancement of remote 

sensing methods, many of the parameters affecting this event 

can be estimated and calculated. In this research, modeling the 

NDVI index monthly was performed using TRMM rainfall data, 

SMOS satellite soil moisture, land surface temperature, snow 

cover, with machine learning algorithms such as artificial neural 

network algorithm. One of the problems in this study was the 

high volume of data also, the SMOS satellite soil moisture 

images since mid-2010, so all data has been used since mid-

2010. Modeling done for twelve months of the year has shown 

that they can be used with remote sensing images and remote 

sensing products that can each measure the parameters affecting 

agricultural drought. However, one of the major challenges in 

this type of modeling is the recognition of the type of 

parameters affecting this phenomenon. Therefore, one of the 

factors of modeling accuracy can be the choice of the type of 

remote sensing products. Neural network method, which is one 

of the methods of machine learning, has been able to provide 

acceptable results in this research. However, other methods of 
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machine learning such as support vector regression, random 

Forest, can be used in future research. 

 

 

Figure3. NDVI index in July 2018 

 

 

Figure4. NDVI index modelled by ANN in July 2018 

 

 

 

Figure 5. Scatter plots for Observed NDVI and 

predicted NDVI in July 2018 
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