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ABSTRACT: 

 

Land Surface Temperature (LST) is one of the important factors in monitoring urban climate.  Observing the variations of LST can 

provide a better understanding of the Urban Heat Islands (UHI) phenomenon. The aim of this research is to assess the relationship 

between the spatial and temporal distribution of LST and water consumption in Zamboanga City for years 2016 and 2017. Data from 

the city’s water district were used to compute for the per capita water consumption (PCWC) of 49 barangays. Landsat 8 LST data with 

30m spatial resolution were computed using inverse Plank function and other parameters such as vegetation proportion and surface 

emissivity to assess LST spatially while MODIS Terra data with 1km spatial resolution were used to assess LST temporally. Result 

showed that Landsat LST and PCWC have moderate correlations with p < 0.01: 0.59 and 0.55 for March and April 2016, respectively; 

0.49 and 0.56 for March and April 2017, respectively. These indicated that warmer barangays consumed more water. The temporal 

correlation of the MODIS LST and the computed PCWC equated a -0.71, p <0.01, correlation. This negative correlation indicated that 

when LST increases, PCWC decreases, which do not directly indicate that the city consumed less water but rather that the supply was 

less during warmer months. It was evident as water rationing was experienced during the first quarter of 2016 and intensified on April 

where the highest LST was recorded. Finally, LST was found of good use in assessing the relationship of temperature and water 

consumption. 

 

 

1. INTRODUCTION 

 

Surface temperature is a major role in assessing urban 

climatology (Voogt and Oke 2003). The increased temperature 

and the delayed cooling (Nichol 2005; Santamouris, 

Paraponiaris, and Mihalakakou 2007; Tzavali et al. 2015) in 

urban systems compared to its surrounding rural region, or 

widely known as urban heat islands (UHI), have affected the 

environment and altered urban resources (Yang et al. 2016).    

UHIs are partially caused by the physical properties of the city’s 

urban landscape (Martin, Baudouin, and Gachon 2015; Tzavali 

et al. 2015); this includes building density, road network, 

presence of urban canyons and industrial sites (Tzavali et al. 

2015). Also the lack of vegetation in these urban cities reduces 

its ability to shed excessive heat (T.R Oke 1987). Other variables 

that influence this nocturnal event includes climate 

characteristics, presence of water bodies, land usage and latitude 

and elevation (Tzavali et al. 2015). Though most studies identify 

the same factors, UHI still varies locally depending on the city 

size, physiographic features and meteorological conditions 

(Martin et al., 2015; Tzavali et al., 2015). This reality has caused 

difficulties in systematizing the definition of a UHI. The 

difference of temperature among urban areas also refutes any 

specific threshold to define urban heat (Imhoff, Zhang, Wolfe, 

& Bounoua, 2010). Land surface temperature (LST) is a major 

parameter used to examine urban heat islands in the surface level 

(Wang 2015) and understanding surface urban heat islands 

(SUHI) using LST can also help understand and quantify UHI 

(Weng 2009). 

 

Today, remote sensing has been widely used to assess SUHI with 

the use of thermal infrared sensors (Wang 2015). LST can be 

computed using various algorithm like the single-channel 

(Jiménez-muñoz et al. 2009), mono-window (Qin and Karnieli 

2001) and the split-window algorithm (Rozenstein et al. 2014) 

and is usually correlated factors such as urbanization (Wang 

2015), land cover and land use (El-Hattab, S.M., and G.E. 2017), 

vegetation coverage (Grover and Singh 2015) and other 

parameters such as topographic position, land-cover diversity, 

building volume per area, orientation and anthropogenic heat 

release (Voogt and Oke 2003).  

 

Previous studies on UHI, SUHI, LST and water consumption 

found that with each Fahrenheit increase in nighttime 

temperature, estimated a rise in water consumption of single-

family residences by 3.8% (Guhathakurta and Gober 2007) 

while another study recorded an increase of 1.4% (Aggarwal, 

Guhathakurta, Grossman-Clarke and Lathey 2012). Other found 

that LST caused water consumption to increase in warm months 

(Alavipanah, Haashemi, Kazemzadeh-zow, Bloorani and  

Asadolah 2016). The evaluation between UHI, SUHI and LST 

and water consumption has been somehow less explored though 

these studies showed that LST and UHI can be of great use to 

assess the effect of temperature to water consumption. 

 

1.1 Objectives 

 

This paper aims to assess the general relationship between the 

temporal and spatial distribution of Land Surface Temperature 

and water consumption in Zamboanga City for years 2016 and 

2017. To achieve this, the following specific objectives have 

been identified: 

 

1. Derive LST from acquired Landsat 8 Thermal Infrared 

Sensor (TIRS) and Moderate Resolution Imaging 

Spectroradiometer (MODIS) Terra images. 

2. Compute for monthly Per Capita Water Consumption 

(PCWC) per barangay  
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3. Correlate the MODIS LST with PCWC temporally and 

the Landsat 8 LST with PCWC spatially. 

 

1.2 Study Area 

 

Zamboanga City, situated on the southwestern tip of the 

Zamboanga Peninsula, is an independent, chartered and a 1st 

class highly urbanized area in the region. It is bounded by 

Zamboanga del Norte and Zamboanga Sibugay on the north, 

Sulu Sea on the west, Moro Gulf on the east and on the south by 

the Celebes Sea (Figure 1). The city is the 6th most populous 

having a recorded population of 861,799 last 2015 census and 

3rd largest city in the Philippines with a total land area of 

1,483.3849 square kilometers.  

 

 
 

Figure 1. Google Earth image showing location of Zamboanga 

City (left images), the 49 barangays (right images) covered in 

the study area (red polygon) and land cover map  from the 

National Mapping and Resource Information Authority (bottom 

right). Barangay boundary data is from the Philippine Statistics 

Authority boundary. 

 

Climate in the city falls under the Type III based on the Modified 

Coronas Classification. The city is located outside the typhoon 

belt and rarely experience typhoons but is located within one of 

Mindanao’s high-risk zones and is considered one of the most 

vulnerable cities to the effects of climate change. The Manila 

Observatory (2016) projected an increase in temperature by 

2.1℃ in 2050 and in contrast a decrease in precipitation rate at -

0.6% by 2025 and -5.2% by 2050. 

 

Zamboanga City Water District (ZCWD) supplies water to fifty 

six (56) out of ninety eight (98) barangays in the city. Forty nine 

(49) of which are included in the study as shown in Figure 1. 

 

 

2. METHODOLOGY 

 

The methodology was divided into three parts – per capita water 

consumption computation, land surface temperature processing, 

and the linear regression analysis. 

 

 
 

Figure 2. General workflow of the methodology of the research 

 

2.1 PCWC Computation 

 

Per Capita Water Consumption (PCWC) was computed by 

dividing the total water consumption by the total population for 

each barangay using Eq. (1): 

  

  𝑃𝐶𝑊𝐶 =  
𝑇𝑊𝐶

𝑇𝑃𝑜𝑝
   (1) 

 

where      𝑇𝑊𝐶 = Total water consumption 

 𝑇𝑃𝑜𝑝 = Total population 

 

Data from the ZCWD and the 2015 population data from 

Philippine Statistics Authority (PSA) were used to compute for 

the PCWC of the 49 barangays. 

 

2.2 LST Processing 

 

Landsat 8 Thermal Infrared Sensor (TIRS) data with 30m 

resolution was used to analyze LST spatially. This TIRS data 

were converted from Digital Number (DN) to Top of 

Atmosphere (ToA) spectral radiance using the radiance scaling 

factors found in the metadata using the equation below: 

 

𝐿𝜆 = 𝑀𝐿𝑄𝑐𝑎𝑙 + 𝐴𝐿    (2) 

where:  

Lλ = TOA spectral radiance (Watts/( m2 * srad * μm)) 

ML =Band-specific multiplicative rescaling factor from 

the metadata (RADIANCE_MULT_BAND_x, 

where x is the band number) 

Qcal = Quantized and calibrated standard product pixel 

values (DN) 

AL = Band-specific additive rescaling factor from the 

metadata (RADIANCE_ADD_BAND_x, where x is 

the band number) 

 

TOA spectral radiance was then converted to brightness 

temperature in degree Celsius using the inverse Plank function 

below: 

 

𝐵𝑇 =
𝐾2

ln(
𝐾1
𝐿𝜆

+1)
− 273.15   (3) 

where:  

𝐵𝑇 = Top of atmosphere brightness temperature (oC) 

𝐿𝜆 = TOA spectral radiance (Watts/( m2 * srad * μm)) 

𝐾1 = Band-specific thermal conversion constant from the 

metadata (K1_CONSTANT_BAND_x, where x is 

the thermal band number) 

𝐾2 = Band-specific thermal conversion constant from the 

metadata (K2_CONSTANT_BAND_x, where x is 

the thermal band number) 
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To include in the computation of LST the surfaces’ ability to 

transmit thermal energy to the atmosphere, Land Surface 

Emissivity (LSE) was computed. First, a Normalized Difference 

Vegetation Index (NDVI) was derived using near infrared and 

red bands (Equation 4) to compute for the proportional 

vegetation (PV) or the estimate of each land cover type for an 

area.  

 

𝑁𝐷𝑉𝐼 =  
𝜌𝑁𝐼𝑅− 𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅+ 𝜌𝑅𝐸𝐷
  (4) 

where: 

𝜌𝑁𝐼𝑅 = spectral reflectance measurements acquired in the 

near-infrared regions 

𝜌𝑅𝐸𝐷 = spectral reflectance measurements acquired in the 

red (visible) regions 

 

For global conditions, NDVI values less than 0.2 were 

considered as bare soil or man-made materials, while NDVI 

values greater than 0.5 were considered as pure vegetation 

pixels. If the NDVI values were between 0.2 and 0.5, the 

equation (Sobrino, Jiménez-Muñoz, and Paolini 2004) below 

was used to compute for PV: 

 

𝑃𝑉 = (
𝑁𝐷𝑉𝐼−0.2

0.5−0.2
)

2
    (5) 

 

Since LSE depends on vegetation cover and surface roughness, 

the PV threshold was then used to estimate LSE.  PV values less 

than 0 are classified as water and the average LSE is 0.991, while 

PV values from 0 to 0.2 are classified as soil with an average 

LSE value of 0.966. For PV values between 0.2 and 0.5, the land 

cover is considered to be a mixture of soil and vegetation cover 

and equation 6 was used to compute for LSE. Lastly, PV values 

greater than 0.5 are considered as vegetation cover with an 

average LSE value of 0.973. 

 

𝜀𝜆  =  𝜀𝑣𝜆 𝑃𝑣 + 𝜀𝑠𝜆(1 − 𝑃𝑣)  + 𝐶𝜆             (6) 

where: 

𝜀𝜆 = land surface emissivity 

𝜀𝑣𝜆 = vegetation emissivity 

𝜀𝑠𝜆= soil emissivity 

𝐶𝜆= surface roughness which is the constant value of 

0.005 

 

Finally the LST was computed using the brightness temperature 

and the LSE shown in the equation below: 

 

𝑇 =  
𝐵𝑇

(1+((
𝜆𝐵𝑇

𝜌
) ln 𝜀𝜆))

                  (7) 

where: 

𝑇 = LST in degree Celsius 

𝜆  = average wavelength of band 10 which is 10.89 

𝐵𝑇 = computed brightness temperature 

𝜀𝜆 = land surface emissivity 

𝜌 = (ℎ∗𝑐 )/𝜎, which is equal to 1.438x1  0-2 mK 

 

To observe LST temporally, Moderate Resolution Imaging 

Spectroradiometer (MODIS) Terra data were used. Average 

monthly LST from 2016-2017 were acquired from the daily 

Land Surface Temperature and Emissivity (LST&E) provided 

by the MOD11 product with 1km spatial resolution. 

 

 

2.3 Linear Regression 

 

Linear regression analyses were performed to evaluate the 

relationship between LST and PCWC. To observe the regression 

spatially, LST for the months of April and March were correlated 

with the computed PCWC per barangay. On the other hand, to 

temporally observe the regression, monthly mean LST of the 

entire 49 barangays were correlated to the computed monthly 

PCWC of the 49 barangays from January of 2016 to December 

of 2017. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Spatial analysis of LST and PCWC 

 

Months April and March where observed for both 2016 and 2017 

as the highest LSTs were recorded during these months. The 

Landsat-8 derived LST and PCWC data for each barangay 

during March and April 2016 are presented in figure 3 and 4 

respectively. It was clear that the concentration of water 

consumption in the city during the two warm months was heavily 

in and near the town area. The same can be said for the LST, 

where higher LSTs were recorded near the town area. This is 

supported by the moderately strong correlation obtained between 

LST and the distance (centroid to centroid) of each barangay 

from the city center with an R of -0.7693, p < 0.01, for the month 

of March and an R of -0.6848, p < 0.01, for the month of April. 

The acquired negative correlations indicated that as the distance 

from the town center increases the recorded LST decreases. This 

is partly due to the fact that, in Zamboanga City, urban 

development decreases as distance from the city center 

increases. 

 

The highest recorded LST belonged to barangays  Zone IV, Zone 

III and Zone II while the lowest was recorded in barangay 

Mampang. The same analyses can be set looking into LST where 

warmer barangays were located within and near the center of the 

city, with Zone II acquiring the highest LST followed by Zone I 

and IV for the month of April. Barangay Tetuan acquired the 

highest LST for the month of March followed by Zone I and II. 

Meanwhile the lowest LST was recorded in barangay Lamisahan 

for the month of March and barangay Tulungatung for April. 

 

 
 

Figure 3. Spatial variation of barangay-averaged LST and 

PCWC data of the 49 barangays for March 2016 
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Figure 4. Spatial variation of barangay-averaged LST and 

PCWC data of the 49 barangays for April 2016 

 

The LST and PCWC regression showed moderate correlation for  

the month of March with an R of 0.59, p < 0.01 and an R2 of 0.35 

as shown in Figure 5, while the month of April acquired an R of 

0.55, p < 0.01 and an  R2 of 0.3 (Figure 6). 

 

 
Figure 5. Correlation of LST and PCWC for the month of 

March, 2016 

 

 
Figure 6. Correlation of LST and PCWC for the month of 

April, 2016 

 

The same scenario was evident during 2017 for the months of 

March and April. LST and PCWC data, presented in figure 7 and 

8, showed that the concentration of LST and PCWC was heavy 

in the city center and gradually reduces to farther barangays, 

which is also supported by the moderately strong correlation 

acquired from LST and the distance (centroid to centroid) of 

each barangay from the city center. March acquired an R of -

0.6564, p <0.01 and an R of -0.8303 , p <0.01 for the month of 

April. This can be attributed to the socio-economic aspect of 

each area as the recorded barangays with high LST and PCWC 

are mostly urban and commercial region (Figure 1). 

 

The highest recorded PCWC were the same with the previous 

year while the lowest was recorded on barangay Guisao. Zone 

II, III and IV recorded the highest LST for the month of April 

while barangays Zone I, IV and Baliwasan for March. Barangay 

Cawit and Lanzones recorded the lowest LST for April and 

March respectively. 

 

 
 

Figure 7. Spatial variation of barangay-averaged LST and 

PCWC data of the 49 barangays for March 2017 

 

 

 
 

Figure 8. Spatial variation of barangay-averaged LST and 

PCWC data of the 49 barangays for April 2017 

 

Moderate correlation were also acquired for the months of 

March and April with an R of 0.49 and 0.56, p <0.01, 

respectively. An R2 of 0.24 was acquired for the month of March  

and 0.31 for the month of April as shown in figure 9 and 10. 

  

 
Figure 9. Correlation of LST and PCWC for the month of 

March, 2017 
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Figure 10. Correlation of LST and PCWC for the month of 

April, 2017 

 

The positive correlation attained for all months indicated that 

when the LST values rise the PCWC rates also tend to increase. 

It was also obvious that April and March were warmer during 

the year 2016 compared to 2017. It was apparent as an El Niño 

was experienced during the first quarter of 2016 and intensified 

on April where the highest LST was recorded. 

 

3.2 Temporal analysis of LST and PCWC 

 

The LST derived from the MODIS data revealed that the highest 

monthly mean LST occurred in April 2016 (Figure 11). The 

recorded 34.5 °C was relatively higher compared to the 2016-17 

mean average of 29.9 °C, while the lowest recorded mean LST 

was in June 2017. 

 

 
 

Figure 11. Monthly LST derived from MODIS and computed 

monthly PCWC data for the entire 49 barangays 

 

However, same month of April 2016 tallied the lowest water 

consumption with a computed PCWC of 1.83 m3 or 1,830 liters 

compared to the 2016-17 monthly average of 2.36 m3 or 2,360 

liters, while the highest PCWC was 2.67 m3 of September 2017. 

 

Figure 11 revealed that monthly PCWC was moderately 

contrasting with the monthly mean LST values.  This was 

evident as the correlation between the monthly LST and PCWC 

produced a negative value. The acquired R of -0.71, p <0.01, and 

an R2 of 0.5085 (Figure 12), means that when the LST rises, the 

PCWC data decreases or the other way around. 

 

 
Figure 12. Correlation of monthly mean LST derived from 

MODIS and monthly computed PCWC 

 

This negative correlation implied that during the years 2016 and 

2017, when LST values were high, the water consumption was 

low, and vice versa. This does not directly suggest that the water 

demand during warmer months were lower compared to cooler 

months but rather that the supply of water during warmer months 

were lesser. This was evident during the first quarter of 2016 as 

water rationing was experienced throughout the city due to the 

El Niño. 

 

4. CONCLUSION 

 

Land surface temperature and per capita water consumption was 

used to assess the general relationship between water 

consumption and surface temperature of 49 adjacent barangays 

in Zamboanga City for years 2016 and 2017. Zamboanga City 

Water District’s and Philippine Statistics Authority’s data were 

used to compute for the per capita water consumption trend.  

Using Landsat 8 TIRS data, the PCWC-LST trend was assessed 

spatially while MODIS Terra data were used to assess the 

PCWC-LST trend temporally.  

 

Spatial comparison of LST and PCWC showed that barangays 

that recorded high LST also recorded high PCWC. Therefore, 

warmer barangays are expected to have higher water 

consumption and higher demand for water. As the spatial 

analysis of LST and PCWC showed the effect of LST in the 

demand and/or consumption of water, the temporal analysis of 

LST and PCWC showed the effect of temperature in the supply 

of water in the area. 

 

For more accurate assessments of land surface temperature and 

water consumption, satellite images with better temporal and 

spatial resolution can be used. Also, socio-economic data can 

further be used to explain the different PCWC patterns of each 

barangay.  

 

Finally, the use of remotely sensed derived land surface 

temperature can be of great use to assess the spatio-temporal 

relationship of surface temperature and water consumption. 
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