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ABSTRACT: 

 

In this study, we investigate the contribution of earthquakes to the deformation of Zagros province and compare the seismicity and 

the density of earthquakes in different parts of the province. The mathematics used in this research is based on calculations of 

moment rates. The seismic moment rate is the average amount of seismic energy releases from the tectonic province in each year. 

The geodetic moment rate is the average amount of energy which is consumed every year to make deformation in Zagros. The ratio 

of these two moment rates expresses the contribution of earthquakes in making deformation in Zagros province. According to the 

calculations, this ratio is estimated to be 13.06%. Along with the information obtained from the moment rates, we can also obtain the 

shear and the dilative strain rates from the strain rate tensors, which show the volumetric changes and the deformation rate in 

different parts of the Zagros, respectively. The data used in this study include the focal coordinates of the Zagros earthquakes with 

their magnitude and the velocity vectors of the Zagros geodynamic network, which are used to calculate the seismic and the geodetic 

moment rates. 

 

 

1. INTRODUCTION 

The Zagros fold-thrust belt is an orogenic belt along the NW-

SE that stretches about 2000km from Turkey to the Strait of 

Hormuz in the southwest of Iran (Berberian, 1995). This belt is 

limited to the north by the main Zagros fault, which is referred 

to as connection of Neo-Tethys ocean. Recent tectonic activities 

in this area are the result of convergence of the continental 

plates of Arabia and Eurasian from the late Cretaceous/early 

Miocene. This belt, which is the youngest continental 

conjunction zone on the planet, is a key area for studying the 

processes that occurred at the early stages of the formation of 

convergent regions (Jackson et al. 1981). 

 

In general, the orogeny phenomenon and the other aspects of 

deformation created on the earth’s surface are responses to the 

stresses imposed to different parts of the earth’s crust. 

Earthquakes, as one of the important factors of deformation, are 

the result of the accumulation of elastic energy in the earth’s 

crust, and the greater amount of energy accumulated in the 

crust, the larger earthquake will happen. Investigation of the 

focal mechanisms of Zagros earthquakes indicates shortening 

and thickening in the main fault and the reverse faults of the 

Zagros which are responsible for the deformation in this area 

(Mostafazadeh et al. 2000; Talebian and Jackson, 2004). Based 

on the slip rate and the attitude of deformation obtained from 

GPS observations, Zagros is divided into two parts: the North 

Zagros and the Central Zagros. The right lateral strike slip 

Kazerun fault is considered as the border between the North and 

the Central Zagros (Baker et al. 1993; Vernant et al. 2004). In 

the North Zagros, the deformation is decomposed into a 

 3 6 mm Year  shortening component perpendicular to the 

Zagros strike and a  4 6 mm Year  strike slip component 

parallel to the Zagros. In the Central Zagros, the deformation 

has a 8 2mm Year  shortening component that is 

perpendicular to the Zagros strike (Walpersdorf et al. 2006). 

The larger part of the deformation is observed in the southern 

part of the Zagros, while seismicity is distributed all over the 

region. 

 

By combining the information obtained from geological and 

tectonic studies and seismic data, we can determine some areas 

on a geological map which have different seismic power and 

distinguish from the adjacent areas. These areas are called 

tectonic provinces. 

 

In this study, we investigate the contribution of earthquakes in 

making deformation in Zagros and interpret the deformation 

rate in different regions of the tectonic province by using the 

strain rate tensor. These calculations are based on the seismic 

and geodetic moment rates. The seismic moment rate of the 

Zagros represents the average amount of seismic energy releases 

every year from the tectonic province. The geodetic moment 

rate is also the average amount of energy that each year is spent 

on creating the deformation in Zagros. The ratio of these two 

moment rates indicates the contribution of earthquakes in 

making deformation in Zagros. The shear strain rate and the 

dilative strain rate can be obtained by calculating the strain rate 

tensor. Each of these parameters describes a different 

description of the deformation rate in Zagros. We can conclude 

new information about the seismic activity of the Zagros faults 

by interpreting the strain rate components and the density of the 

earthquakes in Zagros province. 
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2. PROPOSED METHOD 

In this research, we use the seismic data to calculate the seismic 

moment rate. These data are provided by the International 

Institute of Earthquake Engineering and Seismology (IIEES).  

 

Mirzaei et al (1998) delineated five major tectonic provinces in 

Iran based on all available geophysical, geological, tectonic and 

earthquake data (Figure 1). Earthquake magnitudes are 

expressed in different scales in the seismic catalogues and must 

be converted to moment magnitude (
WM ). The conversion 

equations of the magnitude scales 
W SM M  and 

W bM m  are 

as follows (Scordilis, 2006): 

 

   0.67 0.005 2.07 0.03W SM M          3.0 6.1SM      (1) 

 

   0.99 0.020 0.08 0.13W SM M          6.2 8.2SM      (2) 

 

   0.85 0.040 1.03 0.23W bM m            3.5 6.2bm       (3) 

 

W LM M  and 
W DM M  relations have been calculated as 

follows respectively (Mousavi-Bafrouei et al. 2014 ; Yenier et 

al. 2008): 

 

   0.81 0.045 1.098 0.22W LM M       3.7 6.4LM       (4) 

 

0.764 1.379W DM M                             3.7 6.0DM       (5) 

 

 
Figure 1. Major tectonic provinces of Iran developed by Mirzaei 

et al (1998). The red lines depict the major active faults 

developed by Hessami et al (2003). 

 

The scalar seismic moment (
0M ) is calculated using the 

following equation (Kanamori, 1977): 

 
 1.5 9

0 10 WM
M


                                                                        (6) 

 

This parameter describes the amount of seismic energy releases 

at the time of earthquake. The total seismic energy of the Zagros 

earthquakes in each year indicates the seismic moment of the 

Zagros province (Figure 4). 

 

The cumulative seismic moments are calculated by using the 

seismic moments. A degree one polynomial is fitted to the 

cumulative moments and the slope of the fitted line is 

considered as the seismic moment rate (Figure 5). 

 

Ward (1998) used the following equation to calculate the 

geodetic moment rate: 

 

0 max2
W

M HA 
 

                                                                   (7) 

 

Where   is the shear modulus of crust which is considered to 

be 10 23*10 N m , H  is the thickness of the seismogenic layer, 

A  is the network triangle area and max  is the absolute of 

maximum eigenvalue obtained from the 2D strain rate tensor. 

 

The seismogenic layer is that part of the earth’s crust whose 

deformation is elastic, and the major fractures caused by the 

earthquakes occur in this part. Considering the effect of the 

systematic errors in the focal coordinates of the earthquakes 

(including the error of the focal depth and the epicenter 

location), we don’t use all of these coordinates to calculate the 

seismogenic thickness. Results of waveform modeling and 

microearthquake studies reveal that the majority of earthquakes 

in Zagros occur in depths of 8~15km (Mirzaei et al. 1997). In 

order to decrease the effects of systematic errors, we use the 

coordinates whose focal depths are less than 20km. The 

thickness of the seismogenic layer is calculated at the centroids 

of the network triangles (Figure 6) by using a weighted average 

of the focal depths. We use the Delaunay method to triangulate 

the geodynamic network of the Zagros. The following equations 

describe how to calculate this parameter. 

 

 
Figure 2. Triangulation of the Zagros geodynamic network 

using the Delaunay method. 

 

     
2 2 2

C C C C

Hyp Hyp Hyp Hypr x x y y z z                         (8) 

 

 

1j

i m
C

Hyp

w
r

                                                                            (9) 
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Where 
jD  is the focal depth of the jth earthquake, C

Hypr  is the 

Euclidean distance between the centroid of a network triangle 

and the hypocenter of an earthquake, N  is the total number of 

Zagros earthquakes, i

SH  is the estimation of the seismogenic 

thickness in the centroid of each triangle and m  is the power of 

distance which its value is determined empirically. Here, m  is 

considered to be 2. 

 

The coordinates of the geodynamic network stations are 

expressed in the geodetic coordinates ( , ,h  ). Where   is the 

geodetic latitude,   is the geodetic longitude and h  is called 

the geodetic height. Table (1) and Table (2) include the geodetic 

coordinates of the GPS stations and the components of the 

velocity vectors. The Cartesian coordinates of the GPS stations 

( , ,x y z ) are calculated as follows (Jekeli, 2006): 

 

 
   

2 2
cos cos

1 sin

sta a
x h

e
 



 
  
  

                           (11) 

 

 
   

2 2
cos sin

1 sin

sta a
y h

e
 



 
  
  

                            (12) 

 

 
 

 
2

2 2

1
sin

1 sin

sta
a e

z h
e




 
  
  

                                        (13) 

 

Where 6378137a m  and 0.0818e   are the semi-major axis 

and the eccentricity of the WGS84 ellipsoid, respectively. 

 

By calculating the Cartesian coordinates of the permanent 

stations, the Cartesian coordinates of the centroids in equation 

(8) are calculated as follows: 

 
3

1

3


 sta

i
C i

x

x                                                                           (14) 

 
3

1

3


 sta

i
C i

y

y                                                                           (15) 

 
3

1

3


 sta

i
C i

z

z                                                                            (16) 

 

The focal coordinates of the earthquakes’ hypocenters are 

expressed in geodetic latitude, geodetic longitude and focal 

depth ( D ) in the seismic catalogues. In order to calculate the 

Cartesian coordinates of the hypocenters ( , ,Hyp Hyp Hypx y z ) in 

equation (8), we need to convert the focal depths to the geodetic 

heights ( h ). This conversion is carried out by the SRTM 

heights. Considering the epicenter of each earthquake, we can 

find an SRTM cell of 4 points around the epicenter which are 

the nearest points to the epicenter (Figure 3). 

 

 
Figure 3. Calculation of seismogenic thickness. The red dots are 

the vertices of the SRTM cell around the earthquake epicenter. 

The geodetic height of the hypocenter is calculated by using the 

geodetic heights of the SRTM points and the focal depth. 

 

The geodetic height of the epicenter point is calculated by using 

a weighted average as follows: 

 
4

1

4

1










i i

Epi

i
Epi

i

Epi

i

h w

h

w

                                                                     (17) 

 

1i

Epi i

j

w
d

                                                                                (18) 

 

Where ih  is the geodetic height of the ith vertex of the SRTM 

cell around the epicenter point and i

jd  is the Euclidean distance 

between the projected jth Epicenter and the projected ith vertex 

on the reference ellipsoid. For projecting the points on the 

reference ellipsoid, it is enough to consider the geodetic heights 

as zero. The geodetic latitude and longitude of the points are 

also known. So, we can determine the Cartesian coordinates of 

the projected points using the equations (11), (12) and (13). By 

calculating the geodetic height of the epicenter, the geodetic 

height of the hypocenter will be calculated simply: 

 

Hyp Epih h D                                                                         (19) 

 

Where D  is the focal depth of the hypocenter. Now, the 

Cartesian coordinates of the hypocenter can be determined and 

the Euclidean distance C

Hypr  in equation (9) is calculated. 

 

To calculate the eigenvalues of the 2D strain rate tensor, we use 

the finite element method. The elements of the tensor are 

calculated at the centroids of the network triangles (Figure 2). 

Strain rate tensor is a symmetric tensor, so it has 6 independent 

elements. The following equations show how to calculate these 

elements: 

 

i i i j ji

j j

u u
u x y a r

x y

   
     

    
                                         (20) 
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i i i j ji

j j

v v
v x y b r

x y

   
     

    
                                          (21) 

 
    2 1

i i iu X X t                                                               (22) 

 
    2 1

i i iv Y Y t                                                                 (23) 

 
C

i ix X x                                                                            (24) 

 
C

i iy Y y                                                                              (25) 

 

Where 
iu  and 

iv  are the components of the velocity vectors 

available in the Table (2),  ,i iX Y  are the Cartesian coordinates 

of the triangle vertex and  ,C Cx y  are the Cartesian coordinates 

of the triangle centroid. 
j

u

x

 
 
 

, 
j

u

y

 
 
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, 
j

v

x

 
 
 

, 
j

v

y

 
 
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, 
ja  

and 
jb  are the unknown parameters in equations (20) and (21). 

By calculating these parameters, the strain rate tensor is 

determined as follows: 

 

1

2

1

2

j jj

jj j

u u v

x y x

u v v

y x y




        
               
 

        
                

                   (26) 

 

The absolute of maximum eigenvalue for this tensor is used to 

calculate the geodetic moment rate in equation (7). 

 

We can find the following relationships between the 

eigenvalues of the strain rate tensor. 

 

2 2 2

11 22 11 22 11 22 12

min

2 4

2

      



      



       
           

       
     (27) 

 

2 2 2

11 22 11 22 11 22 12

max

2 4

2

      


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

       
           

       
    (28) 

 

2 max min 11 22D    
    

                                                       (29) 

 

2D



  is the dilative strain rate parameter derived from the 2D 

strain rate tensor. We can find a geometric concept for the 

dilative strain rate by following definition: 

 

2 11 22D

S x y

S x y
 

  
    
                                                  (30) 

 

The 2D shear strain rate is defined by the following equation: 

 

2 2

max min 11 22 122 4D     
        

       
   

                          (31) 
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x y x y

x y y x
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

    
          

     
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2 2 2 2

2 2 2D

x y x y

x y


   
      

                                               (32) 

 

We can generalize the above equations to 3D format. In this 

case, we use all of the components of velocity vectors. The 

elements of the 3D strain rate tensor are calculated by using the 

finite difference method in each of the GPS stations. 

 

j j j

i i i i j ji

j jj

u u u
u x y z a r

x y z

      
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      
                      (33) 
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j j j

i i i i j ji

j jj

w w w
w x y z c r
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      
        

      
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Where 
iu , 

iv  and 
iw  are the components of the velocity 

vectors. j

ix , j

iy  and j

iz  are defined as follows: 

 
j

i i jx X X                                                                           (36) 

 
j

i i jy Y Y                                                                              (37) 

 
j

i i jz Z Z                                                                             (38) 

 

Where  , ,j j jX Y Z  are the coordinates of the station that we’re 

going to calculate its tensor elements. The elements of the 3D 

strain rate tensor, the 3D dilative and shear strain rates calculate 

as follows: 
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2

k l
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l kj j
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x x
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1 , 1 , 1
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4 2ii ij ii jjD

i i j i j
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    
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   
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Table 1. The geodetic coordinates of the Zagros geodynamic 

stations 

Station lat(deg) lon(deg) h(m) 

BRBS 27.2072 56.3206 23.6423 

JASC 25.6375 57.7699 1.1230 

LAMD 27.3637 53.2034 401.9124 

SHRZ 29.5444 52.6026 1493.326 

BEBN 30.6057 50.2169 316.8581 

BAFT 29.2392 56.58 2286.743 

ABRK 31.1205 53.2265 1537.25 

SFHN 32.5177 51.7061 1550.34 

AHVZ 31.3439 48.7444 19.7275 

ABDN 30.3778 48.2135 1.5774 

ANGN 26.4572 57.8973 739.3925 

HOSN 32.6699 48.2534 356.1099 

KRAD 33.4334 48.2787 1153.494 

ILLM 33.5887 46.3974 1331.247 

SBAK 30.1462 55.1075 1859.723 

MIAN 36.9083 46.1621 1309.429 

HAJI 28.2940 55.8946 947.7514 

 

Table 2. The velocity vectors of the permanent stations 

Station VE(mm/y) VN(mm/y) VU(mm/y) 

BRBS 32.54 30.20 -1.21 

JASC 29.40 19.48 0.38 

LAMD 30.61 27.32 -4.77 

SHRZ 26.73 22.21 -4.46 

BEBN 24.36 27.03 0.02 

BAFT 28.92 21.47 0.86 

ABRK 27.09 22.30 -5.88 

SFHN 26.78 21.31 -0.3 

AHVZ 24.85 26.42 -2.25 

ABDN 27.39 29.58 -1.03 

ANGN 28.52 19.78 -0.58 

HOSN 23.11 24.18 0.26 

KRAD 22.52 23.56 -1.88 

ILLM 23.57 26.30 0.64 

SBAK 27.31 20.94 -2.45 

MIAN 24.72 22.47 -3.11 

HAJI 0.531 -0.46 0.44 

 

It should be noted that the components of the velocity vectors 

have been expressed in the navigation coordinate system. In 

order to use these components, we need to convert them to the 

geodetic coordinate system. The following equation is used for 

performing the conversion (Drake, 2002). 

 

         

         

   

sin sin cos cos cos

cos sin sin cos sin

0 cos sin

x E

y N

z U

V V

V V

V V

    

    

 

     
    

     
        

   (42) 

 

 

3. RESULTS 

Figure (4) shows the changes of the seismic moment in Zagros 

from 1970 to 2016. 

 

 
Figure 4. Changes of the seismic moment in Zagros from 1970 

to 2016 

 

The cumulative seismic moment in each year is calculated using 

the seismic moments of previous years. Figure (5) depicts the 

changes of the cumulative seismic moment in Zagros from 1970 

to 2016. 

 

 
Figure 5. Changes of the cumulative seismic moment in Zagros 

from 1970 to 2016 and the seismic moment rate. 

 

According to the calculations, the seismic moment rate is 

estimated to be 
183.7977 *10SeismicM Nm Year



  which is the 

slope of the fitted line in Figure (5). 

 

According to the calculations, the geodetic moment rate is 

estimated to be 
19

det 2.9082*10geo icM Nm Year


 . The 

contribution of the earthquakes to the Zagros deformation is 

determined by dividing the seismic moment rate to the geodetic 

moment rate which is about 13.06%. In addition to calculation 

of the moment rates, the changes of the seismogenic thickness 

can also be depicted in different parts of the Zagros. Figure (6) 

depicts the changes of the seismogenic thickness in Zagros. 
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Figure 6. Changes of the seismogenic thickness in Zagros. 

 

Figure (7) and Figure (8) describe the surface deformation in 

Zagros. It should be noted that these parameters are defined in 

the geodetic coordinate system. The 2D dilative strain rate 

( 2D



 ) shows the rate of the surface contraction or expansion in 

Zagros. The negative and the positive values mean contraction 

and expansion, respectively. 

 

 
Figure 7. Changes of the 2D dilative strain rate in Zagros 

 

The 2D shear strain rate ( 2D


) shows the rate of absolute 

deformation in Zagros. This parameter does not contain the 

negative values. 

 

 
Figure 8. Changes of the 2D shear strain rate in Zagros 

 

The 3D dilative and shear strain rates ( 3D



  and 3D


) also 

describe the 3D volumetric changes and the absolute 3D 

deformation in Zagros, respectively. 

 

 
Figure 9. Changes of the 3D dilative strain rate in Zagros 

 

 
Figure 10. Changes of the 3D shear strain rate in Zagros 

 

If we consider the density of the earthquakes larger than 5 

Richter, we can describe the above results more clearly. Figure 

(11) shows the location of these earthquakes. 
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Figure 11. Density of the earthquakes with 5WM  in Zagros 

 

 

4. CONCLUSIONS 

Considering the results, we conclude that most of the surface 

deformation in Zagros have been created in an aseismic way 

and the earthquakes have had little contribution in making it. 

The studies carried out by (Jackson and McKenzie, 1988) 

revealed only 10% of the total deformation in Zagros was 

created by the earthquakes and most of the Zagros deformation 

is aseismic. 

 

Waveform modelling shows that the large earthquakes in 

Zagros, happen in upper crust up to the depth of 15km (Jackson 

and Fitch, 1981; Ni and Barazangi, 1986). Given that there are 

systematic errors in the depth measurements of earthquakes, the 

estimated seismogenic thickness shows a good coincidence with 

the results of waveform modelling. Investigating the density of 

the earthquakes larger than 5 Richter also shows that the major 

earthquakes occur in the southern Zagros and some parts of the 

central Zagros. The seismogenic thickness in these areas is 

lower than the other parts, and the information obtained from 

the 3D strain rate tensor also shows that the volumetric 

reduction of the province in these regions is slower than the 

other parts of Zagros. 

 

According to the results, it is obvious if we had more permanent 

stations, we would be able to obtain more detailed information 

about the deformation rate. 
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