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ABSTRACT: 

 

In this paper, we employ Empirical Mode Decomposition (EMD) together with Hilbert Transform to analyze precipitation time 

series over the Caspian Sea catchment. Several studies have shown that EMD can extract nonlinear and non-stationary signals 

better than Fast Fourier Transform (FFT) and Wavelet Transform. EMD decomposes the time series into a finite number of Intrinsic 

Mode Functions (IMFs) in the time-frequency domain, while FFT helps us operate either in the time or the frequency domain, 

which fuels limitations such as the inability of nonstationary signal processing and the lack of time transparency. Although Wavelet 

Transform is shown to be better than FFT, it fails to detect the instantaneous frequencies and needs to have prior information about 

characteristics of the data. On the other hand, EMD has shown that it is almost able to determine the signal characteristics with no 

previous assumptions to estimate the instantaneous frequencies of the signal. In this work, EMD is applied to identify the main 

frequencies of precipitation time series. Thereafter, a statistical procedure is used to identify the prominent IMF of the original 

signal. 

We use the correlation coefficient, Minkowski distance and variance test to extract the relevant and prominent IMFs. The results 

show that IMF 1-3 are the relevant components and are related to annual and biennial variations of precipitation time series over 

the Caspian catchment during 2003-2016, respectively.  

 

 

INTRODUCTION 

Decomposing time series to identify dominant drivers of the 

observation is a routine analysis in climate studies. 

Decomposition can be achieved either in the time domain, the 

frequency domain, or time-frequency domain. Each one has its 

own advantages and disadvantages. The time domain methods 

are still considered because of time transparency and simplicity, 

but these methods alone cannot provide all the signal 

information. Fourier Transform is used to extract the frequency 

content of a time signal. Fast Fourier Transform (FFT) is one of 

the most important analyses methods of frequency domain 

processing. In spite of the remarkable performance of this 

approach, it can be noted that there are some disadvantages such 

as inability of nonstationary signal processing and the lack of 

time transparency.  

For nonstationary signals, the frequencies change over time, so 

we need a varying window length size to extract the frequencies. 

The changing length window is indeed employed to achieve a 

better separation of time-frequency components of the signal. 

One solution to this problem is to use wavelet transform. Wavelet 

Transform analysis is a tool used to detect the time-frequency 

content of the signal. However, despite its good performance for 

nonstationary signals, the method is unable to distinguish the 

instantaneous frequencies. In fact, wavelet transform needs to 

predefine some assumptions about data which limits the 

applicability of this technique. That is especially the case where 

the underlying behavior of the data is completely unknown. 

Empirical Mode Decomposition (EMD), on the other hand, is not 

completely based on prior assumptions. This technique attempts 

to split time series data into the numbers of specific frequencies, 

while the results are estimated in the time domain. Through this 

method, it will be possible to interpret the data better.  

EMD is a method which was introduced by Huang et. al., 1996 

for analyzing nonlinear and nonstationary time series. The 

method is used to analyze multivariate signals that can be 

separated into a number of modulated signals of amplitude and 

frequency, called Intrinsic Mode Functions (IMFs), with 

frequency bandwidth reduction [9]. An IMF is similar to a 

harmonic function with the difference that the IMF does not have 

a constant amplitude and frequency like a harmonic function (i.e. 

IMF has different frequencies with different amplitudes).  

The first IMF component contains the highest frequency 

information and the last IMF contains lowest frequency due to 

the subtraction of local mean from the signal during various 

iterations [13]. The first IMF illustrates highest frequency 

oscillations in the original signal [1]. 
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This process continues until the lowest frequency component 

remains as it is called residual.  For analyzing non-stationary and 

non-linear data, EMD is an efficient method that can decompose 

a time-series into physically meaningful modes. 

 

 

 

DATA 

The geographical focus for this study is the catchment of the 

Caspian Sea which is located in the northern provinces of Iran. 

The Caspian Sea catchment has an area of about 170,000 km2 

which is about 10% of the total area of the country [8]. The 

Caspian Sea is surrounded by five countries. Figure 1 shows 

location map of the Caspian Sea catchment. The river discharge, 

precipitation and evaporation are the processes that affect the 

water level in the Caspian Sea. Therefore, it is important to study 

the climate variations over the region through the time series 

analysis of the involved parameters. This can help us to identify 

the driver of changing Caspian Sea level and thus predict and 

manage concerned regional water resources in a sustainable way.  

We use datasets obtained from the land surface model (Global 

Land Data Assimilation System) GLDAS, which uses forcing 

data (e.g., precipitation, near-surface air temperature, specific 

humidity, wind speed, surface pressure and etc.), to provide 

estimates of land surface states (e.g., soil moisture, surface 

runoff, and subsurface runoff), and flux quantities (e.g., 

evaporation and sensible heat flux) [15]. GLDAS products are 

provided by four land surface models (CLM, Mosaic, Noah and 

VIC). In this study, GLDAS precipitation data is used to analyze 

the components of original signals with a temporal resolution of 

1 month and a spatial resolution of 0.5° × 0.5°. 

 

 

 
Figure 1. Location of Caspian (Khazar) Cachment. 

 

PROPOSED METHOD 

Using a sifting process, the empirical mode decomposition 

(EMD) allows us to separate the observed signal (x(t)) into a set 

of intrinsic mode functions (IMFs) and a residual function, given 

as follows: 

 

𝑥(𝑡) = ∑ 𝐶𝑖 + 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑛

𝑖=1

,                                                             (1) 

 

wherein C indicates IMF [9]. Each IMF demonstrates a mono-

component signal. An Intrinsic Mode Function (IMF) is a 

function that satisfies two conditions: (1) In the whole dataset, 

the number of extrema and the number of zero crossings must 

either equal or differ at most by one; and (2) At any point, the 

mean value of the envelope defined by the local maxima and the 

envelope defined by the local minima is zero [9]. Often, this 

method yields a higher number of IMFs than the true number of 

mono-component contained in the original signal.  

At the end of the sifting process, the original signal is often 

decomposed to some IMFs. Not all of these IMFs are significant. 

That means, some IMFs may not have physical meaning. A lot of 

techniques are proposed to identify and select significant IMFs. 

In this paper, we employ two criteria called Minkowski Distance 

(dmink) and the correlation coefficient to determine genuine 

IMFs from the set of all extracted IMFs.  

The Minkowski Distance (dmink) calculates the Euclidian 

distance between vectors X and Y and is defined as follows: 

 

𝑑𝑘 = √∑ |𝑥𝑖 − 𝑦𝑖|2

𝑛

𝑖=1

.                                                    (2) 

 

Where xi and yi are the i-th respective samples of the observed 

signal and the extracted IMF [5][7]. The dmink computes for the 

set of all extracted IMFs. It should be noted that the redundant 

IMFs may increase the redundant information and therefore 

reduce the Signal to Noise Ratio (SNR).  

On the other hand, when an IMF is inappropriate, the dmink is a 

maximum value due to differences in shape and frequency 

content rather than the original signal [5][7].  

The second criterion is the correlation coefficient that as below 

equation [5][12]: 

 

𝜌 =
∑ 𝑥𝑖𝐶𝑖

𝑁
𝑖=1

√∑ 𝑥𝑖
2𝑁

𝑖=1 ∑ 𝐶𝑖
2𝑁

𝑖=1  

,                                                        (3)  

 

where N, xi and Ci are the total number of data points, the ith data 

point of the original signal and the ith data point of the IMF, 

respectively. High correlation displays the similarity between the 

appropriate IMFs and the original signal and low correlation 

expresses that weak relationship exists between the inappropriate 

IMFs and the original signal. For the purposes of this paper, we 

need to determine the appropriate IMF of the considered signal. 

So, if the i-th IMF and the original signal are similar, it can be 

concluded that the correlation coefficient ρ will be very high 

while dmink will be very low. 

In this section, we briefly mention two important mathematical 

properties of EMD: a) the completeness of EMD can be evaluated 

so that the original signal are easily reconstructed by sum of all 

IMFs and residuals. The magnitude of the difference between the 

original signal and the reconstructed signal is approximately 

between 10-15 and 10-16. b) The orthogonality of IMFs helps us to 

obtain the independent extracted components that are not 
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overlapping with each other and therefore it avoids the mode 

mixing problem. The orthogonality of the EMD method is still 

not guaranteed theoretically, however the extracted IMFs are 

locally orthogonal [9]. In addition to the mathematical model, 

EMD is an empirically based data-analysis method which means 

any physical meaning of the resulting IMFs can not be reliable 

[2].  

An invaluable advantage of the EMD technique is that each IMF 

component after performing a Hilbert transform can be 

transformed to time-frequency space and the amplitude and 

instantaneous frequency can be extracted. The instantaneous 

frequency (IF) of a signal is the variation of the phase shift of the 

sinusoidal signal. The easiest way to compute the instantaneous 

frequency is by using the Hilbert transform which can be 

determined as follows: 

 

𝑍𝑖(𝑡) = 𝐼𝑀𝐹𝑖(𝑡) + 𝑗𝐻[𝐼𝑀𝐹𝑖(𝑡)] = 𝑎𝑖(𝑡)𝑒𝑗𝜃𝑖(𝑡),                   (4) 
 

where H[•] is the Hilbert Transform operator, 𝑎𝑖(𝑡) and 𝜃𝑖(𝑡)  are 

instantaneous amplitude and phase of the i-th IMF, respectively. 

The Hilbert Transform provides a phase shift of ±π/2 to all 

frequency components, while leaving the magnitudes unchanged 

[6]. The corresponding instantaneous frequency of the i-th IMF 

can be extracted as follows [6]: 

 

𝜔𝑖(𝑡) =
𝑑𝜃𝑖(𝑡)

𝑑𝑡
,                                                                           (5) 

 

Hilbert spectrum describes the joint distribution of the amplitude 

and frequency content of the signal as a function of time and 

frequency [10][11]. The resulting time-frequency-energy 

representation of the data is called the Hilbert-Huang spectrum 

and provides information similar to that identified in a continuous 

wavelet transform [14].   

The mode mixing is an annoying problem in EMD method that 

disturbs the physical uniqueness of decomposition. When 

phenomena of mode mixing occur, an IMF can discontinue to 

have physical meaning by itself, suggesting incorrectly that there 

may be different physical processes behind? a mode. The 

Ensemble Empirical Mode Decomposition (EEMD) method is 

developed to improve the performance of the EMD method and 

reduce mode-mixing [16]. 

 

RESULT 

The precipitation sequence is divided into five IMFs and one 

residual. Figure 2 shows the fluctuation characteristics from high 

frequency to low frequency at different time scales. 

 

 

 
Figure 2. EMD of precipitation data over Caspian catchment, (C0) 14-year monthly precipitation, (C1-C6) decomposed five IMF 

components and the final residue(C6). 
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Figure 3. Hilbert transform of the signal decomposed using EMD; A) The synthetic time series by summing IMFs, and B) signal power 

plotted in time-frequency. 

 

The residual indicates the long-term trend in the average of the 

precipitation signal over the Caspian catchment. Figure 3 

presents the synthetic precipitation time series by summing IMFs 

and its residual (Figure 3. A), and signal power plotted in time-

frequency (Figure3.B). It appears as though the signal consists of 

broadband energy and several frequencies.  This can be seen in 

Figure 3, the instantaneous frequencies are widely distributed and 

the number of frequencies are continuous phenomenon along the 

time axis and some of them happen in the moment. It is important 

to select stable and low frequencies components of the original 

signal. The variance of each IMF is shown in Figure 4: variances 

of IMF 1-3 are higher than other IMFs. The highest variance 

among the IMFs represents the greatest impact on the shape of 

the original time series. Each IMF has a specific meaning. The 

results of the coefficient and dmink are summarized in Table 1 

and demonstrated by Figure 5. The values of the coefficient of 

IMF1, IMF2 and IMF3 are higher than others and may be 

considered as relevant IMFs. Figure 5 shows that for dmink, the 

values of the first three IMFs have smaller distance and for ρ, the 

first three IMFs have higher correlation than other IMFs. A 

method introduced to identify relevant and irrelevant IMFs that 

can lead to improve overall EMD process [12]. 

 

 

 
Figure 4. Variance of IMFs of precipitation using EMD algorithm 

over Caspian catchment. IMF1, IMF2 and IMF3 (red bars) are 

significant IMFs among others IMFs.

  

 

Real Signal (C0) 

 𝜌 𝑑𝑚𝑖𝑛𝑘  

C1 0.7814 67976.66 

C2 0.3990 101016.70 

C3 0.2932 105098.38 

C4 0.1595 108360.66 

C5 0.1216 109073.64 

Table 1. The values of the correlation coefficient and the 

Minkowski distance for the precipitation signal. 

 

Since the generated IMFs with a finite number are considered to 

be nearly orthogonal to each other and sum of the IMF 

components plus the its residue lead to reconstructing and an 

orthogonal representation of the original signal. Each IMF will 

have a relatively strong correlation with the original signal and 

the irrelevant components will have weak correlation with the 

original signal.  

Following the proposal of [3] a threshold value is derived 

(equation 6) as τ to extract relevant IMFs: 

 

𝜏 =
𝑚𝑎𝑥 (𝜇𝑖)

10 × (𝜇𝑖)  − 3
 ,                                                                (6) 

 

A 

B 
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where μi is the correlation coefficient. If μi ≥ τ, the i-th IMF is 

suitable and keep it, else remove it and add it to the residual (see 

Figure 7). Each IMF component has physical meaningful 

interpretation and illustrates the oscillation of inherently 

characteristics at different time scales in the original series. The 

last component (residual) demonstrates the trend of the original 

data over time. The actual physical meaning contained in each 

IMF component can be determined by the significance test, and 

different confidence levels indicate the strength of the physical 

meaning [4].  

The IMFs extracted from the EMD technique are not all 

significant. It is important for users to be aware of the significant 

components in order to reduce data redundancy. For identifying 

significant IMFs, there is a method based on the results of the 

determination of higher energy IMFs. The energy density of the 

i-th IMF component can be calculated as follows [4]: 

𝐸𝑖 =
1

𝑁
∑|𝑐𝑖(𝑡)|2

𝑁

𝑡=1

,                                                                 (7) 

 

Where N is the length of the IMFs and ci(t) is the i-th IMF 

component. Figure 6 shows the energy density of the IMF 1-3 

and residual (IMF 6) have higher values than others and can be 

considered as the significant components. The vertical scale is 

logarithmic (equal scale between powers of 10) and the 

horizontal scale is linear (IMFs components). It is concluded that 

the significant components are IMF 1–3 and IMF 6 (residual). 

In Figure 8 shows that IMF1, IMF2 and IMF3 are respectively 

related to semi-annual, annual and biennial variations and the 

residual is more or less associated with the trend. It should be 

noted that trend signal for precipitation is ascending (a positive 

slope) over the Caspian catchment during 2003 until 2016. 

 

 

Figure 5. The values of correlation coefficient, Minkowski distance for the five IMFs. 

 

 

 
Figure 6. The energy density of IMFs component of average monthly precipitation time series during 2003-2016 in Caspian catchment. 
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Figure 7. Top row is the original signal, middle rows are the significant IMFs and last row is summing other IMFs and residual. 

 

 

Figure 8. Semi-Annual, Annual and Biennial variations of precipitation and their comparisons with the original precipitation anomaly 

over Caspian catchment from 2003 until 2016. 

 

CONCLUSION 

A separation process of EMD is based on the intrinsic and the 

physical properties of the data. The technique does not require 

any pre-definition of parameters and data processing is entirely 

automated without an interpreter. In this paper, we used the 

correlation coefficient, Minkowski distance and variance test to 

extract the relevant and prominent IMFs. The results show that 
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IMF 1-3 are the valuable and significant components and are 

related to semi-annual, annual and biennial variations of 

precipitation time series over the Caspian catchment during 

2003-2016, respectively. The so-called varying trend of the 

precipitation time series has a slight ascending slope. 
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