
PEDESTRIAN DEAD RECKONING USING SMARTPHONES SENSORS: AN EFFICIENT 
INDOOR POSITIONING SYSTEM IN COMPLEX BUILDINGS OF SMART CITIES 

 
 

E. Saadatzadeh 1, A.Chehreghan2, R. Ali Abbaspour 3 * 
 

1School of Surveying and Geospatial Engineering., College of Eng., University of Tehran., Tehran, Iran - es.saadatzadeh@ut.ac.ir 
2Faculty of Mining Engineering., Sahand University of Technology., Tabriz, Iran - chehreghan@sut.ac.ir 

3School of Surveying and Geospatial Engineering., College of Eng., University of Tehran., Tehran, Iran - abaspour@ut.ac.ir 
 
 

Commission VI, WG VI/4 
 
 

KEY WORDS: Indoor Positioning, Smartphone Mode Detection, Pedestrian Dead Reckoning, Smartphone Sensors, Filter 
 
 
ABSTRACT: 
 
This paper proposes an indoor positioning method using Pedestrian Dead Reckoning (PDR) based on the detection of the mode of the 
user’s smartphone. In the first step, to determine the mode of carrying the smartphone (Holding, Calling, Swinging) by suitably formed 
feature vectors based on sensor data, three classification algorithms (Decision Tree (DT), Support Vector Machine (SVM), and K-
Nearest Neighbor (KNN)) are evaluated. From the classification algorithm perspective, the decision tree algorithm had the best 
performance in terms of processing time and classification. Secondly, to determine the user position, the step detection is performed 
by defining the upper threshold and time threshold for Acceleration norm values. The orientation component is obtained by combining 
accelerometer, magnetometer, and gyroscope data using Complementary Filtering and Principal Component Analysis based on Global 
Acceleration (PCA-GA) methods. The mean standard deviation along the direct path for the three modes of carrying (Holding, Calling, 
and Swinging) were obtained 6.22, 6.82, and 14.68 degrees, respectively. Localization experiments were performed on 3 modes of 
carrying a smartphone in a rectangular geometry path. The mean final error of positioning from ordinary walking for the three modes 
of holding (Calling, Holding, Swinging) were obtained 2.11, 2.34, and 4.5 m, respectively. 
 
 

1. INTRODUCTION 

The urbanization is one of the ever increasing phenomena in the 
world. Therefore, the environmental, social and economic 
sustainability is one of the most important points for coordinating 
with this rapid population expansion and cities' financing. Smart 
City is a metropolitan area that uses various types of electronic 
sensors to collect and analyze the information, which is useful for 
managing urban assets and resources. The process involves the 
data collected from citizens, organizations, and urban resources 
that are processed and analyzed in order to assist for monitoring 
and managing the traffic and transportation, control, rule of 
information systems implementation, schools, libraries, hospitals, 
and the other social services. The idea of a smart city is to 
integrate ICT and various devices connected to the network 
(Internet of Things or IOT) to optimize the utilization of urban 
services and applications and to connect them to citizens. Smart 
city technology allows the authorities to interact directly with the 
community and the urban infrastructure and to monitor what is 
happening and what's going on. The integration of information 
technology occurs in every part of urban life to form smart cities. 
Some smart city applications include smart mobility, smart 
services, smart economy, smart buildings, smart environments, 
smart state, smart healthcare, smart citizens, and so on. 

                                                           
*  Corresponding author 
 

One of the most important issues in a smart city is the positioning 
and navigation in the buildings, which has attracted considerable 
attention among researchers.  
Positioning can be carried out in open (outdoor) or closed (indoor) 
areas. The development of indoor positioning systems is required 
for indoor positioning due to reduced Global Positioning System 
(GPS) accuracy (Parnandi, Le et al., 2009). However, due to 
inaccessibility of GPS correct signals inside the building, location 
based services may not have sufficient accuracy and quality, 
although this technique is optimized for outdoor environments 
(Parnandi, Le et al., 2009). Therefore, establishing a reliable and 
accurate indoor positioning system is an emerging task. Indoor 
positioning is one of the significant fields of research that needs 
to be repeatedly revised due to the continuous development and 
different applications in a smart city environment. In general, 
indoor positioning systems are divided into two categories: 
infrastructure-based and infrastructure-independent. 
Infrastructure-based approaches such as Ultrasonic (Savvides, 
Han et al., 2001), Wireless Local Area Network (WLAN) (Bahl, 
Padmanabhan et al. 2000, Kushki, Plataniotis et al. 2007, Zhou, 
Yeung et al., 2008), Bluetooth, and Radio Frequency 
Identification (RFID) (Aalto, Göthlin et al., 2004; Baniukevic, 
Sabonis et al., 2011) are ways that require infrastructures such as 
the Internet and wireless access to point-of-access. Whereas laser-
based methods (Tang, Chen et al., 2014), motion sensors (Girard, 
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Côté et al., 2011; Nam and Engineering 2011) and visual 
(Mulloni, Wagner et al., 2009) are recognized as infrastructure-
independent methods. RFID Based Positioning Performs based 
on radio frequency detection of signals related to RFID tags. The 
RFID method does not require a direct line of sight between the 
receiver and the signal transmitter. The absolute positioning of 
this method is within 1 to 3 meters with high power consumption 
[Amit et al., 2019]. In the Bluetooth-based indoor positioning 
method, beacons are able to position via Bluetooth using a 
proximity position calculation technique. At least three beacons 
must be installed in the building to determine the position. The 
beacon-related app must also be installed on the smartphone. This 
method has low power consumption and results in an accuracy of 
about 0.5 to 2 meters. There is also no need for a direct line of 
sight between the receiver and the transmitter [Amit et al., 2019]. 
The most important disadvantage of this system is the limited 
coverage and need to more beacons for more accurate positioning 
which increases the cost [Amit et al., 2019]. One of the most 
popular applications of WLANs is Wireless Fidelity (WiFi), 
estimating the location of a mobile device in its network. Time of 
Arrival (TOA) and Time of Differential Arrival (TODA) methods 
are less common in WLANs because of computational 
complexity and delay of time measurement. The absolute 
positioning accuracy of this method is about 2 to 5 meters [Amit 
et al., 2019]. The WiFi positioning method usually uses a 
Fingerprinting architecture (Kaemarungsi and Krishnamurthy 
2004; Liu, Darabi et al., 2007). Received Signal Strength (RSS) 
information is collected from Access Points at reference points to 
build a database called Radio Map during the Offline phase and 
matched with the real time RSS collected to obtain the position 
on the Online phase (Kaemarungsi and Krishnamurthy 2004; Liu, 
Darabi et al, 2007). 
 
Each method of indoor positioning has its own advantages and 
disadvantages. The choice of method will ultimately be based on 
accuracy, cost, ease, scalability, reliability, and security. Based on 
previous research, infrastructure-based methods are generally 
more accurate and reliable than infrastructure-independent indoor 
positioning methods. But infrastructure-independent approaches 
are superior in cost and ease due to the lack of additional 
infrastructure. For example, in situations such as fires where no 
auxiliary infrastructure such as WiFi can be used, PDR-based 
positioning may be the best option. On the other hand, other 
infrastructure-independent methods such as laser-based and 
imaging-based positioning lose their effectiveness in these 
environmental conditions. Compared to other positioning 
techniques, PDR can provide accurate positioning in a short 
period of time. Also, in this method the speed of updating the user 
position is faster and less energy consuming. 

With the advancement of smartphones, various sensors such as 
accelerometer, gyroscope, magnetometer, and barometer are 
being added daily. Due to their popularity among the people and 
their small physical form and size, light weight and easy 
portability can be used as a great platform for indoor positioning 
applications. The basis of this approach is to determine the current 
position of the pedestrian based on their previous position, step 
length and walking direction (Jin, Toh et al, 2011). In fact, this 
method involves three steps: step detection, step length 
estimation, and user orientation. Since PDR positioning provides 
relative positions, the error during the walk will be cumulative, so 
many criteria such as initial point determination, direction 

estimation, step length estimation and number of steps affect the 
final positioning accuracy (Alzantot and Youssef 2012). 

The purpose of this paper is to evaluate and improve the accuracy 
of indoor positioning using PDR-based smartphone sensors. 
Much research in the field of indoor positioning with PDR done 
or is doing. But because of the optional user movements usually, 
achieve the desired accuracy in this type of positioning method is 
difficult. Therefore, in this research, the effective components of 
the indoor positioning method are evaluated based on the type of 
carrying mode (Holding, Calling, Swinging). 

The structure of this paper will be as follows. Section 2 presents 
the proposed system architecture. This section describes the 
parameters of the PDR positioning method and smartphone mode 
detection algorithms. The results of the mode detection and 
localization experiments are shown in Section 3. Finally, Section 
4 describes the conclusions and future work. 
 

2. PROPOSED APPROACH 

The general approach of the PDR system is based on smartphone 
mode detection as shown in Figure 1. Using the three 
classification algorithms (DT, SVM, and KNN), the samples of 
the smartphone mode are classified and evaluated based on 
feature vectors from the sensor data. With mode detection, the 
parameters of step length estimation and orientation are adjusted 
based on the smartphone mode and the pedestrian position is 
updated. The details of the pedestrian positioning system are 
described in the following sections. 
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Figure 1. The architecture of the system 

 

2.1 PDR Positioning Method 

The PDR positioning method based on smartphone sensors 
determines the user's current position based on their previous 
position, step length and direction of movement. In general, the 
PDR positioning method is summarized in Equation 1: 

 (1) 
 
where X, Y are user coordinates, L is user step length,  
is user direction angle, and k is step count index. 
acceleration and Angular velocity data have different 
characteristics in different smartphone carrying modes. 
Therefore, based on the classification results, a flexible PDR 
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algorithm is proposed to suit the smartphone carrying mode, 
which includes initial position estimation, step detection, step 
length estimation, and orientation estimation. 
 
2.2 Smartphone sensors 

As smartphones evolve, various sensors are added. Due to their 
popularity, these phones can be used as an ideal platform for 
indoor positioning applications. Most of these phones have 
different sensors of motion, orientation, and environment to 
determine the 3D positioning and positioning of the device. 
Depending on the type of sensors embedded in the smartphone, 
the measured raw data have different accuracy. In general, 
smartphone sensors can be divided into three general categories: 

Motion Sensors: These sensors measure the acceleration and 
rotational forces along the 3 axes of the coordinate system. This 
category includes accelerometer, gravity, gyroscope and 
rotational vector sensors. 

Environmental Sensors: These sensors measure various 
environmental parameters such as air temperature, pressure, light, 
and humidity. This category includes thermometers, barometers, 
photometers, and humidity sensors. 

Position sensors: These sensors measure the physical position of 
the device, including magnetometers and orientation sensors. 

Generally, the sensor framework uses a standard 3-axis 
coordinate system to express data values. For most sensors, the 
device coordinate system is defined by default in Figure 2. 

 
Figure 2. The device coordinate system 

 
2.3 Sensor data preprocessing 

This paper collects the sensor data required using the Samsung 
Galaxy S7 Edge. Because the PCA-GA method requires a 
relatively large amount of data at each step, a sampling rate of 
20,000 microseconds is assumed.  

Both the accelerometer sensor and the gyroscope have Offset, 
meaning they are not exactly zero at rest, although in theory, they 
should be 0. This can be alleviated by keeping the smartphone at 
rest and collecting measurements over a period of time and 
ultimately dividing the total number of measurements. The 
resulting offset mean can be subtracted from all future readings. 
Because of the microelectromechanical structure of the sensors 
and the vibration of the handheld observations, the sensors 
embedded in the smartphone have a lot of noise in the raw signals. 
Therefore, a pre-processing process is applied to eliminate high-
frequency noise. In this research, based on the analysis of the 
sensor signals in different modes of carrying the smartphone, a 3-

degree Savitzky–Golay filter with a window length of 15 are used 
to eliminate high-frequency noise. Figure 3 and Figure 4 show the 
raw signals and the filtered signals of the accelerometer data and 
the Z-axis data of the gyroscope. 

Figure 3: Raw and filtered acceleration data 
 

 
Figure 4 - Angular velocity raw and filtered data 

 
2.4  Experimental Analysis of the Components Affecting 

PDR Positioning Method 

This section describes the experimental Analysis of the effective 
components of the PDR positioning method based on Equation 1, 
which include initial position estimation, step detection, step 
length estimation, and direction estimation. 
 
2.4.1  Estimate the initial position 

The PDR method provides relative positioning, so the accuracy 
of initial position estimation directly affects the overall accuracy 
of PDR positioning. In this paper, a specific point in the 
experimental area is considered as the starting position or starting 
point. 
 
2.4.2  Step Detection 

User step detection is an important issue in PDR positioning 
based on smartphone sensors. In fact, false step detection causes 
an error in position estimation. In this paper, due to the periodic 
movement of acceleration data during the step, the acceleration 
data norm is used for step count. The 3-axis acceleration data of 
the device coordinate system in smartphone different mode has 
different values. By examining the 3-axis acceleration values in 
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the three smartphone modes, it can be concluded that the 3-axis 
acceleration norms are approximately the same. Consequently, to 
avoid the effect of changing the mode of carrying a smartphone, 
the acceleration norm according to Equation 2 is used for step 
detection.  

                                                                   (2) 

 
Where , ,  are  acceleration values and a is acceleration 
norm value. 
 
2.4.2.1 Recognize volunteer peaks 

The core of the step detection algorithm is to find peaks that can 
represent real pedestrian steps. In this paper, an upper threshold 

 is used for filtering peaks due to the user step according 
to Equation 3. A time threshold is also used as  between 
successive peaks to consider false peaks that are less than the time 
threshold as false peaks. The threshold values are determined by 
an empirical analysis of the acceleration data in different 
smartphone carrying modes. Figure 5 and Figure 6 shows the 
detection of the candidate peaks on the acceleration norm data. 

                                                                                    (3) 

 

Where  is ithe nterval between two consecutive peaks, is 
time threshold,   is acceleration values, a is acceleration norm, 
and is the upper threshold. 
 

 
Figure 5. Detection of the valid steps for Holding 

 

2.4.3 Estimate step length 

The step length varies from person to person, in fact there must 
be a pedestrian-related variable in the step length estimation 
model. Also, a person’s walking rate is not constant. Accordingly, 
assuming a constant step length value for users causes errors 
during positioning and excessive drift at the end of the path. In 
this paper, according to Equation 4 the step length is estimated 
based on a linear combination of the step frequency and the 
variance of the norm acceleration of each step (Ladetto, 2000). 

                                                 (4) 

where is step length, is step frequency, is acceleration 
norm variance in one step, and A, B, C are experimental 
coefficients. 
 

Figure 6. Detection of the valid steps for Swinging 
 
2.4.4 Determine User's Orientation 

The calculation of pedestrian orientation angles greatly affects the 
accuracy of the positioning system but is also the most difficult 
part of the PDR. Since for Holding and Calling do not change the 
orientation of the smartphone much towards the body, the 
pedestrian orientation can be determined by removing the offset 
orientation. For Swinging mode where the smartphone position is 
constantly changing and offset orientation is not fixed, a PCA-
based approach with global acceleration (Wang, Liu et al., 2018) 
for pedestrian orientation evaluation is provided. Figure 7 shows 
the direction estimation method for each of the smartphone 
carrying mode. 

Strategy
Selection

Attitude
EstimationHolding/Calling

PCA-GASwinging

User
Heading

 
Figure 7. Flow chart of the user heading estimation approach 

 
2.4.4.1 Complimentary Filter Method for Holding and 

Calling 

Using trigonometry, an estimate of Pitch (rotation about Y-axis) 
and Roll (rotation about X-axis) angles is calculated using the 
mean of gravity acceleration data at each step according to 
Equation 5 and Equation 6. 

                                                                 (5) 

                                                                (6) 

where , ,  are mean of gravity acceleration data over a one-
step interval,  is rotation about X-axis, and  is 
rotation about Y-axis. 
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The gyroscope measures the angular velocity within the body. In 
order to obtain the changes in the inertial framework, the state 
transfer matrix in (Philip, 2019) is used according to Equation 7. 

(7) 

  

 
where , ,  are Euler angle from gyroscope data, , ,   
are mean of gyroscope data over a one-step interval, and  is a 
one-step interval. 

The combination of the two estimates is performed to obtain the 
optimal estimate. The final result is according to Equation 8. 

                            (8) 

where  is the roll angle,  is roll angle from acceleration data, 
 is roll angle from angular velocity data, α is a constant, and 

k is step count index. 
α is a constant between 0 and 1. The larger α indicates more 
confidence in the accelerometer measurements. As α approaches 
0, the final value relies more on gyroscope measurements. In this 
paper, the α value is set to 0.1 due to the high accuracy of the 
gyroscope data. By obtaining the angular values of Pitch and Roll, 
the absolute azimuth value is obtained using magnetic induction 
in the X and Y directions according to Equation 9. 

                                                          (9) 
 
Where , ,  are mean magnetic values over a one-step 
interval, and  is smartphone orientation. 
In the non-horizontal state, the horizontal values of  and  
are obtained by Equation 10 (Moafipoor et al., 2007). 

 

(10) 
where , ,  are Euler angle from gyroscope data, , ,  
are mean magnetic values over a one-step interval, and ,  
are horizontal values of  and . 
 
2.4.4.2 PCA-GA Method for Swinging mode 

From the observations, It can be seen that during the walk, the 
acceleration changes in X-axis of the pedestrian coordinate 
system are minimal. The pedestrian coordinate system is depicted 
in Figure 8, where Y-axis points to the direction of pedestrians 
walking, X-axis points to the right side of pedestrian’s body and 
Z-axis points to the opposite direction of gravity (Wang, Liu et al. 
2018). Therefore, the direction of the third eigenvector in PAC-
GA is , which is perpendicular to the pedestrian’s 
direction on the horizontal plane (Wang, Liu et al. 2018). 

 

Figure 8. The illustration of the pedestrian coordinate system 
 

The extracted eigenvectors from the global accelerations of 
device coordinate system are shown in Figure 9.The vector right 
has the problem of 180 ambiguity for each step (Kunze, Lukowicz 
et al., 2009), R may be the right or left of the body. To solve this 
ambiguity, the orientations of the acceleration values are analyzed 
as the smartphone Swinging in different hands. According to the 
results of the analysis, the right R-value is proportional to the user 
coordinate system. For example, when the user carries the 
smartphone in Swinging mode on the right hand side of his body, 
the Z axis of the device coordinate system is almost to the left of 
the body, so the  components of the R vector must be negative 
for each step. 

 
Figure 9. The eigenvectors extraction for Swinging 

 
Next, the R-vector is plotted on the horizontal plane according to 
Equation 11 using the gravitational vector (Mizell 2003). 

                         (11) 

where  is vector right,  is horizontal vector right, and  is 
mean of gravity acceleration data over a one-step interval. 
The gravitational vector G points downward and the magnetic 
vector M points north. The east vector E is obtained by Equation 
12 by multiplying the two magnetic and gravity vectors in the 
system coordinate system (Kamisaka, Muramatsu et al., 2011). 
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                               (12) 

where  is mean magnetic values over a one-step interval, G is 
mean of gravity acceleration data over a one-step interval, and 

is east vector. 
Finally, the angle of user orientation is calculated by Scalar 
Product between the east vector and the horizontal vector by the 
Equation 13. 

                                                          (13) 

where  is horizontal vector right, is east vector, and  
is user orientation. 
 
2.5  Smartphone Mode Classification 

Smartphone mode is optional in the navigation process, so the 
accelerometer and gyroscope signals have different shapes and 
values. For this reason, this paper uses accelerometer and 
gyroscope sensors to detect smartphone mode. The classification 
algorithm consists of feature extraction and smartphone mode 
detection. Carrying modes according to Figure 10 include 
Holding, Calling, Swinging. The mean values of the acceleration 
and variance values of the Angular Velocity for each step are 
shown in Figure 11 and Figure 12, respectively. 

   
(c) (b) (a) 

 

 
Figure 10. Three smartphone modes 

(a) Holding, (b) Calling, (c) Swinging 
 

 
Figure 11. The mean of accelerations with three smartphone 

modes while pedestrian is walking 
 

 
Figure 12. The variances of angular velocities with three 

smartphone modes while the pedestrian is walking 
 

2.5.4  Extract and Select Features 

The filtered data is inadequate to detect the smartphone carrying 
mode. In fact, the feature information extracted from the 
acceleration and angular velocity values in the step-by-step time 
windows are needed. The statistical features of the sensor signals 
include the mean and variance of the acceleration and angular 
velocity values obtained over a 50% coverage period over the 
next step. In this paper, the time domain features vector F is 
summarized as follows: 

 

where  is mean of three-direction acceleration values per step, 
 is a variance of three-direction acceleration values per step, 

 is mean of three-direction angular velocity values per step, 
and  is the variance of three-direction angular velocity values 
per step. 
 
2.5.5 Classification 

In this paper, using the extracted features in Section 2-4-1 from 
three classification algorithms (DT, SVM, and KNN) are used to 
classify the 3 modes of smartphone carrying. 

3. IMPLEMENTATION AND EVALUATION OF 
RESULTS 

In this section, experiments are presented to evaluate the 
performance of the proposed methods of smartphone mode 
detection and indoor positioning. The smartphone used in this 
experiment is a Samsung Galaxy S7 Edge with a delay time of 
20,000 microseconds. Required sensor data is stored continuously 
by creating a file in the smartphone memory as the data is read. 
 
3.1 Smartphone Mode Detection Test 

Participants walked in different modes of carriage and the data 
was labeled according to the mode of carriage. For each class, 250 
samples were obtained using the corresponding data. 70% of the 
feature data were selected as training data set and the remaining 
30% for testing and evaluation. Based on the DT, SVM, and KNN 
learning algorithms, the classification of smartphone mode is 
performed. Confusion matrices of all 3 algorithms are created 
according to Tables 1 to 3 to better analyze the results. In the 
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Confusion matrix, the rows represent instances of the actual 
smartphone mode and the columns represent instances of the 
detected smartphone mode. 

Swinging Calling Holding DT 
0 0 250 Holding 
0 249 1 Calling 

248 0 2 Swinging  
Table 1. The confusion matrix for smartphone modes 

detection DT. 
 

Swinging Calling Holding SVM 
0 1 250 Holding 
0 248 2 Calling 

249 0 1 Swinging 
 

Table 2. The confusion matrix for smartphone modes 
detection by SVM. 

 

Swinging Calling Holding KNN 
0 1 249 Holding 
0 248 2 Calling 

249 0 1 Swinging 
 

Table 3. The confusion matrix for smartphone modes 
detection by KNN 

Time (s) Mean 
accuracy 

Classification 
Algorithms 

1.39 %99.6 DT 
14 %99.6 SVM 

1.45 %99.5 KNN 
Table 4. Time and accuracy of detection classification 

algorithms 
 

According to Table 4, the results show that the classification 
accuracy of all three algorithms is nearly identical. The DT 
algorithm has less detection time and a smaller model size. 
Therefore, due to the importance of timing of mode detection and 
simplicity of computation, it is selected as the most optimal 
algorithm for detecting the mode of carrying the smartphone. 
 
3.2 Localization experiment 

Participants walked along a rectangular path (width is 22 and 
length is 33 meters) in 3 modes of carrying the smartphone. The 
step detection results and path length estimates are listed in Table 
5 and Table 6, respectively. 

accuracy 
Mean of 
detection 
number 

Actual 
number Mode 

%99 124 125 Holding 
%99 124 125 Calling 
%99 123 125 Swinging 

 

Table 5. Results of the step detection algorithm 
 

Error (%) 
Mean 

estimated 
Length (m) 

Actual 
length (m) Mode 

1.1 108.79 110 Holding 
1.3 108.6 110 Calling 
2 107.8 110 Swinging  

Table 6. Results of the estimated path length algorithm 

 

Figure 13. the experimental path direction estimation for the 
three modes of carrying of the smartphone. 

 
Figure 13 shows the experimental path direction estimation for 
the three modes of carrying of the smartphone. The mean standard 
deviations of the direction estimates along the straight path for the 
Holding, Calling and Swinging modes were 6.22, 6.82 and 14.68, 
respectively. In fact, the swing of the smartphone in the third 
mode causes more standard deviation. 
The localization experiment was performed in a rectangular path 
in the building of the Tehran University Football Hall of Fame. 
The bold black line represents the true pedestrian path and its total 
length is 110 meters. Markers were used along the path to guide 
the path. Participants began walking along the path with 3 modes 
of carriage and returned to the starting point at the end of the 
movement to assess the final positioning accuracy. Localization 
experiments Were done on the horizontal surface of the land, 
regardless of altitude change at the floor level. 

 

Figure 14 - Estimated paths of 3 modes of carrying a 
smartphone during the walk 

 
Figure 14 shows the estimated paths of 3 modes of carrying the 
smartphone during walking. Offset variability between the 
direction of the smartphone and the direction of movement of the 
user can deviate from the actual path. Since the smartphone mode 
in Holding and Calling mode is almost stable and in Swinging 
mode, there is a sharp swing, the mean positioning error for the 
experimental path for the 3 modes is 2.11, 2.34 and 4.5 m, 
respectively. 
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4. CONCLUSIONS AND FUTURE WORK 

This paper proposes an indoor positioning method based on the 
detection of the type of smartphone carriage. In the first step, 
based on 12 feature vectors from accelerometer and gyroscope 
sensor data, decision tree (DT), Support Vector Machine (SVM) 
and K-Nearest Neighbor (KNN) algorithms were evaluated to 
detect the mode of carrying the smartphone.  From the state 
detection perspective, due to the small size of the model, 
simplicity of calculation and less detection time, the DT algorithm 
was chosen as the most optimal algorithm. In the second step, the 
step detection parameters and the step length estimation were 
determined based on the smartphone mode. Step detection was 
performed using the upper threshold and a time threshold for 
identifying volunteer peaks. The step length estimation process 
was also performed with the parameters of the step length 
estimation model. The orientation component was obtained by 
combining acceleration, gyroscope and magnetic data using 
complementary filtering and PCA-GA methods. The 
complementary filter method was used for both Holding and 
Calling modes that did not significantly change the orientation of 
the smartphone to the user body. In Swinging Carry mode, where 
smartphone mode and offset orientation are constantly changing, 
a PCA-GA method was used. The mean standard deviation along 
the straight path for Holding, Calling and Swinging modes were 
6.22, 6.82 and 14.68, respectively. Localization experiments were 
performed in 3 smartphone modes in a rectangular geometry path. 
The mean final error of the normal walk for the three modes 
(Holding, Calling, Swinging) were 2.11, 2.34 and 4.5 m, 
respectively.One of the main advantages of this research is that it 
is not dependent on any external infrastructure. indoor positioning 
of the user in three modes of carrying is another advantage that 
improves system performance. In this way, the speed of updating 
the user position is faster and the power consumption is lower. 
But one of the disadvantages that affect the final accuracy of the 
proposed system is the lack of calibration of magnetic data, which 
is time consuming and difficult. In future work, we will develop 
the system by combining different user movement modes and 
smartphone modes. By using a barometer sensor and step 
counting on the stairway, precise elevation changes can be used 
to determine the building floor. We can also use Map Matching 
to increase the accuracy of position estimation and correction of 
false positions. 
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