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ABSTRACT: 

In this paper, a novel approach is proposed for 3D change detection in urban areas using only a single satellite images. To this 

purpose, a dense convolutional neural network (DCNN) is utilized in order to estimate a digital surface model (DSM) from a single 

image. In this regard, a densely connected convolutional network is employed for feature extraction and an upsampling method 

based on dilated convolution is employed for estimating the height values. The proposed DCNN is trained using satellite and Light 

Detection and Ranging (LiDAR) data which are provided in 2012 from Isfahan, Iran. Subsequently, the trained network is utilized in 

order to estimate DSM of a single satellite image that is provided in 2006. Finally, the changed areas are detected by subtracting the 

estimated DSMs. Evaluating the accuracy of the detected changed areas indicates 66.59, 72.90 and 67.90 for correctness, 

completeness, and kappa, respectively. 
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1. INTRODUCTION 

 

Change detection and processing of the multi-temporal images 

is an important and challenging topic in the last decades and has 

many application in various fields such as urban planning, 

environmental monitoring, and disaster management (Lu et al., 

2004). Nowadays, remote sensing data over the urban scenes 

can be provided by airborne space-borne imaging, Light 

Detection and Ranging (LiDAR), Synthetic Aperture Radar 

(SAR), etc. (Zhang et al., 2018). There are many studies in 

change detection and various techniques are developed in this 

topic. The conventional methods employed manual photo 

analysis techniques for detecting changes by comparing the 

images that are captured on different dates. Most of the 

techniques which are applied to the digital aerial and satellite 

images mainly utilized the radiometric differences between 

images for detecting the changed areas (Jung, 2004). Only using 

radiometric characteristics is not sufficient for obtaining 

accurate results (Waser et al., 2007). Height data is a valuable 

source of information for change detection which can be 

provided by dense matching and LiDAR. Change detection 

requires height information of different dates. Turker and 

Cetinkaya (2005), generated DSMs for both pre- and post-

earthquake data and identified the collapsed buildings by 

computing the difference between generated DSMs (Turker and 

Cetinkaya, 2005). The capability of the LiDAR system makes it 

possible to acquire a 3D geospatial information with high 

accuracy from the Earth’s surface. Some researchers that used 

LiDAR data for change detection, compare the 3D information 

of LiDAR data with the existing 3D data such as raster maps, 

CAD models, and Digital Surface Model (DSM) of stereo 

matching. Vosselman (2004) detected the buildings using the 

LiDAR data and compared the results with the existing maps in 

for map updating (Matikainen et al., 2003; Vosselman et al., 

2004). Choi et al. (2009), presented a feature-based method for 

change detection in urban areas using the LiDAR data. They 

classified LiDAR data into pre-defined classes and determined 

the types of changes based on the classes (Choi et al., 2009). 

Wang and Li (2015) utilized high resolution satellite images 

beside LiDAR data in order to extract the collapsed buildings 

after an earthquake by combining the textural and radiometrical 

information of images by the 3D information of LiDAR data 

(Wang and Li, 2015). Generally, change detection is a 

complicated process and there is no optimal approach for all 

cases.  
The robustness of Convolutional Neural Networks (CNN) in 

extracting deep and invariant features make them suitable for 

various topics in remote sensing such as object detection (Dong 

et al., 2015), height estimation (Amirkolaee and Arefi, 2019b; 

Ghamisi and Yokoya, 2018), as well as scene classification 

(Chen et al., 2016). Zahng et al. (2018) presented a framework 

in order to detect the buildings and trees changes using LiDAR 

data and aerial images. They employed a CNN to detect the 

candidate changes between two epochs and grouped the 

candidate changes into individual object changes (Zhang et al., 

2018). Lim et al. (2018), proposed a CNN based algorithm for 

change detection from high resolution satellite images without 

any preprocessing, such as ortho-rectification and classification 

(Lim et al., 2018).  

The main objective of this paper is to propose a dense 

convolutional neural network (DCNN) for DSM estimation 

from single remote sensing images in order to be employed 

further for 3D change detection analysis. The proposed DCNN 

is trained using an optical satellite image and LiDAR data for 

the first epoch and the trained network is employed to estimate 

a DSM from a single satellite image in second epoch. The 

changed areas are detected by comparing the estimated DSMs. 

The reminder of this paper is organized as follow, at first, the 

proposed deep framework is described in Section 2. Then, the 
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experimental result and analysis are presented in section 3. In 

Section 4 the conclusions and the suggestions for future work 

are presented. 

 

2. PROPOSED METHODOLOGIES 

In this section, the proposed DCNN for DSM estimation from a 

single remote sensing image and then detecting the changed 

areas are explained in details.  

 

2.1 DSM estimation  

DSM estimation from a single image in absence of 

environmental assumptions is a technically ill-posed problem 

due to the inherent ambiguity of mapping an remote sensing 

image into height values (Mou and Zhu, 2018). The ability of 

CNNs in the extracting various effective features in different 

scales from the input image make it suitable for estimating 

DSM from a single image. Indeed, in addition to the spectral 

and geometrical features which are extracted during the training 

procedure, the relation between pixels in different scales is 

investigated that is very effective for reconstructing the 3D 

structure of the objects. The architecture of the proposed DCNN 

is presented in Figure 1.  

 

Figure 1. The proposed CNN architecture 

The dense convolutional network (DenseNet) is a powerful 

CNN inspired by the residual network (ResNet) and is based on 

the repetition of a block to extract different and robust features 

from an optic image. Each layer of DenseNet is connected to all 

other layers in a feed-forward procedure in order to alleviate 

vanishing gradient, strengthen feature propagation and 

encourage feature reuse (Huang et al., 2017). In other words, 

instead of stacking L convolutional layers with L connections, 

the dense block has 
( 1)

2

L L 
 connections and for each layer, 

the feature maps of all preceding layers are utilized as inputs. In 

dense blocks, a 1×1 convolution is utilized as bottleneck before 

each 3×3 convolution in order to reduce the number of feature 

maps and improve the performance (Gómez-Ríos et al., 2019). 

The output of the tth layer in the DenseNet is computed as 

follow: 

1 2 0( ( , ,..., ))i t tl H C l l l                                                      (1) 

where C is the concatenation operation, l is feature map, and H 

is a series of batch normalization, ReLU layer, and 

convolutional layer. The employed DenseNet contains four 

dense blocks that successively decrease the size of feature maps. 

It should be noted that the fully connected layer is removed for 

decreasing the number of parameters. Fig. 2 presents the 

structure of a dense block. 

 

  

Figure 2. The structure of a dense block 

In the DSM estimation, recovering the geometry structure of the 

objects is an important and challenging issue. As the generated 

feature maps after passing the input image through the 

DenseNet is very small (1/32 of the input image), the available 

information for recovering the geometry structure of the objects 

and recognizing the objects locations is not enough. 

Accordingly, proposing an efficient and robust upsampling 

approach is very important in order to reconstruct the structure 

of a region. Figure 3 represents the employed upsampling 

approach (Up in Figure 1) for DSM estimation (Laina et al., 

2016). 

 

 

Figure 3. The structure of upsampling approach 

 

In the utilized upsampling structure, four convolutional layers 

with 2×2, 2×3, 3×2 and 3×3 kernel size are applied into the 

input feature maps. It is obvious that the global structure of a 

considered region can be reconstructed using the generated 

coarse abstract feature maps after passing the contractive part. 

However, recovering local details and improving estimated 

height values would be possible only by considering the low-

level features of shallow layers. Accordingly, an approach 

should be utilized in the upsampling approach to reuse the low-

level feature maps of shallow layers and fuse them by the 

obtained high-level feature map of deep layers. The structure of 

the utilized approach for extracting context information from 

the shallow layers (FE in Figure 1) of the network and utilizing 

them in the upsampling part is represented in Figure 4.  
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Figure 4. The structure of feature extraction from the shallow 

layers (Amirkolaee and Arefi, 2019a). 

In Figure 4, M is the feature maps of a shallow layer and F is 

the considering feature maps for upsampling. The context 

information depends on the receptive field of convolutional 

layers. A larger receptive field leads to greater context 

information to be captured. The basic method to increase the 

receptive field is to use the pooling operator which decreases 

the resolution of features maps. In order to alleviate this 

problem, dilated convolution is employed (Figure 4) that can 

increase the size of the receptive field without decreasing the 

size of the generated feature maps (Yu and Koltun, 2015). Let 
2

: Z RD  ,  
2 2, Zr r r     and : Rrk   be a discrete 

of size  
2

2 1r  . The generalized form of the dilated 

convolution (
l ) is defined as follows (Yu and Koltun, 2015): 

   ( ) ( ),l

s lt p

D k p D s k t
 

                                                  (2)                                                            

The loss function plays an important role in CNNs to obtain an 

accurate result, making a determination of a suitable loss 

function is critical. The utilized loss function is consist of two 

main components. The first component is L2 norm (eL2) that can 

eliminate the height shift between estimated DSM and reference 

DSM. The second component is slop value (eS) that is computed 

using the adjacent pixels of each pixel and is suitable for 

improving the performance, especially, at the height jumps.  

 
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      
                         (4)                                                              

2 ,L Se e e                                                                            (5)                                                              

where hr is the reference height value and he is the estimated 

height value.  
 

2.2 Change detection 

The proposed DCNN architecture in Section 2.1 is trained using 

single satellite image and LiDAR data of the first epoch. 

Afterward, the trained network is employed to estimate the 

DSM of a single image that belongs to another epoch. The 

changed areas are simply detected by subtracting the estimated 

DSMs of different dates. A greater similarity of the structures in 

the data makes the obtained result of subtracting contain more 

valuable and accurate information. Hence, the trained network 

is utilized for DSM estimation of both epochs. Subsequently, 

the estimated DSM of the first date is used instead of the 

LiDAR data for computing the difference image. Although the 

LiDAR data is more accurate than the estimated DSM, the 

similarity structure of the estimated DSMs, especially at 

boundaries of buildings, leads to reducing the noisy data and 

obtaining a better result. 

  

3. EXPERIMENTS 

In this section, in the beginning, the utilized dataset is described 

in Section 3.1. Then, the proposed approaches for DSM 

estimation (Section 3.1) and change detection (Section 3.2) are 

implemented. 

 

3.1 Dataset 

The utilized dataset consists of two remote sensing images and 

LiDAR data that are captured in 2006 and 2012 from Isfahan, 

Iran. The provided data in 2012 consist of a pan-sharpened 

Pleiades image with 0.5 meter resolution and a LiDAR data 

which is resampled to a pixel size of 0.5 meter. The provided 

data in 2006 only contains a pan-sharpened QuickBird image 

with 0.5 meter resolution. The satellite images and LiDAR data 

of the study area are represented in Figure 5. 

 

  

(a) (b) 

 

(c) 

Figure 5. The study area, (a) Pleiades image in 2012, (b) 

LiDAR data in 2012, and (c) QuickBird image in 2006. 

 

3.2 DSM estimation  

To analyze the performance of the proposed DSM estimation 

approach the LiDAR data and Pleiades image in 2012 are 

employed. In this regard, firstly, the input image and 

corresponding LiDAR data are divided into smaller images 

(224×224) by considering to Figure 1. Almost 66 percent of the 

study area is selected for training and the remained 34 percent is 

selected for testing. Subsequently, the training data are 

augmented by applying certain transformation functions 

(Amirkolaee and Arefi, 2019b). The number of training data 

after applying the transformations is approximately 77 k 

samples. The number of the epochs, batch size, learning rate, 

momentum rate, and weight decay are set to 15, 16, 310 , 0.9 

and 43 10 , respectively. Some samples of the estimated DSMs 

are represented in Figure 6. 
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(a) (b) (c) 

Figure 6. Some samples of the estimated DSMs, (a) input 

image, (b) estimated DSM, (c) reference DSM. 

In order to compute the accuracy of the acquired results and 

assess the performance of the proposed DCNN, three criteria 

including root mean squared error (ERMSE), average relative 

error (ERel), and average log10 error (Elog10) are computed 

(Amirkolaee and Arefi, 2019a).  

 
2
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1 n
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i
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The ERMSE is used to measure the absolute error at each pixel, 

the ERel is used to measure the ratio between absolute error and 

estimated height value and Elog10 measures the absolute 

difference logarithm of the reference and estimated height 

values. The evaluation results of DSM estimation are 

represented in Table 1.  

 

Table 1. The evaluation results of the DSM estimation 

 ERMSE ERel Elog10 

Isfahan 2.487 0.731 0.274 

 

 

3.3 Change detection 

As mentioned in Section 2.2, the proposed DCNN is trained 

using the satellite image and LiDAR data which are captured in 

2012 and the trained network is used to estimate the DSM of 

the satellite image that is provided in 2006. It should be noted, 

we also utilized the estimated DSM of 2012 based on DCNN 

approach instead of the LiDAR data to reduce noisy results. 

Figure 7 represents the results of change detection by 

subtracting the estimated DSMs. In the Fig 7d, the recognized 

changed areas after applying a threshold of 4 meter is 

represented. The positive changes which show the objects that 

are not exist in the 2006 are represented by red colour and the 

negative changes which show the object that are destroyed in 

the 2012 are represented by blue colour. 
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(a) (b) (c) 

 
 

(d) 

Figure 7. Some samples of the change detection, (a) the data of 

the 2006, (b) the data of the 2012, (c) the result of change 

detection, and (d) the positive and negative changed regions by 

applying a threshold (4 m) for the whole of the study area. 

 

 

A reference data is manually produced in a small part of the 

study area. In order to assess the accuracy of the detected 

changed areas three criteria including, completeness (ECm), 

correctness (ECr) (Pahlavani et al., 2015), and Kappa (EKappa) 

(Niemeyer et al., 2013) are employed. The evaluation results of 

change detection is represented in Table 2 and Figure 8. The 

yellow area indicates the pixels that are correctly detected, the 

red pixels indicates the pixels which are wrongly detected and 

the blue pixels indicates the pixels which are not detected.  

 

 

 

 

 

 

 Table 2. The evaluation results of the change detection 

 ECr ECm EKappa 

Constructed  69.44 78.52 71.97 

Destroyed 60.09 54.64 55.73 

All  66.59 72.90 67.90 

 

 

(a) 

 

(b) 
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(c) 

Figure 8. Schematic evaluation result, (a) reference data, (b) 

evaluation result for the constructed objects, (c) evaluation 

result for the destroyed objects.  

 

 

4. CONCLUSION 

In this paper, an approach is proposed for change detection 

from single remote sensing images. In this regard, a dense 

convolutional neural network (DCNN) is proposed for DSM 

estimation from a single remote sensing image. The network is 

trained using a satellite image and corresponding LiDAR data 

that are provided from Isfahan in 2012. Then, the trained 

network is used to estimate the DSM of a satellite image which 

is captured in 2006. The evaluation of the proposed DCNN for 

DSM estimation indicates root mean squared error, average 

relative error, and average log10 error of approximately 2.487 

m, 0.731 and 0.274, respectively. In order to detect the changed 

areas, the estimated DSMs of 2012 is subtracted from the 

estimated DSM of 2012. The evaluation of the change detection 

results indicate 66.59, 72.90 and 67.90 for correctness, 

completeness, and kappa, respectively. Enriching the training 

data by employing the different images which are captured from 

the different satellites at different times can be suitable for 

improving the accuracy of the results that are suggested for 

future work. 
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