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ABSTRACT: 

The advancement of remote sensing technologies is a huge advantage in various environmental applications including the 

monitoring of the rapid development in an urban area. This study aims to estimate the composition of the different classes 

(vegetation, impervious surfaces, soil) in Metro Manila, Philippines using a 300-meter spatial resolution Sentinel-3 Ocean and 

Land Colour Instrument image. The relationship between these land cover fractions with the spatial distribution of land surface 

temperature at this scale is evaluated. Sentinel-3 image has a higher spectral resolution (i.e. 21 bands), as compared with other 

Landsat and Sentinel missions, which is a requirement for an accurate cover mapping. Linear Spectral Unmixing (LSU), a sub-

pixel classification method, was employed in identifying the fractional components in the image based on their spectral 

characteristics. Field survey using spectroradiometer was conducted to acquire spectral signatures of an impervious surface, 

vegetation, and soil which were used as the endmembers in the unmixing process. To assess the accuracy of the resulting vegetation 

fractional image, this was compared with a separate land cover pixel-based classification result using a 3-meter high spatial 

resolution PlanetScope image and with another vegetation index product of Sentinel-3. The results indicate that the recently 

available Sentinel-3 image can accurately estimate vegetation fraction with R2 = 0.84 and 0.99, respectively. In addition, the land 

surface temperature (LST) retrieved from Climate Engine is negatively correlated with the vegetation fraction cover (R2 = 0.81) 

and positively correlated with the impervious surface fraction cover (R2 = 0.66). Soil, on the other hand, has no correlation with 

the LST.  

1. INTRODUCTION

Worldwide urbanization rate increase in the recent decades has 

led to various consequences, particularly in sustainable urban 

development such as the significant reduction of agricultural 

lands, infrastructure planning, and extensive urban sprawls 

(Maktav, Erbek, & Jürgens, 2005). This highlights the need for 

systematic monitoring of the changes in urban landscapes, as well 

as its detrimental impacts to the environment, one of which is the 

substantial rise in land surface temperature within highly-

urbanized and rapidly urbanizing cities due to the conversion of 

vegetated areas and bare soil to impervious surfaces such as 

buildings and roads. A study by (Tiangco, Lagmay, & Argete, 

2008) revealed that Metro Manila, the largest urban 

agglomeration in the Philippines, experiences urban heat island 

(UHI) effect, wherein warmer temperatures are observed in urban 

areas compared to its surrounding rural areas.  

With constant technological progress leading to higher spatial, 

spectral, and temporal resolution non-commercial satellite 

imagery such as the recently launched Sentinel-3 Earth 

observation satellite constellation, remote sensing of the urban 

landscape is becoming more common as an alternative to 

traditional surveying. In addition, utilizing remote sensing data 

for urban applications is preferred because of its capability to 

cover larger areas in a shorter amount of time (e.g. a Landsat 8 

scene covers a 170km x 185km area), and consistent periodical 

data can be easily accessed for frequent monitoring of alterations 

in urban area composition. However, often the case with non-

commercial satellite imagery, higher temporal resolution results 

in a coarser spatial resolution. This makes balancing the two 

resolutions necessary when selecting the imagery to be used and 

in some cases, requires the application of additional image 

processing methods since urban landscapes are composed of 

various land cover types and building elements with different 

spatial attributes (Maktav et al., 2005).  

Image classification methods for land cover mapping and 

analysis can be categorized into three main groups namely, pixel-

based, object-based, and sub-pixel. In pixel-based classification, 

only the spectral properties of individual pixels being classified 

are considered while in object-based classification, pixels are 

grouped into homogeneous objects based on their spatial and 

spectral information before applying different classification 

algorithms (Aggarwal & Dutta, 2016; Sibaruddin, Shafri, 

Pradhan, & Haron, 2018). A problem often encountered when 

doing pixel-based or object-based classification is the presence 

of mixed pixels. One method of mitigating the effects of this is 

by applying sub-pixel classification. With this type of 

classification, each pixel is not assigned to only one land cover 

class. Instead, the proportion of each land cover class in the pixel 

is determined. Studies show that linear spectral unmixing, one of 

the widely used sub-pixel classification approaches, is capable of 

improving forest cover estimation accuracy (Bai, Lin, Sun, Mo, 

& Yan, 2012) and impervious surface mapping in urban and sub-

urban areas (Yang & He, 2017) 

In this study, the objectives are to (1) estimate relative 

abundances of urban vegetation, impervious surface, and soil 

from Sentinel-3 image by applying linear spectral unmixing 
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(LSU), and (2) evaluate the relationship between these fraction 

images and the spatial distribution of land surface temperature. 

 

2. METHODOLOGY 

The overall methodology used includes three general steps 

(Fig.1): (1) in-situ collection of endmember spectra, (2) 

processing of remotely-sensed datasets, and (3) validation and 

analysis to determine the relationship between LST and fraction 

images. 

 

2.1 Study Area 

Metro Manila is the largest conurbation in the country located in 

the southwestern part of Luzon (Fig. 2). It is composed of sixteen 

cities and one municipality, covering a total area of 63,600 

hectares which is about 0.2 % of the total area of the Philippines. 

This is known to be the National Capital Region. It ranked 2nd in 

the most populous region in the country. The most populous 

cities in the region are Quezon City, Manila, Parañaque, 

Caloocan, and Taguig. Furthermore, the average population 

density at national level is 260 people per sq. km., but, Metro 

Manila has 15,617 persons per sq. km. (Ragragio, 2000).  

 

It also houses some of the largest shopping malls in the world, 

hotels, commercial spaces, central business districts, 

subdivisions, national government offices, and even mixed-use 

developments owned by private corporations. In these areas, the 

construction materials are mostly concrete, bricks, and glass. 

This is also where the big universities were established. 

However, Metro Manila also accommodates large informal 

settlement communities. They can be found along rivers, creeks, 

garbage dumps, along railroad tracks, and under the bridges. 

With regard to the materials used in the slum housing, they are 

salvaged materials which are mostly GI sheets, tarpaulins, 

cartons, bamboo sticks, and some are concrete. 

 

In 1996, 75.8% of the region’s area was classified as alienable 

and disposable, while the remaining 24.2% was classified as 

forest lands (Ragragio, 2000). Forestlands include fishponds, 

timberlands, national parks, and unclassified lands. Aside from 

the numerous establishments in the metropolis, there are still 

areas which are filled with vegetation. Some of these are the La 

Meso Ecopark, Ninoy Aquino Parks and Wildlife, and UP 

Diliman in Quezon City, Las Piñas-Parañaque Critical Habitat 

and Ecotourism Area, Arroceros Forest and Rizal Park in Manila. 

Metro Manila is composed of varied land use, making it fit for 

mapping of different land cover and surface types. 

 

 

Figure 2. Map of cities in Metro Manila with the surrounding 

provinces (East: Rizal, North: Bulacan, South: Cavite and 

Laguna) 

 

2.2 Field Spectral Measurement Survey 

Field survey was conducted to obtain the spectral signatures of 

vegetation, soil, and impervious surface in an area. The field 

survey was scheduled on a day when the sky was generally clear, 

and between 10:00 AM and 2:00 PM. These conditions were set 

to minimize the error due to high atmospheric influence and noise 

(McCoy, 2005). 

 

The instrument set up (Fig. 3) was composed of ASDFieldspec 

spectroradiometer with spectral range from 350 to 2500 

nanometers, battery, toughbook used as the logger, fiber optical 

cable, and a reference panel.  

 

 

Figure 3. Survey team measuring spectral signature using ASD 

spectroradiometer 

The RS3 software was installed and configured in the laptop. It 

served as the controller of the instrument in taking the 

measurements. The ASD Fieldspec Spectroradiometer measures 

the optical energy that is reflected, absorbed into, or transmitted 

through a sample. A pistol grip was attached to the fiber optical 

cable, and the 8-degree field of view was used for the entire 

fieldwork.  

 

FIELD SPECTRAL MEASUREMENT SURVEY 

• Collection of spectral signatures of the three endmembers – 
vegetation, impervious surface, and soil 

REMOTE SENSING IMAGE PROCESSING 

• Sentinel-3 Level 1 image: land cover abundance estimation 
using linear spectral unmixing 

• PlanetScope image: land cover classification using pixel-
based approach  

• Landsat-8 image: land surface temperature retrieval 

• Sentinel-3 Level 2 image: retrieval of a vegetation index 
(OGVI) 

VALIDATION AND ANALYSIS 

• Correlation between relative abundance of vegetation derived 
from Sentinel-3 image and vegetation percent cover classified 
using PlanetScope image 

• Correlation between relative abundance of vegetation derived 
from Sentinel-3 image and OGVI values 

• Correlation between LST and land cover (i.e., vegetation, 
impervious, soil) fraction images 

• Per-city and per-barangay analyses using Zonal Statistics  

Figure 1. Flowchart of the methodology used in this study 

TOUGHBOOK 

REFERENCE PANEL 

PISTOL GRIP 

SPECTRO-
RADIOMETER 
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(1) 

 

 

All measurements were done such that each surface being 

measured was exposed to direct sunlight. The pistol grip was 

positioned approximately 45 degrees above the target, so long as 

it did not cause any shadow over the target material.  

Dark current measurement was performed to warm up the 

instrument. It was done to obtain a more accurate light 

measurement. White reference measurements were taken before 

sampling to adjust the measurement to a known standard, thus, 

RS3 could compute the reflectance for the material being 

sampled. The instrument was optimized before collecting the 

data to the proper settings for the light source to be used in the 

acquisition. It was set that there would be five files per material 

to be saved in the computer logger with the interval of 1 second 

in between saves.  

 

RS3 displayed measurements in raw digital numbers plotted 

against wavelength in nanometer. ViewSpecPro software was 

used in the post-processing of the spectra files that were produced 

in the sampling. 

 

2.3 Image Pre-processing 

The remote sensing datasets used in this study were those satellite 

images acquired by Sentinel and PlanetScope sensors (Table 1).  

 

Sentinel-3 is a multi-instrument Earth observation satellite 

constellation developed by the European Space Agency (ESA) 

for the systematic monitoring of the Earth’s surface and 

atmosphere. Launched in February 2016, its first satellite 

(Sentinel-3A) is equipped with both optical and microwave 

sensors: Ocean and Land Colour Instrument (OLCI), Sea and 

Land Surface Temperature Radiometer (SLSTR), Synthetic 

Aperture Radar Altimeter (SRAL), and Microwave Radiometer 

(MWR) (Cornara, Pirondini, & Palmade, 2017). Among these 

instruments, only Sentinel-3 OLCI is capable of measuring the 

spectral characteristics of land and ocean surfaces.  

 

Sentinel-3 OLCI has a full spatial resolution of 300 meters, a 

revisit time of 2 days, and consists of 21 spectral bands, with 

wavelengths ranging from visible to infrared region (400 nm to 

1020 nm). Although it has a lower spatial resolution, it is superior 

in terms of spectral resolution as compared with other open-

source multispectral satellite imagery such as Landsat 8 OLI (i.e. 

30 meters, 9 spectral bands, 16-day revisit time) and Sentinel-2 

MSI (i.e. 10, 20, and 60 meters, 13 spectral bands), which is 

essential in distinguishing various land cover classes. Wang et al. 

(2019) successfully applied unsupervised sub-pixel classification 

of different land surface water bodies using OLCI-acquired 

images, with overall accuracies ranging from 87 to 91%. 

 

 
Figure 4. Radiometrically-calibrated Sentinel-3 OLCI true 

color image of Metro Manila acquired on 25 April 2019 

 

For the study, a Sentinel-3 OLCI Level-1 (top-of-atmosphere 

radiance) satellite image of Metro Manila, Philippines (Fig. 4) 

was downloaded online from the Copernicus Open Science Hub 

(https://scihub.copernicus.eu/) for the sub-pixel classification. 
 

2.4 Estimation of Relative Abundances of Vegetation, 

Impervious, and Soil 

Sentinel-3 satellite image was initially corrected for its 

atmospheric and geometric errors using iCOR, a plugin of ESA 

Sentinels Application Platform (SNAP) software. SNAP, a free 

and open-source software, is used in processing Sentinel series 

missions to produce higher quality of outputs. This resulted to a 

surface reflectance image consisted of 16 spectral bands only 

removing the absorption bands. Then, the water bodies were 

masked out from the image by using the Normalized Difference 

Water Index method with the formula as follows: 

 

𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅
 

 

where NDWI = Normalized Difference Water Index 

Green = Reflectance measured in a green band 

NIR = Reflectance measured in a near-infrared 

band 

 

Afterward, a sub-pixel classification was applied to determine the 

relative abundance of each land cover class in the image. For this 

type of classification, the value of a single-pixel is a combination 

of the radiances of different materials covered in that particular 

pixel. In this study, three categories of endmembers were defined 

– vegetation, impervious surfaces, and soil. Vegetation consists 

of all plants with chlorophyll. Impervious surfaces are mainly 

pavements (e.g. roads, highways and streets), building roofs, or 

any material which restrict water to infiltrate the ground. Soil 

contains both soil cover and dry vegetation.  

 

2.5 Validation 

2.5.1. OLCI Global Vegetation Index  

 

OLCI Global Vegetation Index (OGVI) or the Fraction of 

Absorbed Photosynthetically Active Radiation (FAPAR) is one 

of the Level-2 geophysical products of Sentinel-3 OLCI. Similar 

to common vegetation indices, OGVI is an indicator of the 

abundance and productivity of healthy vegetation. Similar to 

Level-1 products, it has a spatial resolution of 300 meters, and its 

pixel values have a range of 0 (no vegetation) to 1 (dense 

vegetation).   

 

To validate the output of the linear spectral unmixing, a 

validation set consisting of well-distributed points throughout the 

Sentinel-3 image were randomly selected. The extracted relative 

abundance of vegetation and OGVI values from the selected 

pixels were regressed against one another and its coefficient of 

determination (R²) was calculated. 

 

2.5.1 PlanetScope Imagery 

 

Launched in 2014, PlanetScope is a commercial satellite 

constellation that acquires daily imageries of the Earth’s surface 

with a spatial resolution of 3-5 meters and a spectral resolution 

of 4 bands (i.e. blue, green, red, and near-infrared). Because of 

its high spatial resolution, recent studies have used PlanetScope 

images in validating land use and land cover maps generated 

using moderate-resolution images (Ha, Tuohy, Irwin, & Tuan, 

2018; Mishra, Rai, & Rai, 2019). 
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A PlanetScope Analytic Ortho Tile was acquired from 

PlanetLabs (https://www.planet.com/) for the validation of the 

resulting LSU classified images. Pixel-based supervised 

classification was performed using Maximum Likelihood 

Algorithm to classify the image into three general land cover 

classes (vegetation, bare soil, and built-up). Prior to 

classification, the image was radiometrically calibrated and 

atmospherically corrected (Fig. 5) to convert digital numbers to 

bottom-of-atmosphere reflectance using Quick Atmospheric 

Correction algorithm available in ENVI 5.2.  

 

a.  

 

b.  

Figure 5. (a) Radiometrically-calibrated PlanetScope true-

color image of a portion of Metro Manila acquired on 23 

March 2019 and (b)  Sample subset of the image which 

consists of general land cover classes (vegetation, soil, built-

up) 

 

A fishnet with grid size of 300 m x 300 m was generated from 

the pixels of the Sentinel-3 image. For each grid, PlanetScope-

derived vegetation percent cover was calculated by dividing the 

total vegetation area with the total area inside the grid. A well-

distributed set of validation points consisting of grids with 

varying vegetation coverage were randomly selected within the 

extent of the PlanetScope image. The relative abundance of 

vegetation calculated from Sentinel-3 image and the estimated 

percent cover derived from PlanetScope image were extracted for 

each validation sample. Linear regression analysis was 

performed to determine the coefficient of determination (R²) 

between the two datasets. 

Table 1. Summary of satellite images used in this study 

Satellite 

Imagery 

Acquisition 

Date 

Spatial 

Resolution 
Purpose 

Sentinel-3 

OLCI 25 April  

2019 

300 

meters 

Unmixing 

Sentinel-3 

OGVI 
Validation 

PlanetScope 
23 March 

2019 
3 meters Validation 

 

2.6 Land Surface Temperature Layer 

Landsat-derived land surface temperature (LST) layer of Metro 

Manila acquired on 5 February 2019 was downloaded from 

Climate Engine (CE), a free open-source web application that 

aids users in processing, visualizing, and downloading remote 

sensing datasets and gridded meteorological data for 

environmental monitoring (https://app.climateengine.org/).  

 
3. RESULTS AND DISCUSSION 

3.1. Spatial Distribution of Fractional Cover 

 

The relative abundances of vegetation, impervious materials, and 

soil in the study area were derived using Linear Spectral 

Unmixing method. It is observed that higher fractions of 

impervious class were found in most cities of Metro Manila, 

while higher fractions of vegetation were associated with forests, 

parks, and green spaces (e.g. UP Diliman and La Mesa Ecopark 

in Quezon City). Similarly, higher fraction values of soil were 

mostly located in the agricultural areas which are outside of 

Metro Manila (e.g. provinces north and south of Metro Manila) 

(Fig. 6).  

 

  

a. True Color Image b. Vegetation 

    

c. Impervious surface d. Soil 

  
0  1 

  
Figure 6. True-color image of the study area showing La Mesa 

Ecopark (red box) and UP Diliman (yellow box) (a). Resulting 

fraction images of vegetation (b), impervious (c), and soil (d) 

from Linear Spectral Unmixing of Sentinel-3 Image. Dark color 

represents higher abundance while bright color represents lower 

abundance values. 

4.2. Comparison between the relative abundances derived 

from Sentinel-3 image and vegetation cover mapped from 

PlanetScope image 

 

The validation points were used to assess the difference in pixel 

values of vegetation between a higher spatial resolution image 

and the resulting vegetation fraction from Sentinel-3 image. Both 

the scatter plots (Figs. 7 and 8) between the vegetation fraction 

cover estimated by LSU method with the calculated percent 

cover from PlanetScope image and the values from OGVI 
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product show a strong agreement, with 0.836 and 0.984 as the 

coefficient of determination values, respectively. 

 

 

 

Figure 7. Validation of vegetation fraction estimated from 

spectral unmixing with those of computed from the PlanetScope 

image 

 

Figure 8. Vegetation fraction estimated from spectral unmixing 

compared with values from OGVI product of Sentinel-3 

4.3. Relationship between LST and fraction images 

 

The Land Surface Temperature of Metro Manila in February 

2019 ranged from 23 C to 43.14 C. It is apparent that there is a 

temperature difference between inside and outside of Metro 

Manila. In general, the majority of cities in Metro Manila 

experience warmer temperatures while the provinces outside of 

Metro Manila experience relatively colder temperatures (Fig. 9).   

 

 Land Surface 

Temperature Map 

of Metro Manila 

 

 

LST values 

 

  City boundary 

Figure 9. Land Surface Temperature Map of Metro Manila in 

February 2019. Red areas are warmer regions while blue areas 

represent the colder regions. Clouds are masked in the image. 

(Source: Climate Engine) 
Likewise, the relationship between the LST values and the 

fraction images of vegetation, impervious surfaces, and soil were 

examined through correlation analysis (Fig. 10). 

 

 

 

Figure 10. Relationships between LST and relative abundances 

of vegetation (a), impervious surfaces (b), and soil (c). Fraction 

images (x-axis) range from 0 to 1 while LST values (y-axis) are 

expressed in degree Celsius  

It is evident that LST values have a negative correlation with the 

vegetation fraction (Fig. 10a). This means that the higher the 

vegetation cover has in an area, the lower its surface temperature.  

Also, there is a significant positive relationship between the LST 

values and the fraction of impervious materials in the study area 

(Fig. 10b) which can explain the effect of these materials to the 

increase of LST in the area. Soil, on the other hand, shows no 

significant relationship with the LST values (R² = 0.0166) (Fig. 

10c).  

 

4.4. Zonal Statistics 

 

The zonal statistics tool is used to calculate statistics of raster 

values in each user-defined zone. The zones are defined by a 

different dataset provided by the user. This is commonly used in 

the analysis and comparison of different areas with well-defined 

boundaries. In the case of this study, zonal statistics was applied 

to the LST, and percent cover of vegetation, impervious surface, 
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b. 

 

and soil in Metro Manila (for larger scale) and Quezon City (for 

smaller scale). The calculated statistic was the mean and the 

boundaries used for each zone were city and barangay boundaries 

for Metro Manila (Fig. 11a) and Quezon City (Fig. 11b), 

respectively. The computed mean for each zone was stored in the 

feature’s attribute table which was used in the visualization.

 

    

 
33.26                           38.44 

 
0.01                           0.19 

 
0.26                           0.38 

 
0.37                           0.54 

Mean LST Mean vegetation Mean impervious Mean soil 

    

 
31.94                           41.76 

 
0.02                           0.34 

 
0.20                           0.43 

 
0.38                           0.54 

Mean LST Mean vegetation Mean impervious Mean soil 

Figure 11. Mean land surface temperature, vegetation, impervious surface, and soil for each city in Metro Manila (a) and for each 

barangay in Quezon City (b) 

4.4.1 Per-City Analysis 

 

It can be identified from this study that the cities with the highest 

land surface temperature on 5 February 2019 were Marikina City 

(38.44 ºC) and San Juan City (38.36 ºC) while the lowest mean 

LST were obtained in the municipality of Pateros (33.26 ºC), and 

Navotas City (33.77 ºC) (Fig. 11a; Table 2). Makati City was 

excluded in the comparison since the hottest portions of the city 

were covered by clouds during the satellite image acquisition, 

thus resulting to a significant decrease in mean surface 

temperature. Although a strong negative correlation was 

established between the resulting vegetation fraction and LST, it 

was observed that the lowest mean vegetation proportions were 

calculated in the cities of Navotas (0.01) and Manila (0.05) which 

have an average LST of 33.77 ºC and 37.19 ºC, respectively. 

Meanwhile, the highest mean impervious surface proportions 

were found to be in Pasay City (0.38) and Pasig City (0.38) which 

are relatively cooler, having an LST of 36.35 ºC and 37.37 ºC, 

respectively. This could imply that although vegetation and built-

up cover are both highly correlated with LST, there are other 

conditions that could intensify the surface temperature 

experienced by Metro Manila cities. Some factors such as city 

scale, thermal properties of the building and street materials used 

(Priyadarsini, Hien, & David, 2008)  urban geometry (e.g. 

building density, aspect ratio) and orientation, and anthropogenic 

heat emissions should be considered in order to more accurately 

identify the possible causes of increasing temperature in each city 

in Metro Manila. Moreover, it is evident that some of the coastal 

cities (i.e. Navotas City, Pasay City, Taguig City, and Muntinlupa 

City) have lower surface temperatures compared to most of the 

inland cities in Metro Manila. This could be because of the 

cooling effect of surrounding water bodies due to 

evapotranspiration (Sun, Chen, Chen, & Lü, 2012). 

 

Table 2. Mean values of vegetation, impervious surface, soil 

and LST calculated over the cities of Metro Manila 

 Mean 

vegetation 

Mean 

impervious 

Mean 

soil 

Mean 

LST 

Kalookan  0.182 0.322 0.432 36.26 

Las Pinas 0.115 0.296 0.543 36.08 

Makati 0.128 0.357 0.432 35.39 

Malabon 0.088 0.306 0.402 34.95 

Mandaluyong 0.130 0.338 0.435 36.53 

Manila 0.053 0.342 0.423 37.19 

Marikina 0.122 0.310 0.489 38.44 

Muntinlupa 0.194 0.262 0.535 34.48 

Navotas 0.015 0.289 0.365 33.77 

Paranaque 0.105 0.352 0.506 36.12 

Pasay 0.075 0.383 0.463 36.35 

Pasig 0.094 0.381 0.440 37.37 

Pateros 0.104 0.357 0.435 33.26 

Quezon 0.166 0.312 0.441 37.15 

San Juan 0.087 0.355 0.430 38.36 

a. 
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Taguig 0.154 0.373 0.469 35.07 

Valenzuela 0.135 0.353 0.427 36.47 

 

4.4.2 Per-Barangay Analysis 

 

In Quezon City, the mean vegetation and mean impervious maps 

for each barangay show that they have a strong negative 

correlation. Barangays in the southern portion of the city have 

low mean vegetation values and high mean impervious values 

since this is where most of the residential areas in the city are 

located. The houses are built closely and have little or no 

vegetation cover present. These areas also pose high mean LST 

values, which coincides with the literature (Kaufmann et al., 

2003) that areas with no vegetation and are covered with 

impervious surfaces cause a rise in temperature. The mean LST 

map (Fig. 11b) reveals that in these areas, their mean LSTs range 

from 40 ºC up to the maximum mean LST (41.76 ºC) in the city. 

Some of these barangays are Lourdes, Sikatuna Village, 

Salvacion, Veterans Village, etc. The results are different at the 

northern portion of Quezon City with temperature ranging from 

31.94 ºC to 36 ºC. This is where most of the green spaces in the 

city are located. Expectedly, these areas have high mean 

vegetation values and low values in the mean impervious map. 

Some of these areas are composed of grassland up to wide tree 

cover. Barangays with moderately high temperature ranging 

from 37 ºC to 39 ºC are in the areas with infrastructures that have 

less vegetation surrounding the area.  

 

4. CONCLUSION 

Considering the increasing rate of urbanization in recent decades, 

frequent monitoring over a large area is urgently needed. This 

study demonstrates the use of remote sensing technologies in 

identifying the land cover composition in an area and recognizing 

its effect in the observed surface temperature. To achieve this, 

Linear Spectral Umixing method was applied to identify the 

composition of various surface covers in Metro Manila using the 

image acquired by the recently-launched Sentinel-3 satellite. 

This particular observation satellite offers a daily image 

acquisition to support environmental monitoring. The results 

demonstrate that Metro Manila is characterized as a highly-

urbanized area in the country with a high percentage of 

impervious surfaces such as concrete, asphalt, and building roofs. 

This particular surface cover is associated with the observed high 

temperature in the area. Analyzing the relationships between the 

land surface temperature and percentages of land cover in a city 

highlight the importance of vegetation and green spaces in an 

urban setting. As shown in the results, warmer places mostly 

consist of impervious surfaces while those with vegetation cover 

are associated with lower temperature. Unfortunately, only a 

significantly low percentage of vegetation is present in Metro 

Manila. This appears to be one of the biggest challenges for 

planners and developers in their effective urban management.   

 

However, impervious surfaces are not the only factor for the 

increase in temperature in a city. Other aspects such as proximity 

to water bodies, building and road geometry, and construction 

materials should be considered in proper urban planning. This 

can be observed with the results of this study that some cities in 

Metro Manila which have the highest percentages of impervious 

surfaces or with the lowest vegetation cover are not the warmest 

cities. 

 

For future studies, the authors recommend the implementation of 

other sub-pixel classification methods using Sentinel-3 satellite 

imagery in order to classify impervious surfaces into specific 

urban surface materials (i.e. metallic roofs, concrete pavement, 

asphalt pavement). Furthermore, the relationship between land 

surface temperature and the thermal radiative properties of 

different construction materials should be investigated. 
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