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ABSTRACT: 

 

Roads network are the most important parts of urban infrastructures, which can cause difficulty to the city whenever they undergo a 

problem. This paper aims to provide and implement a deep learning-based method to determine the status of the streets network after 

an earthquake using LiDAR point cloud. The proposed framework composes of three main phases: (1) Deep features of LiDAR data 

are extracted using a Convolutional Neural Network (CNN). (2) The extracted features are used in a multilayer perceptron (MLP) 

neural network in which debris areas inside the road network are detected. (3) The amount of debris in each road is applied to 

damage index for classifying the road segments into blocked or un-blocked. To evaluate the efficiency of the proposed framework, 

LiDAR point cloud of the Port-au-Prince, Haiti after the 2010 Haiti earthquake was used. The overall accuracy of more than 97% 

proved the high performance of this framework for debris detection. Moreover, analyzing damage assessment of 37 road segments 

based on the detected debris and comparing to a visually generated damaged map, 31 of the road segments were correctly labelled as 

either blocked or un-blocked.   

 

1. INTRODUCTION 

Natural disasters, such as earthquakes, cause severe problems 

in people’s everyday life (Fan et al., 2019; Ferrentino et al., 

2019). Earthquake is one of the most important disasters that 

frequently occurs all around the world (Chen et al., 2008; 

Ferrentino et al., 2018; Izadi et al., 2017; Moya et al., 2018). 

After an earthquake, it is crucial to know the status of the 

road network which plays a key role in disaster relief. 

Therefore, generating an accurate road network damage map, 

rapidly after earthquakes, which shows both blocked and un-

blocked roads, is critical for rescue teams. In this case, due to 

the large coverage, agile and cost-effective properties of the 

Remote Sensing data such as LiDAR point clouds, they have 

become powerful data sources for mapping process (Seydi 

and Hasanlou, 2017). The damaged roads detection (DRD) 

can be defined as the process of separating the intact roads 

from blocked roads (Zheng et al., 2015). During the last 

decade, different damage detection methods using geospatial 

data such as LiDAR, high resolution optical dataset, syntactic 

aperture radar (SAR) have been developed (Fan et al., 2019; 

Izadi et al., 2017; Li et al., 2016; Rastiveis et al., 2015a).  

 

These methods can be considered in two main categories: 

pixel-level, and object-level (Anniballe et al., 2018; 

Coulibaly et al., 2014; Kouchi and Yamazaki, 2005; Li et al., 

2016). Pixel-level algorithms are fast and easy-to-implement 

which focus on extracting spatial and spectral features from 

the data in level of pixels. On the other hand, the object-level 

damage assessment methods are based on analysing a number 

of homogeneous segments (called image-objects) extracted 

from a segmentation technique (Rastiveis et al., 2018). They 

are usually time-consuming and complex due to the 

segmentation process. In this regard, Samadzadegan and 

Zarrinpanjeh, (2008) proposed an object-oriented method 

using pre- and post-event QuickBird images to detect 

damaged roads after the 2003 earthquake in Bam, Iran. They 

used spectral and spatial information for detecting shadows, 

objects, vegetation cover, and blocked roads. Auxiliary data 

such as pre-event vector map along the post-event 

WorldView II satellite images of the Haiti earthquake were 

used for DRD (Rastiveis et al., 2015). Izadi et al., (2017) 

extracted image objects using multi-resolution segmentation, 

and obtained a damage map using KNN classifier method 

based on texture features. They analysed the classification 

result in a Fuzzy system to detect un-block or blocked roads. 

 

Although the abovementioned studies on DRD have shown 

promising results, they suffer many challenges such as the 

existence of shadow, noise, and atmospheric conditions, 

which may increase false alarm rate. This challenges are 

more seen in most of the change detection methods, 

specifically in the case of using traditional machine learning 

techniques. Also, performing the object-level classification is 

a time-consuming process, and the applied features for 

classification such as textural or spectral features are not 

robust. Generally, these DRD methods use multi-temporal 

dataset while the pre-event data may not be available for 

many places. To overcome these problems, this paper 

proposes a deep-leaning (DL) based framework for DRD 

using merely post-event LiDAR data.  

 

LiDAR data provides accurate height information that 

facilitates the DRD purposes. This sort of data can be 

collected day or night time without the shadow problem 

caused by tall buildings (Axel and van Aardt, 2017). 

Moreover, the pre-processing of LiDAR data is simple 

compared to other RS datasets. Besides, using DL-based 

algorithms have recently become the fastest-growing trend in 

image processing (Ball et al., 2017; Heydari and Mountrakis, 

2019; Ma et al., 2019). These algorithms have also shown 

excellent performance in many remote sensing applications 

such as classification, building extraction, and image 

registration (Ma et al., 2019; Wang et al., 2018; Wen et al., 
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2019). In this research, Convolutional Neural Network 

(CNN) which is one of the most suitable DL architectures for 

image classification is used for DRD. The aims of this study 

is to use deep features for DRD purposes, and evaluating 

their abilities in comparison with textural features for 

detecting debris area. 

 

This paper is outlined as follows: Section 2 states the details 

of the proposed framework for DRD, and section 3 

introduces study areas. The evaluation results of this study 

area are provided in section 4 the experimentation results are 

concluded in section 5. 

 

2. PROPOSED FRAMEWORK FOR DRD 

Figure 1 presents the structure of the proposed method. As 

can be seen from this figure, after pre-processing, the 

proposed method generates a streets road network damage 

map in three main steps of deep feature extraction, MLP 

classifier, and damage assessment. Each of which is 

described in the following subsections. 

 

 
 

Figure 1. The proposed DL-based framework for damaged 

roads detection using LiDAR data. 

 

2.1 Feature Extraction for DRD 

Feature generation is one of the key steps in classification of 

RS data. The results of many classification algorithms have 

shown that adding spatial features along with spectral 

features improves the classification results (Rastiveis et al., 

2015b). Therefore, features play a key role in the 

performance of data classification using machine learning 

techniques. For this end, this research investigates two 

groups of textural and DL-based features that have widely 

been used in RS data classification for DRD (Fan et al., 2019; 

Izadi et al., 2017; Li et al., 2016; Rastiveis et al., 2015a).   

  

2.1.1 Textural Features  

Texture information is a common descriptors for damage 

detection in Remote Sensing (Chen and Dou, 2018; Li et al., 

2016), and can be defined as a piece of information based on 

the relation between the data of one pixel with its 

surrounding pixels in a window with a defined size. A texture 

feature may include descriptors such as density, equality, 

non-roughness, and size uniformity. These descriptors have 

been widely used to determine earthquake effects in the 

surface of roads using RS data. In this research, eight 

Haralick textures based on the co-occurrence matrix are used 

as the applied texture information. These texture features, 

which are mean, variance, homogeneity, contrast, 

dissimilarity, entropy, second moment, and correlation, have 

been selected due to their largely reported application in 

damage assessment in the literature (De Siqueira et al., 2013; 

Karathanassi et al., 2000; Zhang et al., 2017). More details 

about different textures can be found in (Karathanassi et al., 

2000; Zucker and Terzopoulos, 1980). 

 

2.1.2 DL-based Features 

DL-based methods could automatically learn informative 

representations of input data with multiple levels of 

abstraction (Ball et al., 2017). A DL framework can be seen 

in four main different architectures of CNN, deep belief 

networks (DBNs), recurrent NN (RNN), and auto-encoder 

(AE) (Ball et al., 2017). The CNN uses stacked convolutional 

kernels to learn the features of images, so both of the spectral 

and the textural information in spatial space are learned 

(Zhao et al., 2018). A CNN-based classification method 

generally consists two main parts of feature extractor and a 

soft max that usually used an MLP that assigns class labels 

(Yang and Cervone, 2019). It can be created based on 

connections between the input data and the output labels to 

obtain the classification results (Ma et al., 2019; Wen et al., 

2019). Deep features in CNN can be extracted through 

multiple layers of operation: convolution layers, pooling 

layer, nonlinear activation functions, and normalization 

(Heydari and Mountrakis, 2019). In which, after training, for 

each pixel a 28×28 patch is considered as input data. Then 

through two convolution layers considering 3×3 kernels the 

deep features are extracted to be used in the classification. 

Figure 2 represents the architecture of the implemented CNN 

for extracting deep features in this research.  

 
Figure 2. The architecture of the applied CNN for extracting 

deep features 

 

2.2 Classification 

In automated DRD using RS data, either textural features or 

deep features are fed to a classifier to detect the class label. 

Due to the fact that in DRD, debris areas on the streets should 
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be accurately detected, the main purpose of classification is 

detection and discrimination of the debris areas on the roads 

surface from other classes. Inside a road area in a LiDAR 

data, four classes of cars, intact roads, debris, and trees are 

considered. In this section, two classification methods of 

Support Network Machines (SVM) and Artificial Neural 

Network (ANN) which have been frequently used in damage 

analysis are described.  

 

2.2.1 SVM classifier 

SVM classifier has widely been used in classification of 

optical high resolution RS data for urban areas. It is a 

supervised machine learning algorithm which is commonly 

used for classification purposes, and is based on the statistical 

learning theory (Cortes and Vapnik, 1995). The main idea 

behind SVM is to find a hyperplane that maximizes the 

margin between the two classes (Cortes and Vapnik, 1995). 

This algorithm has several critical parameters including 

kernel parameters and the penalty coefficient (C). This 

research used radial basis function (RBF) as kernel in the 

implemented SVM. One can refer to (Bishop, 2006; Chen, 

2015) for more details of SVM classifier.  

 

2.2.2 ANN classifier 

ANN has also been used in a number of RS data 

classification research. A simple ANN architecture sually has 

an input layer, hidden layer and output layer. This 

architecture is called Multi-Layer Perceptron (MLP) because 

of the multiple layer. In MLP classifier, the main idea for 

learning is adjusting the weights in the node to minimize the 

difference between the output node activation and the output 

(Bishop, 2006; Chen, 2015; Zhang et al., 2019). In MLP the 

standard back-propagation is used for supervised learning 

(Zhang et al., 2019; Zhang et al., 2018), in which the error is 

back-propagated through the network, and weight adjustment 

is made using a recursive method. This process continues 

until the error became lower than a desired value. The MLP 

classifier has many parameters that need to be tuned 

including number of hidden layers, activation function, 

learning rate, momentum rate, and maximum number of 

iterations,. More details of MLP algorithm can be studied in 

(Bishop, 2006; Chen, 2015). 

 

2.3 Damage Assessment 

The estimation of damage degree of each road is the main 

goal of this step, which can be performed through various 

methods. Wang et al., (2015) investigated the indicators of 

road damage assessment based on road width, length, area, 

and relative parameters of damaged road. They showed that 

the damage assessment based on width parameter has best 

performance. So, this research used width parameter as a 

criterion for damage assessment. In this research, each road is 

firstly divided into a number of tiles along the road, and the 

largest debris polygon inside each section is used to 

determine whether or not the section is block. In which, the 

Damage Degree (DD) of each section can be defined as the 

relation between the width of the largest debris polygon (WL) 

to the road width (WR) as follows: 

 

𝐷𝐷= .    (1) 

    

Then the un-blocked or blocked section roads are determined 

based on their damage degree and a suitable threshold, which 

may be specified as predefined knowledge. Final decision 

about the situation of each road can be made based on the 

number of blocked sections in the road.  

 

3. DATASET AND CASE STUDY 

The proposed method was evaluated using the LiDAR raster 

data of the Port-au-Prince, Haiti acquired after the 2010 

earthquake and with 1 m spatial resolution. Within these data 

set, a study area of 592×555 (m2) region including 37 roads 

was selected. Also, the 1:2000 vector map of this area was 

applied as an ancillary data. Figure 3 shows the LiDAR raster 

data and the vector map of the case study which were used in 

this study. 

 

 
Figure 3. (a) Selected test area for evaluation of the proposed 

method. (a) The post-event LiDAR raster data (b) The roads 

network layer from the pre-event vector map. 

 

4. EXPRIMENTS AND DISCUSSION  

4.1 Results 

Before executing the DRD process based on the proposed 

algorithm, the data pre-processing is performed to obtain 

more reliable results. In this regard, the LiDAR raster data is 

co-registred with vector data. After applying the pre-

processing steps, all the objects outside streets network were 

masked from LiDAR raster data by overlaying the extracted 

roads network from vector map. However, in the 

classification process all the entire image including non-road 
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pixels in the neighborhood of the road pixels are used during 

the feature extraction.  

 

Two groups of textural and deep features were extracted from 

the raster data. In the first group, 8 textural features of mean, 

variance, homogeneity, contrast, dissimilarity, entropy, 

second moment, and correlation were extracted by 

considering a 3×3 kernel. Next group features are the deep 

features that extracted by CNN algorithm according to the 

architecture shown in Figure 2. The optimal parameters of 

CNN are: batch size is 28×28, the size kernel of convolution 

in the first layer is 3×3, third layer is 3×3, the size of kernel 

for pooling layer is 2×2, the type of pooling is mean pooling, 

number of epochs is 15, and number of filters in first and 

second layers is 10.  Various types of nonlinear activation 

functions such as ReLU, tanh, and sigmoid were tested that 

the hyperbolic tangent (tanh) activation function was more fit 

to the LiDAR data based on defined architecture in the CNN 

network. The training dataset were extracted in four main 

classes including Car, Tree, Debris, Intact Road. Figure 4 

presents a number of sample  patch that were used in training 

process.  

 

 
Figure 4. Sample of training data, (a) car, (b) tree, (c) debris, 

and (d) intact road 

 

In this research, the classification were performed in two 

different strategies and the results were analysed ether 

visually or numerically. First, classification of the LiDAR 

data based on textural features through the MLP and the 

SVM classifiers. The other strategy was the MLP classifier 

using the extracted CNN-based deep features. The optimum 

value of the penalty coefficient (C) parameter in SVM was 

considered 25, and kernel parameter, gamma (γ), is 2-11. The 

parameters of the MLP classifier are as follows: number of 

hidden layer is 5, number of iteration is 100, training 

momentum is 0.1, and training rate is 0.001. Moreover, in 

order to make a fair comparison between different strategies, 

the size of training data was equally considered in all cases. 

Here, totally 4553 sample pixels for 4 classes were manually 

collected, which 67% and 33% considered as training and test 

data, respectively. Figure 5 presents the classification results 

obtained in these strategies.  

 

Based on the presented results, textural information in both 

classifiers in the case of using textural information miss-

detected some of the classes, specifically the Car class, which 

were classified as debris. Also, there are many pixels false 

detected as debris pixels by texture information, while this 

theme is low in result of deep features. Conversely, as can be 

seen from Figure 5-c, the MLP classifier based on deep 

features provided more promising results, and all classes 

were successfully detected. The classification results were 

also evaluated based on the confusion matrix. Using this 

matrix, conventional measures including Overall Accuracy, 

Omission Error, Commission Error, User Accuracy, and 

Producer Accuracy were calculated.  

 
 

Figure 5. The result of classification on LiDAR data: (a) The 

MLP classifier using textural features; (b) The SVM 

classifier using textural features; (c) The MLP classifier 

applying extracted deep features by the CNN. 
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The obtained confusion matrices are presented in Table 1, 

and the numerical results of the classifications are 

summarized in Table 2.  As shown in these tables, the 

classification based on LiDAR data could present acceptable 

results. In which, all classifiers have presented accuracy of 

more than 90%. Also, the numerical analysis confirms the 

superiority of the MLP classifier based on deep features in 

comparison with other strategies. It is evident that the CNN-

based classification has detected more car pixels in 

comparison with the other classifiers based on textural 

information. Moreover, the lowest omission and commission 

errors for all four classes also belong to this classification. 
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Table 1. Confusion Matrices of the classification results for 

different strategies. 

 

  

MLP-TF SVM-TF MLP-CNN 

U
se

r 
A

cc
u

ra
cy

 

C
o

m
m

is
si

o
n

 E
rr

o
r 

O
m

is
si

o
n

 e
rr

o
r 

P
ro

d
u

ce
r 

A
cc

u
ra

cy
 

U
se

r 
A

cc
u

ra
cy

 

C
o

m
m

is
si

o
n

 E
rr

o
r 

O
m

is
si

o
n

 e
rr

o
r 

P
ro

d
u

ce
r 

A
cc

u
ra

cy
 

U
se

r 
A

cc
u

ra
cy

 

C
o

m
m

is
si

o
n

 E
rr

o
r 

O
m

is
si

o
n

 e
rr

o
r 

P
ro

d
u

ce
r 

A
cc

u
ra

cy
 

T
re

e 

90.6 9.4 6.8 93.2 92.0 8 7.4 82.6 100 0 0.6 99.4 

In
ta

ct
 

R
o

ad
 

94.8 5.2 3.8 96.2 95.4 4.6 3.9 96.1 97.6 2.4 0.5 99.5 

D
eb

ri
s 

81.6 18.4 13 87 81.7 18.3 10.3 89.7 96.2 3.8 3.6 96.4 

C
ar

 

60 40 94.5 5.5 50 50 98.2 1.8 97.7 2.3 23.4 76.4 

Table 2. Summary of the numerical evaluation of the 

classification strategies based on the obtained confusion 

matrices in Table 1. 

 

The final phase of DRD is the analysis of debris areas for 

determining the situation of the roads. Here, due to the 

excellent performance of MLP-CNN, the classified map of 

this strategy was selected for damage assessment. Each road 

was firstly divided into different sections with 1-meter space 

along the road. Here, due to existence of left and right side 

walks, a buffer space equal to 15% of each road width from 

the roads were ignored. After calculating the DD index for 

each section, 0.6 was considered as the threshold for 

detecting the sections situation. In which, if the DD value for 

a section is lower than 0.6, that section would labelled as un-

blocked section. Otherwise, the section is labelled as blocked 

section. Note, this threshold is defined as predefined 

parameters. Eventually, if 10% of tiles are blocked, the road 

would be labelled blocked. Figure 7 presents the obtained 

final damage map for the roads network of the test area 

displaying two classes of un-blocked and blocked roads. 

Based on this figure, among 37 road segments in the study 

area, 31 of them were successfully labelled, and only 6 streets 

were labelled mistakenly.  

 

 
 

Figure 7. The result of DRD for the test area using the 

proposed framework. (a) The resulted map using the MLP-

CNN classification; (b) Ground truth. 

 

4.2 Discussion 

This research presented an efficient and robust framework for 

DRD based on post-event LiDAR data. The proposed 

framework were tested using the Haiti dataset. Two groups of 

textural features and deep features were investigated for 

classification of LiDAR data. One of the most issues in the 

performance of DRD process is detecting debris areas on the 

roads which cause blockage. Therefore, the result of DRD 

has absolute dependency on the accuracy of the 
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classification. The results of classification based on deep 

features had a superior advantage compared to textural 

features. However, the MLP classifier based on deep features 

includes a number of hyper-parameters which need to be 

carefully set. This is one of the most common challenges in 

deep learning algorithms. Moreover, determining the optimal 

architecture, and optimally training are other challenges of 

this method. Although these challenges have been seen 

among deep learning systems, the presented results showed 

that it is treasured, and deep features showed excellent results 

in comparison to textural features in DRD. Rastiveis et al., 

(2015b) proposed a framework that used texture features 

based on SVM and ANN classifier that presented acceptable 

results, but the proposed framework in this paper has higher 

accuracy in comparison to that framework. Another 

advantage of this method is that in our proposed method 

merely post-event LiDAR data is applied while in that 

method optical RS data in addition to LiDAR data is needed. 
 

5. CONCLUSION 

This paper presented a deep learning framework for DRD 

based on post-event LiDAR data plus a pre-event vector 

roads network as an ancillary data. Two groups of features 

using three classification algorithms were investigated to 

classify the roads pixels into four classes. The first group 

features were Haralick textural features including mean, 

variance, homogeneity, contrast, dissimilarity, entropy, 

second moment, and correlation that extracted by co-

occurrence matrix. The classifier algorithms for this group 

were SVM and MLP based on feed forward. The second 

group feature was deep features that obtained by CNN 

algorithm which imported to the MLP classifier. The 

classification results were analysed both visually and 

numerically, and MLP classifier with CNN-based deep 

features reported more than 97% accuracy that was the 

highest rate among all the cases. Using this classification 

results, 31 streets out of 37 roads were correctly labelled by 

this DRD framework. 

Generally, using deep features due to their excellent 

performance are robust features which can be used for DRD 

purposes. Moreover, it can be used instead of the traditional 

features such as textural or spectral features. Although, in this 

research, promising results were obtained based on LiDAR 

data, however, using other remote sensing data such as 

optical high resolution could improve the results. 

 

REFERENCES 

Anniballe, R., Noto, F., Scalia, T., Bignami, C., Stramondo, 

S., Chini, M., Pierdicca, N., 2018. Earthquake damage 

mapping: An overall assessment of ground surveys and VHR 

image change detection after L'Aquila 2009 earthquake. 

Remote Sensing of Environment 210, 166-178. 

 

Axel, C., van Aardt, J., 2017. Building damage assessment 

using airborne lidar. Journal of Applied Remote Sensing 11, 

046024. 

 

Ball, J.E., Anderson, D.T., Chan, C.S., 2017. Comprehensive 

survey of deep learning in remote sensing: theories, tools, 

and challenges for the community. Journal of Applied 

Remote Sensing 11, 042609. 

 

Bishop, C.M., 2006. Pattern recognition and machine 

learning. Springer. 

Chen, C.-h., 2015. Handbook of pattern recognition and 

computer vision. World Scientific. 

 

Chen, S.-r., Ma, H.-j., Fan, Y.-d., XU, F., LIAN, J., 2008. 

Road damage assessment from high resolution satellite 

remote sensing imagery in Wenchuan Earthquake. Journal of 

remote sensing 6. 

 

Chen, Z., Dou, A., 2018. Road Damage Extraction From 

Post-Earthquake Uav Images Assisted By Vector Data. 

International Archives of the Photogrammetry, Remote 

Sensing & Spatial Information Sciences 42. 

 

Cortes, C., Vapnik, V., 1995. Support-vector networks. 

Machine learning 20, 273-297. 

 

Coulibaly, I., Spiric, N., Sghaier, M.O., Manzo-Vargas, W., 

Lepage, R., St-Jacques, M., 2014. Road extraction from high 

resolution remote sensing image using multiresolution in case 

of major disaster, 2014 IEEE Geoscience and Remote 

Sensing Symposium. IEEE, pp. 2712-2715. 

 

De Siqueira, F.R., Schwartz, W.R., Pedrini, H., 2013. Multi-

scale gray level co-occurrence matrices for texture 

description. Neurocomputing 120, 336-345. 

 

Fan, X., Nie, G., Deng, Y., An, J., Zhou, J., Li, H., 2019. 

Rapid detection of earthquake damage areas using VIIRS 

nearly constant contrast night-time light data. International 

Journal of Remote Sensing 40, 2386-2409. 

 

Ferrentino, E., Marino, A., Nunziata, F., Migliaccio, M., 

2019. A dual–polarimetric approach to earthquake damage 

assessment. International Journal of Remote Sensing 40, 

197-217. 

 

Ferrentino, E., Nunziata, F., Migliaccio, M., Vicari, A., 2018. 

A sensitivity analysis of dual-polarization features to damage 

due to the 2016 Central-Italy earthquake. International 

journal of remote sensing 39, 6846-6863. 

 

Heydari, S.S., Mountrakis, G., 2019. Meta-analysis of deep 

neural networks in remote sensing: A comparative study of 

mono-temporal classification to support vector machines. 

ISPRS Journal of Photogrammetry and Remote Sensing 152, 

192-210. 

 

Izadi, M., Mohammadzadeh, A., Haghighattalab, A., 2017. A 

new neuro-fuzzy approach for post-earthquake road damage 

assessment using GA and SVM classification from 

QuickBird satellite images. Journal of the Indian Society of 

Remote Sensing 45, 965-977. 

 

Karathanassi, V., Iossifidis, C., Rokos, D., 2000. A texture-

based classification method for classifying built areas 

according to their density. International Journal of Remote 

Sensing 21, 1807-1823. 

 

Kouchi, K., Yamazaki, F., 2005. Damage detection based on 

object-based segmentation and classification from high-

resolution satellite images for the 2003 Boumerdes, Algeria 

earthquake, Proceedings of the 26th Asian conference on 

Remote Sensing, Hanoi, Vietnam. 

 

Li, Q., Zhang, J., Wang, N., 2016. Damaged road extraction 

from post-seismic remote sensing images based on gis and 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W18, 2019 
GeoSpatial Conference 2019 – Joint Conferences of SMPR and GI Research, 12–14 October 2019, Karaj, Iran

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W18-955-2019 | © Authors 2019. CC BY 4.0 License.

 
960



 

object-oriented method, IEEE International Geoscience and 

Remote Sensing Symposium (IGARSS). IEEE, pp. 4247-4250. 

 

Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., Johnson, B.A., 

2019. Deep learning in remote sensing applications: A meta-

analysis and review. ISPRS Journal of Photogrammetry and 

Remote Sensing 152, 166-177. 

 

Moya, L., Yamazaki, F., Liu, W., Yamada, M., 2018. 

Detection of collapsed buildings from lidar data due to the 

2016 Kumamoto earthquake in Japan. Natural Hazards and 

Earth System Sciences 18, 65. 

 

Rastiveis, H., Eslamizade, F., Hosseini-Zirdoo, E., 2015a. 

Building Damage Assessment After Earthquake Using Post-

Event Lidar Data. International Archives of the 

Photogrammetry, Remote Sensing & Spatial Information 

Sciences 40. 

 

Rastiveis, H., Hosseini-Zirdoo, E., Eslamizade, F., 2015b. 

Automatic Blocked Roads Assessment After Earthquake 

Using High Resolution Satellite Imagery. International 

Archives of the Photogrammetry, Remote Sensing & Spatial 

Information Sciences 40. 

 

Rastiveis, H., Khodaverdi zahraee, N., Jouybari, A., 2018. 

Object-Oriented Classification Of Lidar Data For Post-

Earthquake Damage DetectioN. International Archives of the 

Photogrammetry, Remote Sensing & Spatial Information 

Sciences XLII-3/W4, 421-427. 

 

Samadzadegan, F., Zarrinpanjeh, N., 2008. Earthquake 

destruction assessment of urban roads network using satellite 

imagery and fuzzy inference systems. The international 

archives of the photogrammetry, remote sensing and spatial 

information sciences 37, 409-414. 

 

Seydi, S.T., Hasanlou, M., 2017. A new land-cover match-

based change detection for hyperspectral imagery. European 

Journal of Remote Sensing 50, 517-533. 

 

Wang, J., Qin, Q., Zhao, J., Ye, X., Feng, X., Qin, X., Yang, 

X., 2015. Knowledge-Based Detection and Assessment of 

Damaged Roads Using Post-Disaster High-Resolution 

Remote Sensing Image. Remote Sensing 7, 4948-4967. 

 

Wang, S., Quan, D., Liang, X., Ning, M., Guo, Y., Jiao, L., 

2018. A deep learning framework for remote sensing image 

registration. ISPRS Journal of Photogrammetry and Remote 

Sensing 145, 148-164. 

 

Wen, C., Sun, X., Li, J., Wang, C., Guo, Y., Habib, A., 2019. 

A deep learning framework for road marking extraction, 

classification and completion from mobile laser scanning 

point clouds. ISPRS Journal of Photogrammetry and Remote 

Sensing 147, 178-192. 

 

Yang, L., Cervone, G., 2019. Analysis of remote sensing 

imagery for disaster assessment using deep learning: a case 

study of flooding event. Soft Computing, 1-16. 

 

Zhang, A., Sun, G., Ma, P., Jia, X., Ren, J., Huang, H., 

Zhang, X., 2019. Coastal Wetland Mapping with Sentinel-2 

MSI Imagery Based on Gravitational Optimized Multilayer 

Perceptron and Morphological Attribute Profiles. Remote 

Sensing 11, 952. 

 

Zhang, C., Pan, X., Li, H., Gardiner, A., Sargent, I., Hare, J., 

Atkinson, P.M., 2018. A hybrid MLP-CNN classifier for very 

fine resolution remotely sensed image classification. ISPRS 

Journal of Photogrammetry and Remote Sensing 140, 133-

144. 

 

Zhang, X., Cui, J., Wang, W., Lin, C., 2017. A study for 

texture feature extraction of high-resolution satellite images 

based on a direction measure and gray level co-occurrence 

matrix fusion algorithm. Sensors 17, 1474. 

 

Zhao, X., Gao, L., Chen, Z., Zhang, B., Liao, W., 2018. 

CNN-based Large Scale Landsat Image Classification, Asia-

Pacific Signal and Information Processing Association 

Annual Summit and Conference (APSIPA ASC). IEEE, pp. 

611-617. 

 

Zheng, Z., Pu, C., Zhu, M., Xia, J., Zhang, X., Liu, Y., Li, J., 

2015. Damaged road extracting with high-resolution aerial 

image of post-earthquake, International Conference on 

Intelligent Earth Observing and Applications, International 

Society for Optics and Photonics, p. 980807. 

 

Zucker, S.W., Terzopoulos, D., 1980. Finding structure in co-

occurrence matrices for texture analysis. Computer graphics 

and image processing 12, 286-308. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W18, 2019 
GeoSpatial Conference 2019 – Joint Conferences of SMPR and GI Research, 12–14 October 2019, Karaj, Iran

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W18-955-2019 | © Authors 2019. CC BY 4.0 License.

 
961




