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ABSTRACT: 

 

In this study, the feasibility of Micro-Electro-Mechanical System (MEMS) accelerometers and an image-assisted total station (IATS) 

for short- and long-term deformation monitoring of bridge structures is investigated. The MEMS sensors of type BNO055 from Bosch 

as part of a geo-sensor network are mounted at different positions of the bridge structure. In order to degrade the impact of systematic 

errors on the acceleration measurements, the deterministic calibration parameters are determined for fixed positions using a KUKA 

youBot in a climate chamber over certain temperature ranges. The measured acceleration data, with a sampling frequency of 100 Hz, 

yields accurate estimates of the modal parameters over short time intervals but suffer from accuracy degradation for absolute position 

estimates with time. To overcome this problem, video frames of a passive target, attached in the vicinity of one of the MEMS sensors, 

are captured from an embedded on-axis telescope camera of the IATS of type Leica Nova MS50 MultiStation with a practical sampling 

frequency of 10 Hz. To identify the modal parameters such as eigenfrequencies and modal damping for both acceleration and 

displacement time series, a damped harmonic oscillation model is employed together with an autoregressive (AR) model of coloured 

measurement noise. The AR model is solved by means of a generalized expectation maximization (GEM) algorithm. Subsequently, 

the estimated model parameters from the IATS are used for coordinate updates of the MEMS sensor within a Kalman filter approach. 

The experiment was performed for a synthetic bridge and the analysis shows an accuracy level of sub-millimetre for amplitudes and 

much better than 0.1 Hz for the frequencies. 

 

 

1. INTRODUCTION 

1.1 Motivation 

For more than 10 years now, the damage to road bridges from the 

60s and 70s, which has been increasingly noticed, has been 

attracting more and more attention from the media. Besides this, 

the monitoring of bridges with different tasks and methods came 

into the focus of attention. These questions require an 

interdisciplinary cooperation between geodesists, civil engineers 

and geotechnical engineers. 

 

Over the last decade of bridge monitoring, the authors and most 

likely other researchers as well as infrastructure operators have 

made different experiences. Initially, the scepticism towards 

permanent monitoring with geodetic sensors and methods was 

particularly high, but this methodology has gained an increasing 

reputation due to positive practical examples on selected bridges 

and other structures such as locks and dams. The impressive 

demonstration of geodetic methods soon led to the use of this 

technology in several cases: (1) for extensive rehabilitation 

measures on existing bridges, (2) to prevent early 

decommissioning, and (3) to ensure sufficient safety for people 

and the structure itself during operation. In combination with 

geotechnical monitoring procedures, this leads to undeniable 

economic advantages for the operators and for the society. 

 

However, the infrastructure operators, in particular the road 

construction authorities in Germany, were soon confronted with 

the demand for a massive expansion of the geomonitoring of 

bridges. Not only in the case of extensive rehabilitation measures, 

but also for the preventive monitoring of bridges with condition 

grades 3 according to DIN 1076. In particular, a high percentage 

of 21% of all bridges built before 1980 in Germany was affected.  

 

In particular, the high initial investment in the permanent use of 

geodetic methods caused the initial interest of the operators to 

drop considerably. The reason was seen in an economically 

unacceptable permanent monitoring of dilapidated, severely 

damaged or endangered bridges. And as long as nothing serious 

happened, the existing methodology for bridge monitoring 

seemed to be sufficient and in particular economically justifiable. 

 

The increasing number of critical bridge structures with a 

simultaneous rehabilitation backlog and a lack of experienced 

experts for the inspection and assessment of bridges suggests the 

question of whether there are not effective and inexpensive 

methods that only initiate a visual inspection or precise geodetic 

monitoring of bridges when verifiable indications are available 

through efficient and cost-effective monitoring procedures. Then 

the targeted and detailed inspection and monitoring of structures 

classified as critical could be initiated as required. 

 

The authors' goals are the self-sufficient use of a larger number 

of cost-effective and redundantly arranged sensors (here: Micro-

Electro-Mechanical System (MEMS) technology from the 

automotive industry) and the intelligent and continuous 

evaluation of data permanently obtained from potentially critical 

bridge structures based on frequency- and time-domain analysis 

methods. The following partial goals are in focus: (1) early and 
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timely detection of variations of the modal parameters relevant 

for the structural condition of the bridge (e.g. natural frequencies 

and eigenforms), (2) permanent control and long-term statements 

for structural deformations and (3) allocation of deformations to 

the relevant influencing variables on the building deformation. 

 

Therefore, this paper is organized as follows: The ongoing 

section gives a brief literature overview. Section 2 introduces the 

sensor specifications, the measurement set-up and the data 

acquisition. In Section 3 the suitability analysis of triaxial MEMS 

accelerometers for the purpose of bridge monitoring is discussed. 

The robust and automatic identification of modal parameters is 

introduced in Section 4. Section 5 presents the fusion of MEMS 

and image-assisted total station (IATS) data for a displacement 

analysis based on Kalman filtering. The realised experiment in 

Section 6 is sketched for a synthetic bridge, which is constructed 

by the Bundesanstalt für Materialforschung und -prüfung 

(BAM). The results of the experiment for the BAM synthetic 

bridge using the MEMS and the IATS are discussed in Section 7. 

The conclusion and the outlook on future work is given in 

Section 8. 

 

1.2 Literature review 

For the monitoring of long-term movements of bridges (induced 

by foundation settlement, creep, and stress relaxation) or short-

term movements (caused by wind and traffic) (Duff and Hyzak, 

1997), different contact-based or non-contact-based 

measurement methods can be utilised. As a surveying engineer's 

point of view, typically geodetic measurement systems, such as 

the global navigation satellite system (GNSS), robotic total 

stations (RTS), IATS, terrestrial laser scanner (TLS), laser 

tracker and/or other sensors such as accelerometers or digital 

cameras, can be used in the context of vibration monitoring of 

bridge structures. In the following, a brief and exemplarily 

overview of the state of the art based on a literature review is 

given. Roberts et al. (2004) utilised the hybrid measurement 

system consisting of a GNSS with a sampling frequency of 10 Hz 

and a triaxial accelerometer with sampling frequency of 200 Hz 

for a bridge deflection monitoring. Both measurement systems 

were complementary to each other since the GNSS 

measurements were used to suppress the accumulation drift of the 

acceleration data over time through zero velocity updates (ZUPT) 

and coordinate updates (CUPT). In order to filter out the high 

frequency noise, static test measurements with the 

accelerometers were carried out to identify those spurious 

frequencies induced by the sensor noise. Subsequently, the 

designed low-pass or band-pass filters were defined to suppress 

those frequencies with respect to the structural specifications and 

the results of the aforementioned static test. This is a challenging 

issue while the natural frequencies of bridges are located in the 

same band as those spurious frequencies. In addition, the hybrid 

measurement suffers from the drawback that the accuracy of the 

GNSS measurements are degraded due to multipath and cycle 

slips errors or poor satellite coverage. On the other hand, the 

state-of-the-art GNSS measurements cannot detect submillimetre 

displacement changes induced by higher natural frequencies. 

Neitzel et al. (2012) performed a vibration analysis of a bridge 

for a single point located along the bridge using a sensor network 

of accelerometers with a sampling frequency of 600 Hz, a TLS 

(Zoller+Fröhlich Imager 5003) with a sampling frequency of 

7812 Hz in single-point measurement mode and a terrestrial 

interferometric synthetic aperture radar (t-InSAR) with a 

sampling frequency of 200 Hz for a validation.  In order to 

overcome the deficiency of the TLS in detecting such small 

displacements in the submillimetre range, an averaging over 

100 measurements was carried out to reach a practical sampling 

frequency of 78.12 Hz. Psimoulis and Stiros (2013) used the RTS 

with non-constant sampling rate measurements in a range of 5-

7 Hz for vibration monitoring of a short span railway bridge. 

Ehrhart and Lienhart (2015a) performed displacement and 

vibration monitoring of a footbridge structure by capturing video 

frames from the telescope camera of an IATS for a circular target 

marking rigidly attached to the structure. Ehrhart and Lienhart 

(2015b) and Lienhart et al. (2017) were carried out vibration 

analysis of a footbridge structure using an IATS of type Leica 

MS50 with a sampling frequency of 10 Hz, an RTS of type Leica 

TS15 with a sampling frequency of 20 Hz and an accelerometer 

of type HBM B12/200 with a sampling frequency of 200 Hz 

based on measurements of the circular target markings and 

structural features such as bolts of the bridge structure. 

Omidalizarandi et al. (2018) used an IATS of type Leica MS50 

with sampling frequency of 10 Hz for displacement and vibration 

analysis of a footbridge structure. Schill and Eichhorn (2019) 

employed a phase-based profile scanner of type Zoller+Fröhlich 

Profiler 9012 with a sampling frequency of 50 Hz for 

deformation monitoring of the bridge structures. 

 

2. SENSOR SPECIFICATIONS, MEASUREMENT SET-

UP AND DATA ACQUISITION 

The MEMS sensors of type BNO055 from the Bosch company 

have been used in this study. It includes a triaxial 14-bit 

accelerometer, a triaxial 16-bit gyroscope and a triaxial 

magnetometer, which allows to acquire acceleration, rotation and 

magnetic field strength, respectively (see manufacturer's data 

sheet for details in Bosch (2016)). However, we merely benefit 

its accelerometer sensor to record the acceleration data in three 

main directions of a bridge structure (i.e. longitudinal, lateral and 

vertical directions). Its maximum sampling frequency is 200 Hz. 

But, we set it to 100 Hz by considering typical eigenfrequency 

ranges of the bridge structures between 0.1 up to minimum 

25 Hz, which is sufficient in the light of Nyquist–Shannon 

sampling theorem. Acceleration ranges can be defined in the 

ranges of ±2𝑔/±4𝑔/±8𝑔/±16𝑔, which is here set to ±2𝑔. At 

the moment, a geo-sensor network of the MEMS accelerometers 

includes a master node and three measuring nodes that are so 

called master and slaves, respectively.  

 

The measurement starts by triggering the slave sensors from the 

master sensor via cable. The acceleration measurements are 

recorded into the SD memory card in blocks. Each memory block 

has a time stamp transmitted by the master, which is provided by 

an integrated low-cost GNSS equipment. Both, the master and 

the slaves contain a Bosch BNO055 accelerometer and a 

control/storage unit. The components are mounted in an 

aluminium housing, which protects the electronics against 

temperature and humidity changes, wind and rain by means of a 

suitable design.  

 

To perform evaluation and validation of the estimated modal 

parameters from the MEMS accelerometers, a highly accurate 

reference sensor is employed. We have used a laser tracker of 

type Leica AT960-LR with a maximum permissible error of 

15𝜇m + 6𝜇m/m for a 3D point with a sampling frequency of 

1000 Hz (Hexagon Metrology, 2015). Therefore, the use of the 

laser tracker as a reference sensor allows high measuring 

accuracy with a high and precise measuring frequency. 

 

An IATS of type Leica Nova MS50 MultiStation is utilized to 

perform 1D CUPT of the acceleration data acquired by the 

MEMS accelerometers in the vertical direction. The angular 

accuracy is 1" according to ISO 17123-3. The outputs of the 

IATS are polar measurements, which can be used to calculate 
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Cartesian coordinates. Such 3D coordinates of the measured 

object are not practically suitable to perform displacement 

analysis in a sub-millimetre range. To overcome this problem, a 

1D displacement time series is generated based on continuous 

extraction of the passive target centroids from the video frames 

captured from the embedded on-axis telescope camera of the 

IATS with practical sampling frequency of 10 Hz. The 

conversion of the 1D displacement changes from the pixel unit to 

the metric unit is carried out based on a vertical angular 

conversion factor, target object size as well as a slope distance 

measured to the aforementioned passive target. For more 

information regarding the calibration procedure of the vertical 

angular conversion factor, please refer to cf. Ehrhart and Lienhart 

(2015a) or Omidalizarandi et al. (2018). It should be noted that 

merely 1D displacement time series has been generated using the 

aforementioned video frames due to availability of only one 

IATS at time of the measurements, which subsequently allows to 

perform just 1D CUPT in this study. 

 

The passive target centroids are extracted based on the work of 

Omidalizarandi et al. (2019a). The used target pattern comprises 

a circular border with four intersected line patterns (Figure 1). 

The procedure starts by manual initial sighting to the target at the 

beginning of the measurements and measuring its corresponding 

slope distance. Next, the images obtained from captured video 

frames are cropped based on a target object size as well as the 

slope distance. The median blur and bilateral filtering are applied 

for the purpose of noise reduction and sharp edge preservation. 

The line segment detector (LSD) (Grompone von Gioi et al., 

2012) is applied to extract line features. A histogram of azimuth 

of the extracted lines is calculated to select the lines with 

maximum azimuth bin values in an iterative procedure. 

Afterwards, the RANSAC algorithm is applied to those LSD 

lines with maximum deviation less than 15° from the selected 

lines from the previous step. A Huber-robust line fitting (Kaehler 

and Bradski, 2016) is then applied to those LSD lines within a 

predefined buffer width around the RANSAC lines to increase 

the robustness and reliability of the extracted lines. To this end, 

the extracted lines are intersected and then clustered based on 

their proximity by considering a threshold of 2 pixels. At the end, 

the maximum cluster is selected and its weighted average value 

results in the final intersection point. For further details the reader 

is referred to Omidalizarandi et al. (2019a). 

 

Figure 1 depicts the passive target attached to a frontal side of the 

BAM synthetic bridge in the vicinity of one the MEMS 

accelerometers, which is mounted at the bottom of the 

aforementioned synthetic bridge. In addition, a corner cube 

reflector is mounted to be measured by the laser tracker. 

 

 

Figure 1. A passive target (located inside the red ellipse) 

attached to the BAM synthetic bridge, which is close to the 

MEMS (located inside the cyan ellipse) and corner cube 

reflector (located inside the green ellipse). 

 

3. SUITABILITY ANALYSIS OF TRIAXIAL MEMS 

ACCELEROMETERS 

The acceleration measurements recorded from the MEMS 

accelerometer yields accurate results over short time intervals but 

may suffer from accuracy degradation with time in particular for 

absolute position estimates calculated from the double 

integration. Therefore, due to combined effects of MEMS related 

systematic and random errors such as noises, biases, drifts and 

scale factor instabilities on its long-term measurements, a 

calibration procedure is carried out to compensate the systematic 

errors and to provide reliable measurement results.  

 

To select a proper and optimal MEMS sensor despite of 

considering purchase price of the sensor and their sampling 

frequency, two scenarios are proposed. Firstly, a robust and 

reliable calibration procedure is developed and implemented to 

estimate the calibration parameters including three biases, three 

scale factors and three non-orthogonality angles between the axes 

in an automated manner. For this purpose, the calibration 

functions are defined based on common six-position static 

acceleration tests (cf. Shin and El-Sheimy, 2002) using a KUKA 

youBot (Figure 2). The used youBot enables us to perform 

calibration automatically for fixed positions and for certain time 

intervals. To have a better realisation of changes of the 

calibration parameters, the calibration procedure is carried out in 

a climate chamber over different temperature ranges between     

10℃ to 30℃. Higher or lower temperatures were not possible due 

to climate chamber and youBot restrictions. To this end, such a 

calibration procedure allows to avoid in-situ calibration by 

estimating the calibration parameters based on the interpolation 

of the parameters estimated at different temperatures in the 

controlled environmental experiment. Due to the use of only 1D 

acceleration data in this study, the calibration of the non-

orthogonality angles between the three axes may not play an 

important role. However, in our future research the 3D 

acceleration data in all three directions can be considered. Further 

explanation regarding the developed robust calibration procedure 

is also part of our future publication and it is out of scope of this 

study. 

 

 

Figure 2. A calibration experiment using a KUKA youBot 

inside the climate chamber at the Institute of Thermodynamics, 

Leibniz University Hannover. 

 

Secondly, controlled excitation experiments are conducted at the 

laboratory environment using a high-precision shaker (Figure 3). 

The advantages of such experiment are twofold: (1) it allows us 

to estimate harmonic oscillation parameters such as frequency, 

amplitude, damping ratio coefficient as well as phase shift and to 

compare them with those estimated parameters either from other 

slave MEMS accelerometers or from the reference sensors such 

as reference accelerometers or laser tracker. (2) The time 
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synchronisation between MEMS accelerometers can be 

compared together based on the estimated phase shifts.  

 

The measurements were performed at frequencies of 5, 10 and 

20 Hz. The shaker includes a highly accurate reference 

accelerometer recording the acceleration measurements with a 

sampling rate of 1024 Hz for the duration of 5 minutes. 

 

 

Figure 3. A controlled excitation experiment at the Institute of 

Dynamics and Vibration Research, Leibniz University 

Hannover to validate the time synchronisation between all three 

slave MEMS accelerometers. 

 

f  

(Hz) 

A 

 (m/s2) 

A  

(mm) 
𝜑  
(°) 

|𝑔| 
(m/s2) 

𝑝 

5.0027 0.3449 0.3491 5.7263 9.82 71 

10.0054 1.5612 0.3950 153.204 9.82 88 

20.0109 5.8159 0.3679 101.052 9.88 81 
 

f  

(Hz) 

A 

 (m/s2) 

A  

(mm) 
𝜑  
(°) 

|𝑔| 
(m/s2) 

𝑝 

5.0027 0.3512 0.3555 5.6675 10.42 71 

10.0054 1.5909 0.4025 153.147 10.42 88 

20.0109 5.9290 0.3751 100.859 10.53 81 

Table 1. Statistics of the controlled excitation experiment for a 

MEMS (IMU_slave_03) measurements with (top) and without 

(bottom) applying calibration parameters. 

 

 

Figure 4. Overlaying of time series of the acceleration data 

recorded from all three slave MEMS sensors for a duration of 

1 s and at the frequency of 20 Hz within the controlled 

excitation experiment. 

 

Figure 4 shows the overlaying of time series of the acceleration 

data recorded from all three slave MEMS sensors for a duration 

of 1 s and at the frequency of 20 Hz. As we can see from this 

figure, the peaks of the measurements obtained from the two of 

the MEMS sensors (IMU_slave_02 and IMU_slave_04) have 

been better matched compared to another one (IMU_slave_03). 

However, the time delay between their measurements is 

approximately 0.01 s, which is still acceptable for our application 

in this study.  

 

The analysis of the second scenario is exemplarily provided in 

Table 1 for one slave MEMS accelerometer, namely, 

IMU_slave_03 in two cases: (1) with and (2) without applying 

the calibration parameters. The estimated parameters include the 

frequency (Hz), the amplitudes in both units of (m/s2) and (mm), 

the phase shift (°), the calculated absolute gravity value based on 

the calibration parameters (m/s2) and an autoregressive (AR) 

model order, for which the estimation procedure is described in 

Section 4. Further analyses show that the phase shifts between 

sensors vary between 2 to 5 degrees. Moreover, the differences 

of approximately 0.003 Hz for the frequency of 5 Hz and 0.01 Hz 

for the frequency of 20 Hz in comparison with the nominal 

frequency values are realised. Such differences prove that the 

time synchronisation has greater influence at higher frequencies. 

Additionally, the analyses prove a very less influence of the 

calibration parameters on the estimated modal parameters for a 

short period of time. 

 

4. ROBUST AND AUTOMATIC IDENTIFICATION OF 

MODAL PARAMETERS 

To inspect the changes in the global dynamic behaviour of the 

structure such as natural frequencies, mode shapes (i.e. 

eigenforms) and modal damping, a proper functional model 

should be identified. To tackle this problem and to estimate 

amplitudes as well as frequencies for displacement and vibration 

analysis, a linear regression model in terms of a sum of sinusoids 

and the AR model of the coloured measurement noise were 

previously employed and solved by means of the generalized 

expectation maximization (GEM) algorithm (Omidalizarandi et 

al. 2018). However, the estimated amplitude might be influenced 

by the damping characteristics of the structure, which the 

previous undamped model does not capture. Therefore, the 

deterministic model is extended to a damped harmonic oscillation 

(DHO) introduced in Amezquita-Sanchez and Adeli (2015) and 

applied by Kargoll et al. (2019) to estimate frequency, amplitude, 

phase shift as well as damping ratio coefficient. 

 

We modelled the given acceleration measurements 𝑙1,...,𝑙𝑛 

according to the DHO model  

 

𝑙𝑡  =  
𝑎0

2
+ ∑[𝑎𝑗 cos(2𝜋𝑓𝑗√1 − 𝜉𝑗

2 𝑥𝑡)

𝑀

𝑗=1

 

                                   + 𝑏𝑗 𝑠𝑖𝑛(2𝜋𝑓𝑗√1 − 𝜉𝑗
2 𝑥𝑡)] 

                                   ×  𝑒𝑥𝑝(−2𝜋𝜉𝑗𝑓𝑗𝑥𝑡)  + 𝑒𝑡                        (1) 

 

where the time instances 𝑥1, . . . , 𝑥𝑛 correspond to the ambient 

window of the acceleration time series and where the undamped 

frequencies 𝑓1,...,𝑓𝑀, the coefficients 𝑎0,𝑎1,...,𝑎𝑀, and 𝑏1,...,𝑏𝑀 

as well as damping ratio coefficients 𝜉1,...,𝜉𝑀 are treated as 

unknown parameters. Subsequently, the damped frequencies are 

calculated by 𝑓𝑗𝑑  =  𝑓𝑗√1 − 𝜉𝑗
2. It should be noted that the 

acceleration measurements are subtracted from their mean value 

for each selected ambient window. 

 

To deal with the strong coloured measurement noise in the 

acceleration measurements, we assume the random deviations 

(𝑒𝑡) are autocorrelated through a covariance-stationary AR 

process as proposed by Kargoll et al. (2018) 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W18, 2019 
GeoSpatial Conference 2019 – Joint Conferences of SMPR and GI Research, 12–14 October 2019, Karaj, Iran

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W18-833-2019 | © Authors 2019. CC BY 4.0 License.

 
836



 

 

                     𝑒𝑡  =  𝛼1𝑒𝑡−1 + . . . +𝛼𝑝𝑒𝑡−𝑝  + 𝑢𝑡                           (2) 

 

in which the coefficients 𝜶𝑻  =  [𝛼1, . . . , 𝛼𝑝]  are also considered 

as unknown parameters. Since we expect numerous outliers of 

different magnitudes to be present in the data, the white noise 

components 𝑢1,...,𝑢𝑛 of that AR noise model are assumed to 

follow the centred and scaled t-distribution 𝑡𝜈(0, 𝜎2), where the 

degree of freedom 𝜈 and scale factor 𝜎2 are treated as further 

parameters to be estimated, as suggested by Kargoll et al. (2018).  

 

Equation (1) only achieves reasonable results while the 

measurements do not have a significant drift. Therefore, 

acceleration measurements should be detrended by means of the 

calibration parameters to compensate a linear bias drift. 

However, this method is not applicable to the displacement time 

series obtained by using the IATS. Alternatively, the offset 
𝑎0

2
 in 

Equation (1) can be replaced by 𝑐0 + 𝑐1𝑥𝑡 to account for the linear 

drift either of the acceleration or displacement measurements. 

This model can be made more complex for displacement time 

series with higher orders, which extensions are, however, beyond 

the scope of this study. 

 

To estimate the model parameters by means of the 

aforementioned GEM algorithm, the number 𝑀 of Fourier 

frequencies and the model order 𝑝 of the AR process are specified 

beforehand. The required initial frequency values 𝑓1
(0)

,..., 𝑓𝑀
(0)

 

and the AR model order are defined as explained in 

Omidalizarandi et al. (2019b). In addition, the initial damping 

ratio coefficients are set to 0.  

 

5. FUSION OF MEMS AND IATS FOR 

DISPLACEMENT ANALYSIS BASED ON KALMAN-

FILTERING 

Typically, the 3D coordinate measurements of a state of the art 

IATS are at the level of 1 mm accuracy or above depending on 

the distance to the object, which are not sufficiently accurate to 

characterise such small displacements at the level of sub-

millimetre ranges for the application of bridge displacement 

monitoring. To achieve this goal in this study, the 1D 

displacement time series generated from the passive target 

centroid detection are fused with the acceleration measurements 

recorded from one of the MEMS accelerometers. Such a data 

fusion is also beneficial to overcome the 1D displacement drift of 

the MEMS accelerometer over time. For this purpose, the 1D 

CUPT is performed based on an iterative extended Kalman filter 

(iEKF). The Kalman filter is a recursive optimal filter which is 

carried out in three steps of initialisation, prediction and filtering. 

For more information in this regard, please refer to Kalman 

(1961). 

 

The state vector 𝒚(𝒌) at epoch k is described as 

 

                              𝒚𝑘 = [𝑑𝑘 , 𝑣𝑘 , 𝑎𝑘]                                          (3) 

 

here 𝑑𝑘 , 𝑣𝑘 , 𝑎𝑘 are the displacements, the velocities and the 

accelerations at the epoch k in the vertical direction. Since the 

acceleration and displacement are acquired with different 

sampling frequencies of 100 Hz and 10 Hz, respectively, the 

prediction step allows to compensate the displacement gaps. 

Alternatively, the displacement time series can be reconstructed 

from the estimated DHO model parameters to fill out those 

displacement gaps with resampling. The predicted state vector 

(𝒚
𝑘+1

) at epoch k+1 is calculated based on the linear system 

equation as 

               𝒚
𝑘+1

=  𝜱𝑘 .  𝒚̂𝑘  +  𝑮𝑘 .  𝒘𝑘  +  𝑳𝑘 .  𝒖𝑘                     (4) 

 

where 𝜱𝑘 is the transition matrix calculated from the dynamic 

model of the system (i.e. equations of motion) with respect to the 

state vector parameters,  𝒚̂𝑘 is the updated state vector at epoch 

k, 𝑮𝑘 and 𝒘𝑘 are the matrix and vector of disturbing variables or 

noises, 𝑳𝑘 and 𝒖𝑘 are the matrix and vector of acting forces. It 

should be noted that the influence of acting forces is neglected to 

simplify the problem.  
 

The observation model is determined as 

 

                          𝒍𝑘+1 = 𝐀𝑘+1. 𝒚̂𝑘+1 + 𝒗𝑘+1 ,      

                                                  

                     [𝑑
𝑘+1

𝑎𝑘+1]  =  [
1 0 0
0 0 1

] [
𝑑𝑘+1

𝑣𝑘+1

𝑎𝑘+1

] + 𝒗𝑘+1                     (5)                                             

 

where l is the observation vector, A is the design matrix and 𝒗 is 

the vector of residuals. The transition matrix is then given by 

integration with respect to the state vector parameters as 

 

                       𝜱𝑘  = [
1 ∆𝑡

1

2
∆𝑡2

0 1 ∆𝑡
0 0 1

]                                                (6) 

 

where ∆𝑡 is the sampling period. The covariance matrix of the 

process noise is defined based on Wiener-sequence acceleration 

as described by Bar-Shalom et al. (2001)  
 

                       𝜮𝒘𝒘  =

[
 
 
 
 

1

20
∆𝑡5 1

8
∆𝑡4 1

6
∆𝑡3

1

8
∆𝑡4 1

3
∆𝑡3 1

2
∆𝑡2

1

6
∆𝑡3 1

2
∆𝑡2 ∆𝑡 ]

 
 
 
 

𝑞̃                        (7) 

 

where 𝑞̃ is the ratio between the system noise and observation 

noise. The covariance matrix of the observations is given by 

 

                      𝜮𝒍𝒍  = [
𝜎𝑑

2 0

0 𝜎𝑎
2]                                                   (8) 

 

where 𝜎𝑑 and 𝜎𝑎 are the a-priori standard deviations of the 

displacements and the accelerations. It should be noted that the 

noise behaviour of the MEMS acceleration data at rest and for its 

3-axes (i.e. X, Y and Z) are approximately about 0.016, 0.018 and 

0.045 m/s2, respectively. However, the uncertainty for its Z axis 

at motion (i.e. under oscillation imposed by the modal hammer) 

is about 0.013 m/s2 according to the analysis performed for the 

synthetic bridge described in Section 6. Subsequently, the a-

priori standard deviations are set to 0.0001 m and 0.013 m/s2, 

respectively. For further details concerning the iEKF steps, 

please refer to cf. Omidalizarandi and Zhou (2013). 

 

6. EXPERIMENTAL SET-UP 

A kinematic deformation analysis of the BAM synthetic bridge 

structure, located in approximately 80 km distance from Berlin, 

Germany, with a length of 24.0 m, a width of 0.8 m and a height 

of 0.3 m (Figure 5) is investigated. The measurements were 

carried out using the MEMS accelerometers, the laser tracker 

Leica AT960-LR and the IATS (Leica MS50) with sampling 

frequencies of 100 Hz, 1000 Hz and 10 Hz, respectively. 

 

To identify all possible mode shapes of the aforementioned BAM 

synthetic bridge, the three slave and one master MEMS 
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accelerometers were attached at certain positions and at the first 

half of the synthetic bridge due to the symmetric behaviour of the 

mode shapes. Therefore, the three slave MEMS accelerometers 

are placed at the first, second and third quarters of the synthetic 

bridge. The master MEMS accelerometer is placed at the first 

quarter. 

 

 

Figure 5. The BAM synthetic bridge measured by the MEMS 

accelerometers, the laser tracker and the IATS. 

 

Since the BAM synthetic bridge is a rigid platform without any 

natural frequencies, therefore an artificial oscillation was 

generated using a modal hammer. 

 

As mentioned before, the acceleration measurements were 

acquired from all three slave MEMS accelerometers in three 

directions. However, only the acceleration measurements in the 

Z direction were considered. 

 

7. RESULTS FOR THE MEMS ACCELEROMETERS 

AND THE IATS 

Figure 6 depicts the displacement time series obtained from the 

video frames captured by the telescope camera of the IATS at a 

centre position of the BAM synthetic bridge for a duration of 

10 minutes. The large peaks illustrate the time instances while the 

external forces were imposed by the modal hammer. A steep rise 

at approximately 310 s is due to the bridge movement as it was 

visible from displacement time series obtained from the IATS 

and the laser tracker as well. 

 

 

Figure 6. Displacement time series at the centre position of the 

BAM synthetic bridge, which was obtained from the video 

frames captured by the telescope camera of the IATS (blue 

solid), and selected ambient window of 35 s (red dashed lines). 

 

Figure 7 shows the discrete Fourier transform (DFT) of the 

MEMS acceleration data. As we can see in this figure, it is very 

challenging to directly extract dominant eigenfrequencies from 

the DFT due to numerous spurious frequencies.  

Figure 8 illustrates the time series of the 1D displacements from 

the IATS and its adjusted data within the selected ambient 

window. Figures (9-10) depict the eigenfrequencies estimated for 

the acceleration data from the MEMS and for the displacement 

data from the IATS. As we can see in Figure 9, there might be a 

correlation between closely spaced frequencies of 5.73 and 5.33 

Hz, which have amplitudes approximately close to the noise level 

of the acceleration data.  

 

 
Figure 7. The DFT of the MEMS accelerations for the selected 

ambient window of 35 s shown in Figure 6. 

 

 

Figure 8. The time series of the displacements from the IATS 

within the selected ambient window (blue) and their adjusted 

observations (red). 

 

 

 
Figure 9. Identified frequencies from the MEMS acceleration 

data within the selected ambient window. 
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Figure 10. Identified frequencies for the displacement data from 

the IATS within the selected ambient window by considering 

the linear drift of the offset. 

 

In real applications of bridge structures, the natural frequencies 

might be changed but may not be diminished, which can be seen 

for the frequency of 3.3 Hz. In contrast, a system frequency 

caused by the imposition of the load will be diminished in a few 

seconds such as for the frequency of 27.46 Hz extracted from the 

acceleration data. The impact of the linear drift offset for the 

displacement data obtained from the IATS is visible for the lower 

frequency of 0.22 Hz. The frequency of 4.46 Hz for the 

displacement data from the IATS shows a superimposition of 

higher frequencies than 5 Hz, which is related to the deficiency 

of the IATS and its low sampling frequency. 

 

In order to obtain the acceleration measurements at the metric 

unit, a double integration is performed within the selected 

ambient window based on the work of Omidalizarandi et al. 

(2019b). Subsequently, the displacements are estimated for each 

identified eigenfrequency by fitting the DHO model to the double 

integrated adjusted acceleration data (Figure 11). 

 

 

Figure 11. The calculated displacements for the adjusted MEMS 

acceleration data within the selected ambient window based on: 

double integration (red) and fitted DHO model (blue). 

 

An eigenfrequency of 3.3 Hz is detected precisely from the 

measurements of the MEMS, the IATS and the laser tracker as 

we can see in Table 2. The double integration accuracy might be 

degraded for the calculated displacements obtained from the 

MEMS acceleration data for a duration of 10 s or less in case of 

high load impact on the structure. This is due to the fact that the 

modal parameters might not be identified reliably for such short 

time interval. Furthermore, the analysis shows that the estimated 

damping ratio coefficients from the IATS and the laser tracker 

are not as accurate as from the MEMS due to superimposition of 

those higher frequencies with small amplitudes. The reason lies 

in the uncertainty of the measurements, which are higher than the 

amplitudes of the oscillations. 

 

Time: 15 s 
f  

(Hz) 

A  

(mm) 

𝜉 

(%) 
MEMS 3.3278 0.1064 1.30 

IATS 3.2968 0.1357 2.27 

Laser tracker 3.3190 0.1263 1.61 
 

Time: 35 s 
f  

(Hz) 

A  

(mm) 

𝜉 

(%) 
MEMS 3.3242 0.0977 1.20 

IATS 3.3214 0.1217 1.97 

Laser tracker 3.3181 0.1282 1.64 

Table 2. Statistics of estimated modal parameters for the MEMS 

accelerometer, the IATS and the laser tracker measurements for 

a duration of 15 s (top) and 35 s (bottom) within the selected 

ambient window and at the centre position of the BAM 

synthetic bridge. 

 

In order to perform a data fusion of different measurements 

obtained from different sensors, a time synchronisation between 

the sensors plays an important role. In an ideal case, the time 

synchronisation should be performed at the hardware level. 

However, in this study, as described in Ferrari et al. (2016), to 

obtain better synchronisation between the measurements and to 

calculate a time delay between them, a cross-correlation is carried 

out. But, this is a challenging issue since the outputs of the sensor 

measurements are in different units. To tackle this problem, the 

adjusted MEMS acceleration data are converted to a 

displacement vector at the metric unit based on a double 

integration for a duration of 35 s within the selected ambient 

window. Next, the adjusted MEMS acceleration data and the 

IATS displacement data are resampled to the sampling frequency 

of the laser tracker. Then the cross-correlation between the IATS 

and MEMS with respect to the laser tracker is calculated. The 

analysis shows that a maximum cross-correlation between the 

MEMS and the laser tracker (10.909) is slightly higher than the 

maximum cross-correlation between the IATS and the laser 

tracker (10.631) (see Fig. 12). This makes sense due to extraction 

of higher eigenfrequencies from the MEMS compared to the 

IATS.  

 

 

Figure 12. Cross-correlation between the displacement time 

series obtained from the IATS data, the double integration of 

the adjusted MEMS acceleration data and the laser tracker data 

for a duration of 35 s within the selected ambient window. 

 

Figure 13 depicts an overlay of the displacement time series from 

aforementioned sensors after performing the time 

synchronisation. It shows how the peaks nicely fit together. 

Additionally, as we can also see from this figure, the amplitudes 
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of the peaks in the laser tracker and the MEMS are slightly higher 

than the IATS, which is due to the extracting the higher 

eigenfrequencies. 

 

 

Figure 13. Overlaying of displacement time series obtained 

from the IATS data, the double integration of the adjusted 

MEMS acceleration data and the laser tracker data within the 

selected ambient window. 

 

The iEKF is conducted by data fusion of the 1D displacements 

and 1D acceleration measurements with practical sampling 

frequencies of 10 Hz and 100 Hz, respectively. The 1D 

displacements obtained by the IATS are considered for a 1D 

CUPT in the filtering step of the iEKF to minimize the 

displacement drift resulting from the double integration of the 1D 

accelerations.  In order to perform iEKF, two alternative 

solutions were investigated. Firstly, the raw measurements from 

the 1D displacement and 1D acceleration datasets are included 

into the iEKF with different sampling frequencies by performing 

a multi-rate configuration similar to the work of Smyth and Wu 

(2006) and Ferrari et al. (2016). In this case, innovation and 

design matrices are adaptively updated to be compatible with the 

raw measurement sampling frequencies (Figure 14). 

 

 

Figure 14. The displacements analysis based on iEKF and the 

multi-rate configuration using the displacement and acceleration 

measurements: the displacements obtained from the IATS 

(blue), the predicted displacements (green) and the filtered 

displacements (red). 

 

In the second solution, the resampled displacement data from the 

IATS as well as the raw acceleration data are included into the 

iEKF. In this case, more displacement observations than the raw 

displacement observations are considered (Figure 15).  

 

However, the prior knowledge about a-posteriori standard 

deviations of the displacement and acceleration data obtained 

from the estimation procedure allows to have more reliable 

estimation within the iEKF procedure. Consequently, such 

filtering procedure enables us to avoid the drift of the 

displacements estimates derived from the MEMS acceleration 

data over a longer period of time (few minutes or higher) by 

means of the displacement data from the IATS. In our future 

work, the linear drift of the offset in the DHO model can be 

extended to higher order polynomials to enhance the generality 

of the proposed algorithm. 

 

 

 

Figure 15. The displacements analysis based on iEKF and 

performing the resampling using the displacement and 

acceleration measurements (top) and its magnification (bottom): 

the displacements obtained from the IATS (blue), the predicted 

displacements (green) and the filtered displacements (red). 

 

8. CONCLUSIONS 

 

In this study the good feasibility of MEMS accelerometers 

supported by an IATS for short- and long-term deformation 

monitoring of bridge structure is shown. 

 

To allow for a precise and reliable deformation monitoring of 

oscillating structures with less accuracy degradation over time, 

two scenarios are proposed. Firstly, a calibration procedure for 

MEMS accelerations is conducted to obtain calibration 

parameters, which enables us to later refine the measurements in 

a real monitoring of bridge structures. It is carried out using a 

KUKA youbot for fixed positions in a climate chamber and over 

different temperature ranges. However, the analysis reveals a 

minor influence of the calibration parameters on the estimated 

parameters for the short time interval (few minutes). The second 

scenario is performed to estimate the modal parameters in a 

controlled excitation experiment using a shaker. In addition, it 

enables us to observe the time synchronisation between the three 

used MEMS accelerometers. To this end, both scenarios support 

the selection process of finding the proper and optimal MEMS 

accelerometers. 

 

To perform a vibration analysis, the observation model is 

determined based on a DHO model, an auto-correlation model in 

the form of an AR process as well as a stochastic model in the 
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form of heavy tailed family of scaled t-distributions with an 

unknown degree of freedom and with unknown scale factor. The 

analyses prove that such a combination allows for robust, reliable 

and accurate estimation of the modal parameters. 

  

The overall analysis shows that the MEMS used within the 

experiment are capable to identify all possible eigenfrequencies 

of the synthetic bridge structure with an accuracy level of sub-

millimetre for amplitudes and much better than 0.1 Hz for the 

frequencies.  

 

A precise and reliable double integration of the acceleration 

measurements is carried out for a short time (i.e. 15 - 35 s) to 

obtain displacement changes within the selected ambient 

window. 

 

To overcome a displacement drift of the MEMS accelerometers 

in the vertical direction, the 1D CUPT is performed based on an 

iEKF by involving displacement time series generated from the 

video frames of the IATS. The resampling of the displacement 

data based on their estimated modal parameters significantly 

improves the results.  

 

In the future work, a possible correlation between closely spaced 

frequencies will be investigated. The estimation procedure for the 

displacement data is improved by extending the offset in the 

DHO model to higher order polynomials. Furthermore, a global 

optimization is applied to estimate the modal parameters for a 

longer period of time. Additionally, the influence of the 

calibration parameters on the estimated modal parameters within 

the long-term interval is investigated. 
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