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ABSTRACT: 

Obtaining information about forest attributes is essential for planning, monitoring, and management of forests. Due to the time and 

cost consuming of Tree Density (TD) using field measurements especially in the vast and remote areas, remote sensing techniques 

have gained more attention in scientific community. Khyroud forest, a part of Hyrcanian forest of Iran, with a high species biodiversity 

and growing volume stock plays an important role in carbon storage. The aim of this study was to assess the capability of Sentinel-2 

data for estimating the tree density in the Khyroud forest. 65 square sample plots with an area of 2025m2 were measured. In each 

sample plot, trees with diameter at the breast height (DBH) higher than 7.5-cm were recorded. The quality of Sentinel-2 data in terms 

of geometric correction and cloud effect were investigated. Different processing approaches such as vegetation indices and Tasseled 

Cap transformation on spectral bands in combination with an empirical approach were implemented. Also, some of biophysical 

variables were computed. To assess the model performance, the data were randomly divided into parts, 70% of sample plots were used 

for modelling and 30% for validation. The results showed that the SVR algorithm (linear kernel) with a relative RMSE of 23.09% and 

a R2 of 0.526 gained the highest performance for tree density estimation. 

1. INTRODUCTION

Forest’s ecosystem is one of the most important carbon sinks of 

the terrestrial ecosystem. Therefore, quantifying them in the 

different aspects such as volume, biomass, carbon stock, tree 

density, and basal area is virtual. Field data measurement is a 

conventional method for estimating the forest structural 

attributes. Although, this method produces the most accurate 

results, it is labor intensive, expensive and time consuming. 

Moreover, it still lacks providing the spatially explicit of forest 

attributes in large area. In contrast, remote sensing data have been 

shown to provide a solution for the above-mentioned challenges 

(Vashum and ayakumar, 2012). They have advantages such as 

broad coverage, lower cost, and providing continues information 

and have been used frequently in applications such as geology, 

agriculture, and forestry. To the best of our knowledge, a few 

studies have been conducted to estimate tree density using remote 

sensing data over Hyrcanian and Zagros forests of Iran (Pir 

Bavaghar, 2011; Kalbi et al., 2013; Noorian et al., 2014).  

For instance, Pir Bavaghar (2011) has investigated the capability 

of SPOT5-HRG to estimate tree stem density in the northern 

Zagros forests. Kalbi et al., (2013) used linear regression model 

to estimate tree stem density using of ASTER data. Noorian et 

al., (2014) shows that with implementing the Classification and 

Regression Trees (CART) algorithm and using ASTER image 

data, the tree stem density can be estimated. Recognition of 

available resources and accessibility to an update database are 

important for forest planning and management (Ahmadi Sani, 

2008) in this study, we aim to investigate the relationship 

between the Sentinel-2 derived features and the tree density, 

hereafter TD, for Beech (Fagus Orientalis) stands in Khyroud 

forests.  

* Corresponding author

2. MATERIALS AND METHOD

2.1. Study area and reference data 

The study area with coordinates of 51 32’ to 51 44’ and 36 27’ 

to 36 40’ covers an area of about 500-ha. It is located in the 

Khyroud forest, North of Iran. The plot positions at Gorazbon 

and Namkhaneh district in Khyruod research forest were shown 

at Fig. 1.The elevation above sea level (a.s.l) ranges from 540 to 

1350-m. Fagus Orientalis (beach) is the dominant species of this 

forest. In-situ data for developing tree density models and 

validating the models were provided through field 

measurements. We conducted a selective design sampling 

inventory and 65 sample plots were collected in August, 2014. 

The dimensions of plots were choose 45m×45-m, with roughly 

corresponding to sentinel2 spatial resolution and all trees with a 

diameter at breast height (dbh) greater than 7.5 cm were 

considered for measuring TD.
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Figure 1. Location of the plots in Khyroud forest

 

2.2. Remote sensing data and processing 

 
We used Sentinel-2 level-1C (L1C) Multispectral data acquired 

on 26 August 2016. The Sentinel-2 data was downloaded free of 

charge from Copernicus Open Access Hub 

(https://scihub.copernicus.eu/dhus/#/home). Sentinel’s 

Application Platform (SNAP) (version. 6) 

(http://step.esa.int/main/toolboxes/snap/) (Sentinel-2_Team, 

2015) were used for Sentinel-2 data processing. The image was a 

relatively cloud-free scene. First as a preprocessing step, 1:25000 

topographic maps were used to check the geometric quality of 

Sentinel-2 dataset. 

 

The quality of data in aspects of radiometry was evaluated. For 

this reason, we used band-9 of Sentinel-2 for assessing cloud 

cover. Sentinel-2 data were transferred from level-2A into level-

1C using atmospheric processor of SEN2COR 

(http://step.esa.int/main/third-party-plugins-2/sen2cor/). In 

addition to main spectral bands, we used from other enhancement 

processing for extracting related features to forest biophysical 

parameters. Second as processing step, vegetation indices, 

biophysical variables such as Leaf Area Index (LAI), Leaf 

Chlorophyll Content (Cab), Canopy Water Content (CWC) and 

Fraction of Absorbed Photosynthetically Active Radiation 

(FAPAR) (Liu et al., 2019; Castillo et al., 2017; Chen et al., 

2018; Frampton et al., 2013) and Tasseled Cap transformation 

(Nedkov, 2017) were derived as independent variables (Table 1). 

These mentioned biophysical indices are computed using 

radiation PROSAIL transformation model (For detailed 

information, please refer to Weiss and Baret, 2016 and 

Jacquemoud et al., 2009). All of desired features were resampled 

to 5-m resolution. The flowchart of research procedure have 

presented at Fig. 2.
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Table 1. Sentinel-2 based indices and original band used as predictors for tree density estimation 

Predictor variable Relevant 

band/index 

Description/ Resolution 

Multispectral 

Bands 

 

B2 Blue (B) 

B3 Green (G) 

B4 Red (R) 

B5 Red edge 1 (RE1) 

B6 Red edge 2 (RE2) 

B7 Red edge 3 (RE3) 

B8 Near infrared (NIR) 

B8a Near infrared narrow (NIRn) 

B11 Shortwave infrared 1 (SWIR1) 

B12 Shortwave infrared 2 (SWIR2) 

458–523nm/10m 

543–578nm/10m 

650–680nm/10m 

698–713nm/20m 

733–748nm/20m 

773–793nm/20m 

785–900nm/10m 

855–875nm/20m 

1565–1655nm/20m 

2100–2280nm/20m 

Biophysical 

variables 

 

LAI 

CAB 

CWC 

FAPAR 

 

FCOVER 

Leaf Area Index 

Chlorophyll content in the leaf 

Canopy Water Content 

Fraction of Absorbed Photosynthetically 

Active Radiation 

Fraction of Vegetation Cover 

Vegetation indices 

 

NDI45 

PSSRA 

S2REP 

(B5-B4)/(B5 + B4) 

(B7/B4) 

705 + 35*((((B7 + B4)/2)- B5)/(B6-B5)) 

Tasseled Cap Greeness - 

 

 
Figure 2. The Flowchart of research procedure for TD estimation 

 

2.3. TD modeling and model validation 

We randomly divided our in-situ data into two groups i.e. 

modeling (70%) and validation (30%) dataset. Two main 

approaches i.e. parametric and non-parametric approaches are 

commonly used to predict forest structural attributes from optical 

data. Parametric approach has a dependency to the model 

structure and needs a normal distribution assumption, which is 

particularly challenging. Therefore, the non-parametric 

approaches i.e. Machine learning algorithms including K-Nearest 

Neighbors (k-NN), Support Vector Regression (SVR), and 

Random Forest (RF) were used for estimating TD. The accuracy 

assessment of estimations was based on validation grope of 

reference data. The coefficient of determination R2, absolute and 

relative root mean square error (RMSE and RMSE %) and 

Akaike Information Criterion (AIC) were calculated based on 

estimated TD from different machine learning algorithms 

(Equations 1-4). 
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𝑅2 = 1 −
∑ (y𝑖 − y�̂�)2𝑖

∑ (y𝑖 − y̅)2𝑖
 

(1) 

𝑅𝑀𝑆𝐸 = √
∑ (y𝑖 − y�̂�)2𝑖

𝑛
 

(2) 

𝑅𝑀𝑆𝐸% =
𝑅𝑀𝑆𝐸

y̅
× 100 

(3) 

𝐴𝐼𝐶 = 2𝐾 − 2ln(𝐿) (4) 

 

Where is yi observed value, y̅  average of observed values, y�̂� 
predicted value, K the number of variables used in the model, L 

the maximum value of likelihood function for the estimated 

model, and n is the number of observations. 

 

3. RESULTS 

After overlaying reference roads layer on the image of study area, 

it was observed that the reference roads completely corresponded 

to the roads observed in the image and there is no need for image 

rectification. Minimum, maximum and average value of 

measured TD were 600, 3080 and 1704 tree.ha-1 respectively. 

 

The results of k-NN have showed in Table 2 for Sentinel-2 

dataset. Chebychev metric had better performance rather than 

Metrics and produced more accurate results with RMSE of 

27.26% and R2 of 0.121.  

 

Table 2. The results of k-NN algorithm with different 

height metrics for estimating TD 

Metrics RMSE 

(tree.ha-1) 

RMSE% (R2) 

Euclidean 444.4 27.3 0.1077 

Euclidean Squared 453.2 27.84 0.073 

Chebychev 443.73 27.26 0.121 

Manhatan 495.34 30.42 0.037 

 

The results of Random Forest have showed in Table 3 for 

Sentinel-2 dataset. As it can be seen, 7 predictor variables with 

350 trees produced the best results with RMSE of 27.99% and R2 

of 0.085. 

Table 3. The results of RF algorithm with different number 

of K predictors for estimating TD 

Optimal 

number 

of trees 

Number of 

predictor (k) 

RMSE 

)1-(tree.ha 

RMSE% )2R( 

350 3 460.9 28.31 0.061 

350 4 465.85 28.61 0.0414 

350 5 459.36 28.21 0.07 

350 6 462.66 28.42 0.056 

350 7 455.73 27.99 0.085 

 

SVR results were reported at Table 4. Linear Kernel had better 

performance rather than other Kernels. So, linear kernel with 

RMSE and R2 of 23.09% and 0.526 showed the better results. 

Table 4. The results of SVR algorithm with different 

kernels for estimating TD 

Kernel RMSE 

(tree.ha-1) 

RMSE

% 

(R2) 

Linear 375.96 23.09 0.526 

Polynomial 578.6 35.54 0.021 

Radial Basis 

Function kernel (RBF) 

419 25.73 0.247 

Sigmoid 623.67 38.31 0.001 

In general, we can see that Sentinel-2 dataset with Linear 

Kernel algorithm produced best results for TD estimation at our 

study area. The scatter plot of predicted values versus observed 

values was reported at Fig. 3. 

 

Fig. 3. The predicted values versus measured values for Linear 

Kernel (SVR algorithm) 

4. CONCLUSION 

Applied machine learning approaches strengthened the 

hypothesis of estimating TD of Fagus Orientalis stands using 

Sentinel-2 images, but a need for further investigation is remain. 

The results showed that the SVR algorithm with linear kernel has 

better performance than other machine learning algorithms 

(rRMSE = 23.09% and R2 = 0.526). The same results have 

obtained by López-Serrano et al., (2016), Mountrakis et al (2011) 

and Camps-Valls (2009). One of the reasons for this result is that 

SVR can resolve the problems associated to low number of plots. 

Also, it can analyse the non-linear relationships between 

dependent and independent variables. There are several sources 

of errors and uncertainties in the estimation of TD. 

Understanding and quantification of these sources of errors is 

important in order to improve the accuracy of estimations. These 

sources of errors and uncertainties can be such as temporal 

decorrelation between remote sensing measurements and ground 

data and GPS positional errors. The performance of the selected 

method is still insufficient for accurate TD estimation and cannot 

be generalized to other forest areas. The error of this model can 

be accepted over the large scale such as watersheds. The use of 

lidar data and radar data is recommended for future researches.  
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