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ABSTRACT: 

Policymaking and planning agricultural improvement require accurate and timely information and statistics. In Iran, collecting and 
acquiring agricultural statistics is often done in the traditional methods. Related studies have proved that these methods mostly 
contain some mistakes. Multi-temporal acquisition strategies of remotely sensed data provide an opportunity to improve rice 
monitoring and mapping. Studying and monitoring rice paddies in vast areas is limited by the presence of cloud cover, the spatial 
and temporal resolution of optical sensors, and the lack of open access or systematic Radar data. Sentinel-1 satellite data, which 
are free to access and has a high quality of spatial and temporal resolution, can provide a great opportunity for monitoring crop 
products, especially rice. In this study, Sigma Nought, Gamma Nought and Beta Nought time series of Sentinel-1 data in VV, VH 
and VV+VH polarizations were employed for extracting areas under rice cultivation in the region of Mazandaran province, Iran. 
These satellite data are taken regularly every 12 days, according to the season of the region, from March 21st to September 22nd 
of 2018. In this study, in order to specify the rice paddies area, several fieldworks were randomly carried out for two weeks, and 
field data were collected as well. Field data including rice paddies areas and non-rice areas were collected as ‘Test and Train data 
set’ and then the Random Forrest (RF) algorithm was carried out to determine the rice paddies area. The classification result was 
validated using test samples. The accuracy of all classifications results are over 80% and the best result is related to Sigma Nought 
and gamma Nought of VH polarization, with an accuracy of 91.37%. The results showed a high capability to evaluate and monitor 
rice production at moderate levels in a vast area which is regularly exposed to the cloud cover.  

1.INTRODUCTION

Asia is one of the largest producers of rice, and the rice is 
cultivated in these lands for thousands of years. Rice is also 
one of the main agricultural product and the main source of 
food for about half of the world's population (FAOSTAT 
Database., 2018). In many countries, rice is the foundation 
of the economy and provides the main food for the people. 
Nowadays, the rapid population growth increasingly 
pressures food resources. To control and maintain the 
balance between rice production and food demands, an 
effective program for monitoring rice at the regional, 
national and international levels is required.  
Rice is one of the most important foods in Iran in recent 
years. The extent and distribution of rice paddies in the 
northern part of Iran compared with other regions is higher, 
so that more than 70% of the rice cultivation area (paddies) 
in Iran is located in the coastal areas of the Caspian Sea and 
in the provinces of Gilan and Mazandaran. In general, rice 
production can be implemented in two ways: (1) Irrigated 
paddies of rice, in which rice paddies are flooded through 
dams and rivers, and rice can be cultivated more than once a 
year; (2). Rainfed paddies of rice, in which paddies are 
irrigated with rainfall and rice is cultivated once a year, 

followed by secondary crop cultivation (Toan et al., 1997). 
In the past few years, two main methods have been used for 
rice paddies mapping: (1) by using manual coordination of 
cadastral maps, and (2) by using manual digitization based 
on the visual interpretation of high resolution optical and 
Near-Infrared (NIR) satellite images (Nguyen et al., 2016). 
These methods are time-consuming and expensive. 
Traditional methods of obtaining information from the 
distribution of rice systems are based on statistical 
information. However, statistical data can be easily mistaken 
by human factors, and it is difficult to identify spatial 
distribution in administrative units of government. The 
potential of using remote sensing to extract the rice 
distribution has been well proved and is now widely used for 
rice mapping (Toan et al., 1997). Estimation of different 
levels of agricultural products in Iran is usually carried out 
in three ways including expertizing methods, the estimation 
method through the inventory and utilizing of new 
technologies. The precision of the expertizing methods is 
very low and its results cannot be used in the important 
decision-making process. In the estimation method through 
the inventory, although the cropping area is estimated, the 
product distribution cannot be estimated. The third method 
is the employing of new technologies, such as remote 
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sensing and GIS. What is clear in Iran is the lack of these 
kinds of data. This lack of information is not only about rice, 
but also about most of the agricultural crops in Iran, and the 
need for further studies in this field is necessary. Water and 
heat requirement of rice is high. Most rice paddies are 
located in hot and humid areas around the world. Humid 
environments are usually covered with clouds, so it is 
difficult to obtain optical remotely sensed data in rice 
growing areas. Radar data and especially SAR data are 
working in all kinds of weather conditions and do not require 
sunlight (Yan, Hao et al., 1998). These images with the 
capability to capture and view frequencies are an important 
source for forecasting and displaying rice in tropical regions. 
In the case of rice, microwave observations depend on the 
stages of growth, biomass development, plant height, soil 
moisture, and the duration and frequency of flooding. During 
the crop rotation period, the presence of background soil 
surface associated with rice paddies reduces backscattering. 
While tillering rate, amount of biomass and rice straw are 
increased, the rate of backscattering response, as a result of 
increased interaction, increases as well, and the rate of 
backscattering when the rice reaches to its maximum growth 
rate and when it is harvested leads to a decrease in 
backscattering. This has led SAR images to be particularly 
useful, in view of the range of dynamics and the scattering 
mechanism of spectral reflection of rice throughout its life 
cycle, to map of rice cultivation area, the rate of flooding of 

rice paddies, and the intensity of cultivation (Toan et al. 
1997; Ribbes 1999). 

2. MATERIALS AND METHODS 

2.1. Study Areas 

In Iran, different vareties of rice are cultivated, which they 
are specifically cultivated in Iran and has a high demand 
among Iranian consumers whose main priority is Iranian rice 
to consume. Iran is a large country in the southwest of Asia 
(in the Middle East) with an estimated area of 1,648,195 
km2, and historical records have shown that since the first-
century of A.C. rice has been cultivated in Iran, and now Iran 
is a medium rice producer. Only 3% of the annual cultivated 
areas in Iran are rice-cultivated paddies and about 70% of 
the rice cultivation area is located in the northern provinces 
of Gilan and Mazandaran, which are located near the 
Caspian Sea. Iranian rice is transplanted instantly after the 
Iranian New Year (Nowruz) in late May and is harvested in 
late August using hand-held or mechanical methods. The 
study area is located in the eastern region of Mazandaran 
province in the northern UTM zone of 39 with an area of 
73.23 km2 and in this area rice growth stages, from 
transplanting to harvesting, last from 85 to 100 days (Fig. 2 
(a)). 

 
Figure 1. Study area and location of the field survey sites in the Mazandaran province, Iran. 

2.2. Sentinel-1 data and Pre-processing 

Due to the bad weather conditions and the cloudiness of most 
of the days in the study area, we had to use Sentinel-1 radar 
images. The Sentinel-1A satellite platform carries a C band 
sensor at 5.405 GHz with an incident angle between 20 and 
45 degrees. This platform moves in a Sun-synchronous orbit 
near the pole at an altitude of 693 kilometres. The A1 

platform has a 12-day repeat cycle in the equator. The 
Sentinel-1B platform was launched in April 2016 and is 
currently collecting data on a regular basis. In this research, 
the time series of Sentinel-1 images from March 21th to 
September 22nd of 2018, was acquired every 12 days 
(including 15 images) (Fig. 2 (b)); the required pre-
processing is shown in Fig. 3.  
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Figure 2. (a) Growth stages of rice, (b) dates for taking images. 

To eliminate speckle noise of Sentinel-1 images, the 
improved Lee filter (Window 3 3) was used. The L1 
products (Sentinel-1) are provided with dedicated 
Calibration Annotation Data Set (CADS) providing the 
necessary information to convert the radar reflectivity into 
physical units. The CADS provides four Look Up Tables 
(LUTs):  
A

(Beta Nought): to transform the radar reflectivity into 
beta β0 where the area normalization is aligned with the slant 
range. 
A

 (Sigma Nought): to transform the radar reflectivity into 
radar cross-section σ0 where the area normalization is 
aligned with ground range plane. 

  
A

 (Gamma Nought): to transform the radar reflectivity 
into gamma γ0 where the area normalization is aligned with 
a plane perpendicular to slant range. 

dnA : to revert for the final pixel scaling. The final products 
are coded in 16 bits’ integers (signed for SLC and unsigned 
for GRD). Those final products are generated from the same 
internal SLC product coded in floats. In order to best use the 
limited integer dynamic range, the internal SLC is scaled. 

dnA  defines the final scaling from internal SLC to the final 
product (Radiometric Calibration of S-1 Level 1 Products 
Generated by the S-1 IPF). 
Therefore, the DN of Sentinel-1 images were converted into 
Sigma Nought, Beta Nought, and Gamma Nought. In this 
study, time series of sigma Nought, beta Nought and gamma 
Nought images of level 1 images of Sentinel-1 were used 
using Random Forest (RF) algorithm to determine the areas 
under rice cultivation (Fig. 3). 

2.3. Rice Cropping System Samples 

According to the crop season of the study area, several 
composites has been set up to produce samples of rice 

cultivation system. Samples were harvested with the same 
distribution throughout the study area. A total of 289 
samples, including 102 samples of rice cultivating system 
and 187 non-rice samples were collected (Table 1). These 
samples were randomly divided into two groups of 30% and 
70%.  The first group (70% of these samples) was used as 
training samples for determining the rules for monitoring 
rice harvesting systems. The second group were used to 
validate the results accuracy.  

 

Table1. Characteristics of training data used for the 
Classification 

# of Pixels # of Polygons Class 

92,808 102 Rice 
109,783 187 Non-Rice 

 

2.4. Methodology 

The RF classifier consists of a combination of tree classifiers 
where each classifier is generated using a random vector 
sampled independently from the input vector, and each tree 
casts a unit vote for the most popular class to classify an 
input vector (Breiman 1999). The RF classifier used for this 
study consists of using randomly selected features or a 
combination of features at each node to grow a tree. 
Bagging, a method to generate a training data set by 
randomly drawing with replacement N examples, where N is 
the size of the original training set (Breiman 1996), was used 
for each feature/feature combination selected. Any examples 
(pixels) are classified by taking the most popular voted class 
from all the tree predictors in the forest (Breiman 1999). 
Design of a decision tree required the choice of an attribute 
selection measure and a pruning method. There are many 
approaches to the selection of attributes used for decision 
tree induction and most approaches assign a quality measure 
directly to the attribute. The most frequently used attribute 
selection measures in decision tree induction are the 
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Information Gain Ratio criterion (Quinlan 1993) and the 
Gini Index (Breiman et al. 1984). The RF classifier uses the 
Gini Index as an attribute selection measure, which measures 
the impurity of an attribute with respect to the classes. For a 
given training T set, selecting one case (pixel) randomly and 
expressing that it belongs to class Ci, so the Gini index can 
be written as: 

where f (Ci, T)/|T| is the probability that the selected case 
belongs to class Ci. Each time a tree is grown to the 
maximum depth on new training data using a combination 
of features. These fully grown trees are not pruned. This is 
one of the major advantages of the random forest classifier 
over other decision tree methods like the one proposed by 
Quinlan (1993). The studies suggest that the choice of the 
pruning methods, and not the attribute selection measures, 

affect the performance of tree-based classifiers (Mingers 
1989, Pal and Mather 2003). Breiman (1999) suggests that 
as the number of trees increases, the generalization error 
always converges even without pruning the tree and 
overfitting is not a problem because of the Strong Law of 
Large Numbers (Feller 1968). The number of features used 
at each node to generate a tree and the number of trees to be 
grown is two user-defined parameters required to generate a 
random forest classifier. At each node, only selected features 
are searched for the best split. Thus, the random forest 
classifier consists of N trees, where N is the number of trees 
to be grown, which can be any value defined by the user. To 
classify a new dataset, each case of the datasets is passed 
down to each of the N trees. The forest chooses a class 
having the most out of N votes, for that case. 

 

 
Figure 3. Overview of the methodology for mapping rice areas using the Sentinel-1 time series images. 
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3. RESULTS AND DISCUSSION 

As noted above (Section 2.1), rice is transplanted in the 
region in late May and harvested in late August. The post-
distribution changes of the study area can be obtained by 
visual interpretation of the images; for example, Figure 4 (a) 
and Figure 4 (b, c) are acquired on March 27th and on May 
26th, respectively (flooding time in the regions for rice 
cultivation). The flooded areas for rice cultivation can be 
visually investigated and the changes are extracted, while the 
post-distribution changes of other areas such as trees, cities, 
villages, and etc., are negligible and even visually they 
cannot be clearly observed.  
The amount of flooding was mapped using a thresholding 
technique, in which the ranges of incident angles, seasons 

and stages of rice growth were also taken into account (Fig. 
4 (d)). By integrating flood conditions information with 
vegetable masks, rice analysis and irrigation can be analyzed 
more accurately. By analyzing pixel-based time series in a 
rice growth stages, and by detecting of flood conditions, 
which was carried out with increased backscattering and 
minimum dynamic range, rice flooded paddies were 
identified. This is an effective method for identifying the 
extent of rice cultivation and the water period (flood 
duration, flood time and/or flood period), but our purpose in 
this paper is to identify areas under rice cultivation using 
ground data. It also should be said that in these types of 
cultivating patterns, if the Sentinel-1 satellite time series 
contain some gapes during the key stages, they can 
potentially cause confusion.

 

   

   
Figure 4. Study area, (a) before planting rice, (b) VH polarization, (c) VV polarization, and (d) inundated areas. 

In this paper, the time series of Sigma Nought, Gamma 
Nought and Beta Nought images derived from the Sentinel-
1 in polarizations of VH, VV  and VV + VH using the RF 
algorithm, have been used to identify rice cultivation areas 
(Figure 5) and validation for each category was carried out 

(Table 2). The results (Fig. 5 and Table 2) showed that VH 
backscattering is more sensitive to rice growth than VV 
backscattering, and this can be clearly seen in Fig. 5 (b, c), 
and thus, VH polarization can be much better to identify rice 
cultivated areas. 
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Figure 5. Rice crop map derived from Sentinel-1 time series images. 

 

 

 
Figure 6. Rice crop map derived from multiple time series of Sentinel-1 images. 
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The purpose of this paper is to assess the accuracy of various 
types of methods using ground data with Sentinel-1 images 
(Sigma Nought, Gamma Nought and Beta Nought) to obtain 
the best results for the identification of rice cultivation areas. 
These methods can be entirely combined and follow a 
specific principle. Mode (1) shows the combination of VH 
and VV polarization sigma Nought, VH and VV polarization 
gamma Nought and VH and VV polarization beta Nought 
(Fig. 3 (Mode1)). In this case, it can be seen that the 
accuracies follow an averaging method except for the beta 
Nought, which their combinations lead to increase their 
precision rather than to each one of the VH and VV 
polarization beta Nought. Mode (2) is the combination of 

sigma, gamma, and beta Nought polarizations of VH and VV 
(Fig. 3 (Mode 2)). In this case, it can also be seen that the 
VH polarization uses an averaging method, but in the case 
of VV polarization, its precision is the highest precision of 
the VV polarization (Sigma VV). Mode (3) shows the 
combination of each one of these images together (Fig. 3 
(Mode 3)). In this section, it can be seen that it follows a 
certain averaging method. finally, the sigma and gamma 
Nought images of the VH polarization have the highest 
accuracy. Also, the results of VH polarization for identifying 
rice areas cultivation are much more useful than VV 
polarization (Fig. 6 and Table 2). Changes in the rice areas 
cultivation can be identified for different situations (Fig. 7). 

 

Table 2. The result of the classification accuracy assessment 
Number Data type OA(%) Kapa 

1 sigmaVH 91.37 0.82 
2 gammaVH 91.37 0.82 
3 betaVH 87.93 0.75 

4 sigmaVH+ gammaVH +betaVH 
(VH) 89.65 0.79 

5 sigmaVV 86.20 0.72 
6 gammaVV 84.48 0.68 
7 betaVV 81.03 0.62 
8 sigmaVV+gammaVV+betaVV(VV) 86.20 0.72 
9 sigmaVH+sigmaVV 87.93 0.75 
10 gammaVH+gammaVV 86.20 0.72 
11 betaVH+betaVV 89.65 0.79 

12 
sigmaVH +gammaVH+betaVH 
sigmaVV+gammaVV+betaVV 

(VH+VV) 
89.65 0.79 

 

 
Figure 7. Map of changes in the area of rice paddies.                                    

4. CONCLUSION 

Various approaches used in the SAR time series allow rice 
cultivation to be monitored according to the information of 
the rice paddies extent, flooding conditions, agronomic 
calendars, and the severity of cropping. Band C sensitivity 

of the SAR image to the growth and development of rice 
crop and the timing of the flooding conditions and its 
dynamic range is the main stimulus to create a detailed map 
of rice. It was determined that VH polarization 
backscattering is more susceptible to rice growth than VV 
polarization backscattering, and is much more useful than 
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VV polarization for determining areas under rice cultivation. 
In order to map the rice areas cultivation, several field camps 
were set up to collect ground data, and then a Random 
Forrest algorithm with an overall accuracy of 91.37% and 
kappa coefficient of k=0.82, was carried out in spring and 
summer 2018. In general, the methodology and results of 
this study are transparent, robust and scalable and can be 
implemented in a near-time operational context in Iran, 
which lack of such information in the agriculture exists.  
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