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ABSTRACT: 
With recent advances in technology, 3D point clouds are getting more and more frequently requested and used, not only for 
visualization needs but also e.g. by public administrations for urban planning and management. 3D point clouds are also a very frequent 
source for generating 3D city models which became recently more available for many applications, such as urban development plans, 
energy evaluation, navigation, visibility analysis and numerous other GIS studies. While the main data sources remained the same 
(namely aerial photogrammetry and LiDAR), the way these city models are generated have been evolving towards automation with 
different approaches. As most of these approaches are based on point clouds with proper semantic classes, our aim is to classify aerial 
point clouds into meaningful semantic classes, e.g. ground level objects (GLO, including roads and pavements), vegetation, buildings’ 
facades and buildings’ roofs. In this study we tested and evaluated various machine learning algorithms for classification, including 
three deep learning algorithms and one machine learning algorithm. In the experiments, several hand-crafted geometric features 
depending on the dataset are used and, unconventionally, these geometric features are used also for deep learning. 
 

 
Figure 1. A LiDAR point cloud classified with our approach in 5 classes: buildings (red), powerline poles (orange), powerline cables 
(black), ground/soil (light green) and trees (dark green). 
 
 

1. INTRODUCTION 

Point cloud classification (Figure 1) is nowadays a very 
interesting research topic. Indeed, 3D geometric data alone is not 
very interesting for the majority of final users who need further 
ancillary information (i.e. semantic) to better exploit, use and 
further process point clouds. In the geospatial community various 
solutions were presented (Hackel et al., 2017a; Lafarge and 
Mallet, 2012; Weinmann et al., 2015a), with different benchmark 
available (Cavegn et al., 2014; Hackel et al., 2017b; Nex et al., 
2015; Rottensteiner et al., 2014; Serna et al., 2014; Wichmann et 
al., 2018) and some commercial solutions also exist. Up today, 
some reliable solutions exist but, to our knowledge, they are 
confined to either specific data (e.g. only LiDAR) or scenarios 
(indoor vs outdoor, terrestrial vs aerial).  
In this paper we present our approach for the classification of 
aerial point clouds in urban scenes. It is a part of our ongoing 
project on 3D city modelling with previous steps presented in 
(Özdemir and Remondino, 2019). We are implementing our 
approach (Section 3.1) with alternative deep and machine 
learning algorithms. We aim to have a bunch of complementary 
solutions, evaluating their performances and producing classified 
aerial point clouds for 3D building modelling purposes. Our aim 
is to ingest any type of aerial point cloud (either from LiDAR or 
from photogrammetry) and deliver a semantically segmented 
point cloud with specific classes.  

In the following sections we will be summarizing the related 
works (Section 2), describing our experimental pipeline in 
Section 3, sharing our results in Section 4 and making some 
conclusions of the study in Section 5. 
 
 

2. RELATED WORK 

Point cloud classification, which is also named in the literature as 
semantic labelling, semantic segmentation or semantic 
classification of point clouds, has been a challenging research 
field for many years now. During these years, researchers came 
up with different solutions that could be grouped in (i) data 
source based and (ii) artificial intelligence (AI) based. 
 
2.1 Classification Approaches Based on Data Source 

Most of the studies employee LiDAR as data source. Charaniya 
et al. (2004) classify LiDAR point clouds using height and 
LiDAR features. Douillard et al. (2011) developed a 
classification approach based on voxelization. Niemeyer et al. 
(2012) introduced the Conditional Random Field (CRF) based 
classification approach whereas Zhang et al. (2013) presented an 
object-based method based on Support Vector Machines (SVM) 
together with a connected component analysis. Lin et al. (2014) 
examined the effects of using a weighted covariance matrix for 
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eigen-features (also called as eigenvalue features or covariance 
features) extraction on LiDAR point clouds. Ramiya et al. (2017) 
proposed a building detection method based on a point cloud 
segmentation approach. 
There are fewer studies employing photogrammetric point clouds 
Dorninger and Nothegger (2007) presented their work focused on 
unstructured point cloud classification. Becker et al. (2017) 
examined the use of colour and geometry-based features for a 
classification with classic machine learning algorithms. Zhu et al. 
(2017) proposed a semantic relationship including homogeneity 
and adjacency. Özdemir and Remondino (2018) proposed a 
pipeline, based on machine learning, for the segmentation of the 
photogrammetric oblique point clouds for 3D building modelling 
purposes. 
 

 
Figure 2. Different approaches in AI for data classification. Grey 
boxes show modules that can learn from data (Goodfellow et al., 
2016).  
 
 
2.2 Classification Approaches Based on Artificial 
Intelligence Method Used 

There are several AI approaches popularly used by the 
community, which can be categorized as follows (Goodfellow et 
al., 2016): (i) rule-based, (ii) classic machine learning (ML), (iii) 
representation learning, (iv) representation learning with deep 
learning (DL) (Figure 2). LeCun et al. (2015) present a review of 
different deep learning concepts while a detailed theoretical 
background of all the aforementioned AI approaches can be 
found in the Deep Learning book by Goodfellow et al. (2016). 
These alternative AI approaches have been investigated/used by 
many communities, such as natural language processing, 
computer vision, geospatial, etc. While there are four main AI 
approaches (Fig. 1), we would like to focus on ML and DL 
approaches, as these are more related to our work. The studies on 
point cloud classification with ML focuses on different details: in 
their works, Weinmann et al. (2013) examined the relevance of 
features for TLS point cloud classification task, Dohan et al. 
(2015) established a method for a hierarchical approach in 
semantic segmentation, Weinmann et al. (2015b) developed a 
method for interpreting the optimal neighbourhood and relevant 
features for classification with ML, Hackel et al. (2016b) focused 

on extracting contours from 3D point clouds, Hackel et al. 
(2016a), where they represent their approach on classifying point 
clouds with varying density using a random forest classifier, 
Thomas et al. (2018) developed their method for terrestrial laser 
scanning (TLS) classification using a multiscale neighbourhood 
approach. 
Considering the advances in DL field in the recent years, it’s 
implementations for point cloud classification has become as the 
state of the art in a short period of time and continuing to 
improve. Some of these works include: Wu et al. (2015) proposed 
their work on volumetric shapes analysis with deep 
representations that can handle shape completion and object 
detection, Qi et al. (2017) introduced a DL solution for point 
cloud classification, namely PointNet++, that can learn features 
in contextual scales within a metric space, Landrieu and 
Simonovsky (2018) came up with a DL framework that uses 
superpoint graphs to implement contextual relations among 
objects’ parts, Yousefhussien et al. (2018) introduced a deep 
neural network (DNN) that learns local and global geometry from 
the points’ coordinates of the point cloud. 
For a further reading on point cloud segmentation and 
classification readers may refer to review articles of Nguyen and 
Le (2013) and Grilli et al. (2017). For a detailed review on deep 
learning studies on 3D data (including point clouds and RGB-
Depth data) classification, readers may refer to review article by 
Griffiths and Boehm (2019). 
 
 

3. APPROACHES AND EMPLOYED DATA 

In order to have a generic and reliable approach, we wanted to 
examine how different algorithms react to data from different 
sources. Therefore, we included a dataset acquired with airborne 
laser scanning (Vaihingen) and one produced from oblique aerial 
photogrammetry (Dortmund). 
The tested classification approaches include a machine learning 
classifier and three deep neural networks. For machine learning, 
we utilized a One versus One classifier (OvO, Section 3.4), and 
for deep learning we used Bidirectional Long Short-Term 
Memory Deep Neural Network (BiLSTM, Section 3.5) and two 
different Convolutional Neural Networks (CNN, Sections 3.6 
and 3.7) 
 
3.1 Aim and Overview of the Classification Approach 

Analysing the ways of implementing AI methods (Figure 2), it 
can be seen that hand-designed (or hand-crafted) features are 
used in rule-based systems and ML. As representation learning 
approaches are designed to extract the needed features 
throughout computational modules (i.e. convolutional layers of a 
CNN), such features are not provided as input. 
Additionally, reviewing the literature (Section 2), one can see 
that many of the developed approaches are designed for specific 
kind of data or acquisition hardware (data source): for example, 
various methods take advantage of LiDAR features (i.e. number 
of returns, intensity, etc.) or colour information in case of 
photogrammetric clouds.  
Seeking for a wider applicability without depending on ancillary 
or source specific data, we focus on extracting all the necessary 
information from the point cloud itself, instead of exploiting 
existing databases or data source-related features. In addition, 
considering the computational power needed for a DL execution, 
we preferred to seek for a DL approach that can run with low 
computational power (i.e. a mid-class laptop). Therefore, in an 
unusual way, we used both extracted features and the data itself 
(only the 3D coordinates in our case) as input for DL methods 
(Figure 3). 
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Figure 3. Our proposed framework. (Dark blue boxes show 
modules that can learn from data.)  
 
3.2 Employed Data 

Experiments were run using the ISPRS 3D Semantic Labeling 
Contest Dataset of Vaihingen (Niemeyer et al., 2014) and the 
ISPRS Benchmark Dataset of Dortmund City Center (Nex et al., 
2015). 
The Vaihingen dataset, acquired with a Leica ALS50 LiDAR 
sensor, contains separated point clouds for training (753,876 
points, Figure 4) and evaluation (411,722 points). The points 
have an average density of ~5pts/sqm and they are labelled in 
nine classes, including: powerline, low vegetation, impervious 
surfaces, cars, fence/hedge, roof, facade, shrub and tree.  
 

 
Figure 4. Vaihingen dataset, training data with original classes. 

 
The Dortmund point cloud is generated with oblique 
photogrammetry, with images acquired by IGI PentaCam at 
10cm GSD in the nadir and 8-12cm GSD in the oblique views. 
The point cloud has a density of ~50pts/sqm. The dataset is 
designed for dense image matching benchmark and it has no 
labels on the points for semantic classes. Considering the very 
high point density of the cloud, we initially down sampled the 
point cloud to ~6pts/sqm (5 million points in total) before 
labelling some portions for training (130,000 points) and 
evaluation (88,000 points, Figure 5).  

 
Figure 5. Dortmund point cloud training (left) and evaluation 
(right) sets. Points are manually labelled in GLO (blue), roof 
(green), façade (yellow) and vegetation (red). 
 

3.3 Feature Extraction and Usage 

The employed features can be categorized into two: (i) geometric 
features (including eigen-features) and (ii) height features. 
Among the geometric features, we used vertical angle (VA), local 
planarity (LP) and roughness (R). Within eigen-features, we used 
linearity (L), planarity (P), surface variation (SV), sphericity (S), 
omnivariance (O), anisotropy (A) and verticality (V). As height 
features, we used elevation change (EC) and height above ground 
(HAG). 
Hackel et al. (2016a) report eigen-features computational aspects 
whereas details of LP, VA, EC and HAG (computed with a DEM 
extracted from the point cloud) are given in (Özdemir and 
Remondino, 2019). HAG is now extracted with a new and faster 
approach consisting of: 
• retrieval of the highest (PH) and lowest (PL) points in the input 

point cloud,  
• creation of two imaginary grids with predefined grid nodes 

and grid node intervals with the elevations of PH and PL, 
named as GH and GL,  

• centering GH and GL around each point in the point cloud, the 
point of interest (PI),  

• searching for the closest points in the point cloud for each of 
the points in GH and GL, named as PCH, PCL, 

• finding the highest point in PCH and the lowest point in PCL, 
named as PHH and PLL, 

• compute HAG as the elevation difference between PI and PLL. 
Table 1 summarizes the employed features used for each dataset.  
With respect to (Özdemir and Remondino, 2019), the different 
combination of features used in the Dortmund datasets helped to 
(i) improve classification results and (ii) make the proposed 
framework suitable to oblique photogrammetric point cloud (i.e. 
Dortmund) in addition to LiDAR point cloud (i.e. Vaihingen). 
 

Features/Dataset Vaihingen Dortmund 
Linearity - + 
Planarity - + 
Surface Variation + + 
Sphericity + + 
Omnivariance - + 
Anisotropy + - 
Verticality + + 
Vertical Angle * - 
Local Planarity + + 
Roughness - + 
Elevation Change * + 
HAG + (DEM based) + (grid based) 

Total 6 10 
Table 1. Sets of features used for each dataset (+ means used, - 
means not used) for classification, * means used only during 
DEM extraction). 
 

  dx dy dz  F1 F2 … Fm-1 Fm  
            

P1            
P2            
.            
.            
.            

Pn-1            
Pn            
            

Table 2. Input data matrix representation for DL applications: 
each row represents the 3D points, (dx,dy,dz) represents PWDC, 
Fm represents extracted features. 
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These features are utilized in different ways with respect to the 
employed classification network. For instance, we used feature 
vectors for ML (Section 3.4) and 1D CNN (Section 3.6) 
classifier. For 2D CNN and bidirectional long short-term 
memory (BiLSTM) network, we created an n-by-m matrix 
(patch), where n points are represented by m number of features. 
For these cases, we also included patch-wise decentralized 
coordinates (PWDC) as additional data, so that the deep neural 
network (DNN) can also extract some local geometry based on 
the distribution of the points (Table 2). 
 
3.4 One vs. One Machine Learning Classifier 

The One vs One (OvO) classifier uses a basic approach for multi-
class classification problem. Considering that the aim is to have 
N number of classes, the algorithm trains N*(N-1)/2 binary 
classifiers. Each classifier votes for the input data for 
classification. For our classifier, we used kernel ridge regression, 
radial basis function, support vector machine and insensitive 
support vector regression trainers (King, 2009). For this 
classifier, each point is represented by a feature vector, which 
includes the features shown in Table 1. 
 
3.5 Classification with BiLSTM  

Sequence classification with Recurrent Neural Networks (RNN) 
is an approach where the input is a sequence (i.e. words for a 
sentence, video frames, etc.) and the relations between the items 
and their order in the sequence matters. Due to their recurrent 
structure, RNNs are capable of keeping the knowledge from past 
and relating it to present.  
Given a 3D point, we used a certain amount of surrounding points 
in order to create a sequence. While creating these sequences, we 
used the input data matrix (Table 2), which includes PWDC and 
features.  
The employed neural network contains five layers: sequence 
input layer, BiLSTM layer with 200 hidden units, dropout layer 
and a dense layer. 
 
3.6 Classification with 1D CNN 

CNNs are widely used by the deep learning community for many 
purposes, therefore the structure of the layers varies accordingly. 
In our case, starting from an identical input like the OvO 
classifier, we worked with 1D CNN for feature vector input. Our 
network consists of an input layer, two convolutional blocks 
(each consists of convolution, batch normalization and activation 
layers), one maximum pooling layer, two dropout layers, one 
global average pooling layer and one dense layer, as shown in 
Figure 6.  
 

 
Figure 6. The employed 1D CNN architecture (number of filters 
and their dimensions are given next to each layer). 
 
3.7  Classification with 2D CNN 

2D CNNs are possibly the most widely used DNN structures, 
especially for computer vision purposes. In our case, we utilized 
2D CNN for inputting patches. Our 2D CNN consists of 
twentyone layers as follows input layer, 4 2D convolutional 

blocks (each consists of convolution, batch normalization and 
activation layers), two max pooling layers, three dropout layers, 
one flattening layer and two dense layers, as shown in Figure 7. 
The sequences with patch-wise decentralized coordinates defined 
in Section 3.3 are transformed into 2D matrices and used as input 
for 2D convolutions. 
 

 
Figure 7. The employed 2D CNN architecture (number of filters 
and filter dimensions are given next to each layer). 
 

4. RESULTS 

Our classification aim is to have four classes, i.e. buildings’ 
facades, buildings’ roofs, vegetation and GLOs. Therefore, we 
made some adjustments (Table 3) in the Vaihingen dataset which 
is labelled for nine classes.  
 

Original Class New Class (Adjusted) 
Powerline 

Removed from training point cloud Cars 
Fence/Hedge 
Roof Roof 
Façade Facade 
Low Vegetation Ground Level Objects Impervious surfaces 
Shrub Vegetation Tree 

Table 3. Adjustments in the original Vaihingen dataset in order 
to classify the available point cloud in only 4 classes. 
 
In addition to these changes, there were some undesired point 
eliminations during feature extraction caused by point density 
issues. As we define the geometric features with the neighbouring 
points within a search radius, the points which do not have 
enough neighbouring points are eliminated (Table 4).  
 

Class 
Reference 

Data 
After 

Elimination 
Lost  
Data 

% Data 
Loss 

Powerline 600 98 502 84% 
Low veget. 98690 93467 5223 5% 
Imp. surf. 101986 97853 4133 4% 

Car 3708 3235 473 13% 
Fence 7422 7087 335 5% 
Roof 109048 103897 5151 5% 

Façade 11224 7533 3691 33% 
Shrub 24818 23230 1588 6% 
Tree 54226 47486 6740 12% 
Total 411722 383886 27836 7% 

Table 4. Eliminated points during feature extraction, due to low 
point density issues. 
 
To our observations, this situation did not cause significant 
results for vegetation, GLOs and roofs classes. Yet, a significant 
amount of façade points is eliminated and we believe this had 
important effects on the results. 
The training and evaluation data for Vaihingen is shown in Figure 
8, along with classification results. For the accuracy assessment, 
we shared confusion matrices, F1 scores ((2 * Precision * Recall 
/ (Precision + Recall))) and balanced accuracies ((True Negative 
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Rate + Recall)/2). Results for Vaihingen set are shared in Figures 
8-9 and Table 5, whereas for Dortmund set are similarly shared 
in Table 7, Figures 10-11. 
 

  

 
Figure 8. Evaluation data with: (a) original classes, (b) adjusted 
classes, (c) 2D CNN classification results for Vaihingen. 
 

Classes GLO Roof Facade Veget. 
F1 

Score 
Blncd. 
Acc. 

GLO 173141 1794 35 16350 91.7% 93.5% 
Roof 4113 85607 32 14145 87.7% 96.0% 

Facade 1114 646 1615 4158 67.1% 92.8% 
Veget. 5810 2503 107 62296 71.1% 74.0% 

Others* 1925 728 96 7670       
Avg. 79.4% 89.1% 

Table 5. 2D CNN classification results for Vaihingen set and 
confusion matrix with accuracy measures, overall accuracy 
86.4% excluding others, 84.1% including others. Others* include 
points from removed classes (powerline, cars and fence classes 
removed from the training set) which are classified as GLOs, 
roof, façade or vegetation. 
 

 
Figure 9. Minimum, average and maximum F1 scores 
comparisons by algorithm for Vaihingen dataset. 
 

Abbrev. 
Imp 
Surf. Roof Tree Facade 

Ovr. 
Acc Avg F1 

NANJ2 91.2 93.6 82.6 42.6 85.2 70.3 
WhuY4 91.4 94.3 82.8 53.1 84.9 69.2 
OURS *91.7 87.7 *71.1 67.1 84.1 79.4 
LUH 91.1 94.2 83.1 56.3 81.6 68.39 
RIT_1 91.5 94 82.5 49.3 81.6 63.33 
BIJ_W 90.5 92.2 78.4 53.2 81.5 60.3 

Table 6. Our results among the ISPRS Benchmark results 
(ISPRS, 2019).  
 

Table 6 shows our results compared to previous studies reported 
in the ISPRS benchmark (ISPRS, 2019). Results are sorted by 
overall accuracy with highest values per column shown in bold. 
Values with asterisk (*) represent not the exact classes, but the 
matching classes (GLOs to impervious surfaces, vegetation to 
tree). 
 

Classes GLO Roof Facade Veget. 
F1 

Score 
Blncd. 
Acc. 

GLO 31085 139 178 314 97.9% 98.3% 
Roof 15 15178 1843 1634 86.0% 93.0% 

Facade 491 208 10878 1049 80.3% 86.3% 
Veget. 184 1086 1559 15860 84.5% 89.8%     

Avg. 87.2% 91.9% 
Table 7. 2D CNN classification results for Dortmund set, overall 
accuracy 89.4%. 
 

 
Figure 10. 2D CNN classification results for Dortmund: entire 
city centre (top) and evaluation part (bottom). 
 

 
Figure 11. Minimum, average and maximum F1 scores 
comparisons by algorithm for Dortmund dataset. 
 
All processes were run on a mid-performances laptop and, for 
each algorithm, the times spent for the classification of the 
Vaihingen dataset are as follows:  
• OvO classifier ~1min for training and ~1min for 

classification, 
• 1D CNN algorithm ~15min for training and ~5secs for 

classification, 
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• 2D CNN took ~45min for training and <10min for 
classification,  

• BiLSTM DNN took ~2 hours for training and <10min for 
classification.  

For the feature extraction, our previous approach took >1 hour 
for Vaihingen set, while our new approach took ~6min. 
In the processes, we used Dlib C++ library (King, 2009) for the 
OvO classifier implementation, Keras (Chollet, 2015) with 
PlaidML (2019) for DL implementations and Point Cloud 
Library (Rusu and Cousins, 2011) for point cloud processing. 
 
 

5. CONCLUSIONS AND FUTURE WORK 

The paper aimed to examine how way various data classification 
algorithms react to point clouds from different sources (aerial 
laser scanning over Vaihingen and oblique aerial 
photogrammetry over Dortmund), and to experiment how DL 
algorithms performs providing hand-crafted features. The 
reported tests show that in general deep learning algorithms are 
capable of reaching better accuracies, even if it takes relatively 
longer time to train and evaluate the employed networks. 
Considering the number of features and average F1 scores for 
OvO classifier, we noticed how the classifier features a decrease 
in accuracy as the complexity increases.  
The classification failed when 2D CNN did not include PWDC 
as features, therefore we shared results only achieved with 
PWDC. 
In our experiments, while extracting the necessary features, we 
used k-nearest points search for Dortmund set and radius search 
for Vaihingen. We observed some disadvantages of both 
approaches: (i) when search radius is applied, and there are very 
few points within the search radius that is not enough for feature 
computations, this causes some data loss as shown in Table 4; (ii) 
when k-nearest search is applied, and similarly there are very few 
points within the close neighbourhood, even the nearest points 
are far away and this ends up with noise in the features (features 
can be extracted, but not useful); (iii) k-nearest search is observed 
to be highly effected by point density variations. Therefore, as 
future work, it is planned a method able to extract the optimum 
neighbouring points and to use these optimum points for feature 
extraction purposes. 
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