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ABSTRACT: 

 

Because of the vague distinction between urban and rural areas, the Local Climate Zone (LCZ) scheme was developed to better 

analyze the effect of Urban Heat Island. To map the LCZs in a city, the World Urban Database and Portal Tool is used as 

conventional method. However, this requires the assignment of training areas for each LCZ, which entails local knowledge of the 

area and may introduce errors, as distinction between LCZ types through visual inspection is inconclusive. This paper aims to 

develop a methodology and GIS tool to enhance and automate the mapping of LCZs using seven LCZ properties (sky view factor, 

building surface fraction, pervious surface fraction, impervious surface fraction, building height, roughness length, and surface 

albedo), and apply it in Quezon City, Philippines which comprises varying land use and land cover. Fuzzy Logic was used to 

determine the membership percentage of 100 m cells to an LCZ type based on these properties. Cellular Automata was implemented 

using Python to derive the LCZ map from the fuzzy layers. Results show that seven out of ten built-up LCZs and five out of seven 

land cover LCZs were identified. Through visual inspection on a basemap, the mapped LCZs was confirmed to match with the 

features of the city. Land Surface Temperature (LST) derived from Landsat 8 showed that each LCZ type displayed temperatures 

consistent with those observed from literature. The developed methodology and tool is ready to be used in other cities as long as 

the input layers are generated.  

 

 

1. INTRODUCTION 

1.1 The Local Climate Zones (LCZ) scheme 

Studies on Urban Heat Island (UHI) generally focus on the 

significant increase in temperatures in urban cities from the 

surrounding rural areas (Haashemi et al., 2016; Tzavali et al., 

2015; Voogt and Oke, 2003). Reasons for the increase in 

temperatures are due to the incorporation of artificial materials 

such as concrete and asphalt which have higher emissivity, and 

the rise of tall buildings which trap heat in the underlying streets. 

These heat trapping impervious surfaces directly change the local 

climate in urban areas (Arathyram and Venugopala, 2012). 

Materials used in the walls of buildings and streets have high heat 

rates that store the heat throughout the daytime and emit heat 

during night-time (Algretawee et al., 2019). 

 

A common problem of discussion in these UHI studies is the 

method on how to distinguish the urban from the rural areas. 

Using the administrative boundaries may introduce inaccuracies 

as the presence of urban elements does not generally end in the 

city boundaries. In fact, most towns surrounding cities are also 

urbanized, still lacking natural sceneries such as dense trees and 

bare soils. Also within an urban city, variations in the urban 

atmosphere can be observed as a result of the different urban 

forms and functions. 

 

To solve this problem, Stewart and Oke (2012) introduced the 

Local Climate Zones (LCZ) scheme to classify urban and rural 

areas according to localized climate conditions (Figure 1). This 

scheme uses a 17 type zoning scheme composed of 10 built types 

and 7 land types, each of which has different geometric, surface 

cover, and thermal properties. 

 

Figure 1. Local Climate Zones scheme: Built-types (1-10), Land 

Cover Types (A-G) (Stewart and Oke, 2012) 

 

1.2 Methodologies in Mapping LCZs 

The conventional method in classifying LCZs adopted by several 

studies is the World Urban Database and Portal Tool (WUDAPT) 
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method (Bechtel et al., 2015). This method classifies a multi-

band Landsat 8 image into LCZ types using digitized training 

areas in Google Earth. To digitize the LCZ training areas, a 

familiarization of the area is at least needed such as building 

density, building heights, and the land cover types. The digitized 

training areas are then used as input in the SAGA GIS software 

where Random Forest algorithm is used to classify the Landsat 

image into different LCZ types. As this method needs local 

knowledge of the area and also the specifications of the different 

LCZ types, the digitization of training areas may introduce errors 

in the generated LCZ map. WUDAPT also needs the 

classification area to be at least 50 km in size, which makes it 

impossible to apply in just a single city. As an alternative to 

WUDAPT, several methodologies have been developed that 

employs GIS techniques. These methods use derived layers of 

geometric, surface cover, and thermal properties (e.g., Sky View 

Factor, Building Surface Fraction, Surface Albedo) to classify the 

LCZs.  

 

A study by Unger et al., (2014) used a vector-based approach 

classification where lot areas are classified into LCZ types based 

on seven derived properties. An algorithm was developed that 

incorporates fuzzy and neighborhood rules to classify and 

aggregate lot areas to produce the LCZs of at least 500 m 

diameter. Bartesaghi Koc et al., (2017) also mapped LCZs 

derived from airborne remote sensing datasets. Classification of 

LCZ types was implemented using defined ranges of values for 

the different properties. The produced LCZ map however has 

pixels with undetected LCZ type and no neighbors of the same 

class. Wang et al. (2018) mapped the LCZs of Hong Kong by 

using only three LCZ properties and a land use map. Fonte et al. 

(2019) used properties derived from OpenStreetMap (OSM). 

Fuzzy Logic and a weighted combination method were used to 

incorporate all the derived layers. Majority filtering was 

implemented to remove noise and to cluster zones. 

 

As LCZs are at least 500 m in diameter, aggregation needs to be 

incorporated in GIS-based mapping of LCZs. Low Pass filtering 

methods for aggregation favor larger zones and may remove 

smaller but more accurate zones. A cellular automata-based 

approach that takes into account the membership percentage of a 

pixel and its neighbors may generate more accurate description 

of LCZs. 

 

1.3 Objectives and Expected Output 

This study primarily aims to develop a GIS-based methodology 

to enhance and automate the mapping of LCZs using derived 

properties of the different LCZ types. Specifically, it aims to 

develop a GIS tool that generates LCZ classification of an area 

based on input property layers. Fuzzy Logic was used to obtain 

membership percentages of every pixel to an LCZ type and 

Cellular Automata was used to combine and aggregate the fuzzy 

layers. The daytime and night-time Land Surface Temperature 

(LST) for every LCZ type was also evaluated. 

 

 

2. METHODOLOGY 

2.1 Study Area and Data 

The study site is Quezon City, a highly-urbanized city located at 

the northern part of Metro Manila, Philippines (Figure 2). It is the 

largest city in terms of land area (166.2 square km.) in Metro 

Manila, covering more than 25% of the total area of the region. 

It is also the most populated city in the whole country.  

 

This city was chosen because of its large area that has the most 

diverse land use among the cities in the metropolis. It also houses 

the only watershed in Metro Manila which comprises a variety of 

ecosystems including forest and swamp vegetation. The 

commercial center and business district of the city are located in 

its southern part, while the northern portion is primarily 

residential in nature.  

 

 

Figure 2. Google Earth Image of Quezon City: (A) La Mesa 

Watershed, (B) La Mesa Dam, (C) Bagong Silangan,                    

(D) Barangay Batasan Hills (E) University of the Philippines 

Diliman, (F) Quezon City Memorial Circle, (G) Barangay Krus 

na Ligas, (H) Barangay Kamias, (I) Eastwood City, (J) Barangay 

Ugong Norte 

 

Data Used 

Quezon City boundary (.shp) 

 Building Footprint (.shp) 

Roads (.shp) 

Digital Terrain Model & Digital Surface Model 

Day & Night LST Image 

Landsat Image of Quezon City (February 5, 2019) 

Table 2. Data Used in the Study 

 

2.2 General workflow 

Using the available datasets of Quezon City, seven property 

layers of LCZs were derived (Unger et al., 2014). Fuzzification 

of each LCZ type was implemented to derive the membership 

percentage of every pixel to each LCZ type. A cellular automata 

algorithm was implemented to derive the LCZ classification. 

Minimum mapping unit used for this study is 100 m. Figure 3 

shows the entire GIS-based methodology.  

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W19, 2019 
PhilGEOS x GeoAdvances 2019, 14–15 November 2019, Manila, Philippines

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W19-199-2019 | © Authors 2019. CC BY 4.0 License.

 
200



 

 

Figure 3. Workflow of the GIS-based mapping of LCZs 

 

2.3 Derivation of LCZ Properties 

 

 

Figure 4. Derived layers of Local Climate Zones properties:       

(a) Sky View Factor (SVF), (b) Surface Albedo (SA),                    

(c) Building Surface Fraction (BSF), (d) Pervious Surface 

Fraction (PSF), (e) Impervious Surface Fraction (ISF),                   

(f) Building Height (BH), and (g) Roughness Length (Z0 ) 

A grid covering the whole study area was generated using the 

“Fishnet” tool in ArcGIS software. This was then used to ensure 

that the 100 m pixels of all derived layers are aligned (Figure 4).  

 

2.3.1 Sky View Factor (SVF): SVF is defined by Stewart and 

Oke (2012) as the ratio between the amount of visible sky from 

the ground to an unobstructed hemisphere. A Digital Surface 

Model (DSM) was generated in ArcGIS by incorporating the 

building heights to the DTM. It was assumed that the buildings 

have flat roofs and other features such as vegetation were 

neglected. The generated DSM was used as an input in the Sky 

View Factor Tool in SAGA GIS.      

  

2.3.2 Surface Albedo (SA): Surface albedo, the fraction 

between the reflected and received solar radiation by a surface 

(Stewart and Oke, 2012), was calculated from the different 

atmospherically corrected Landsat 8 bands using the algorithm 

proposed by Baldinelli et al., (2017). It can be calculated using 

the equation: 

 

𝑆𝐴 = 𝑐0  +  𝑐1𝐵1  +  𝑐2𝐵2 + . . . + 𝑐7𝐵7               (1) 

 

where  SA is the surface albedo,  

 Bi are band values,  

 ci are coefficient values (Table 1). 

 

c0  c1  c2  c3  c4  c5  c6  c7  

0.043 0.082 0.064 0.173 0.114 0.237 0.252 0.034 

Table 1. Coefficients used for the calculation of Surface Albedo 

 

2.3.3 Building Surface Fraction (BSF): BSF is the ratio of 

the building footprint areas and the minimum mapping unit. After 

intersecting the building footprint data and the grid, the BSF of 

each polygon was calculated. Then the BSF vector layer was 

converted to raster so that the total BSF per tile can be obtained 

by using the “Zonal Statistics” tool. 

 

2.3.4 Pervious Surface Fraction (PSF): PSF is the 

percentage of pervious surfaces such as vegetated and permeable 

surfaces. To determine PSF, the Landsat data of the study area 

was used to derive an NDVI image. Based from Bartesaghi Koc 

et al. (2017), it was assumed that NDVI values greater than 0.25 

are pervious surfaces. NDVI values below zero, which 

correspond to water, were also considered as pervious surfaces. 

Building and road polygons were converted to raster and were 

subtracted from the derived NDVI image to accurately extract 

pervious surfaces. The resulting raster was converted to vector 

and the PSF for every polygon was calculated using the “Field 

Calculator” tool in ArcGIS. The PSF vector layer was rasterized 

and the sum of PSF per tile was acquired using the “Zonal 

Statistics” tool. 

 

2.3.5 Impervious Surface Fraction (ISF): ISF refers to the 

paved areas aside from buildings. This was derived by 

subtracting BSF and PSF from 1 using the “Raster Calculator” 

tool in ArcGIS. 

 

2.3.6 Building Height (BH): The intersected building 

footprint data and grid layer was used to compute for the 

weighted average of building heights per tile with polygon area 

as weights. Weighted average was used to consider the spatial 

distribution of buildings within a pixel.  

 

a b c d 

e f g 
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2.3.7 Roughness Length (Z0): The roughness length for the 

study area was estimated using the simple equation suggested by 

Oke (as cited in Hammond et al., 2011). Z0 is proportional to the 

height of surface elements (ZH) by the empirical coefficient f0. 

For this study, the value for f0 was 0.1 which is generally used for 

surfaces according to Oke. ZH was derived from the mean 

difference between the DSM and DTM per tile. This was done to 

also include the height of other features such as trees. 

 

𝑍0 = 𝑓0𝑍𝐻
̅̅̅̅                                       (2) 

 

2.4 Fuzzification of LCZ Types 

Based on the derived seven properties, membership percentage 

of every 100 m pixel to an LCZ type was determined using the 

Fuzzy Logic tools in ArcGIS software. Each LCZ type has a 

range of values for each of the seven properties (shown in Table 

2).  

 

Linear membership type was used for the fuzzy membership. A 

pixel of value within the specified range has a membership 

percentage of 1; values outside the range have membership 

percentages depending on the nearness of the value to the range, 

with membership percentage reaching 0 at the ±range from the 

edge (see Figure 5) (Unger et al., 2014). A minimum fuzzy 

overlay type was then used to derive the fuzzy layers for all 17 

LCZ types.  

 

 
 

2.5 Classification of LCZs by Cellular Automata 

Using the 17 fuzzy membership layers of LCZ types, the LCZ 

map of Quezon City was generated using a cellular automata 

approach implemented using Python. The Arcpy library was used 

for handling raster files and for easier integration as a tool in 

ArcGIS.  

 

The following were the Cellular Automata rules implemented for 

all pixels:  

 

Part A. Initial Classification 

 

1. Per pixel, the LCZ type with the highest membership value was 

assigned as the primary LCZ type. If a pixel has zero membership 

for all LCZ types, the primary LCZ type was assigned as 

unclassified.  

2.  Per pixel, the LCZ type with the second highest membership 

was assigned as the secondary LCZ type. If a pixel has zero 

membership for all LCZ types, the secondary LCZ type was 

assigned as unclassified.  

 

Part B. Aggregation 

 

3. If a pixel has only at most 2 neighbors of the same primary 

LCZ type in its Moore neighborhood, the primary LCZ type of 

the pixel was assigned from the secondary LCZ type and the 

secondary LCZ type was assigned from the primary LCZ type. 

4. After step 3 and the pixel still has at most 2 neighbors of the 

same primary LCZ type in its Moore neighborhood, the primary 

LCZ type of the pixel was assigned from the majority primary 

LCZ type of the neighborhood. The secondary LCZ type was 

assigned from the former primary LCZ type.  

5. Steps 3 and 4 were iterated 10 times (until clusters of LCZs 

are visible)

Figure 5. Linear fuzzy membership percentage given              

a range of value 

 

 

Name LCZ PSF (%) ISF (%) BSF (%) SA 
Building 

Height (m) 
SVF 

Roughness 

Length (m) 

Compact high-rise 1 < 10 40 - 60 40 - 60 0.10 - 0.20 >= 25 0.2 - 0.4 

 

Compact midrise 2 < 20 30 - 50 40 - 70 0.10 - 0.20 10 - 25 0.3 - 0.6 

Compact low-rise 3 < 30 20 - 50 40 - 70 0.10 - 0.20 3 - 10 0.2 - 0.6 

Open high-rise 4 30 - 40 30 - 40 20 - 40 0.12 - 0.25 >= 25 0.5 - 0.7 

Open midrise 5 20 - 40 30 - 50 20 - 40 0.12 - 0.25 10 - 25 0.5 - 0.8 

Open low-rise 6 30 - 60 20 - 50 20 - 40 0.12 - 0.25 3 - 10 0.6 - 0.9 

Lightweight low-rise 7 < 30 < 20 60 - 90 0.15 - 0.35 2 - 4 0.2 - 0.5 

Large low-rise 8 < 20 40 - 50 30 - 50 0.15 - 0.25 3 - 10 > 0.7 

Sparsely built 9 60 - 80 < 20 10 - 20 0.12 - 0.25 3 - 10 > 0.8 

Heavy industry 10 40 - 50 20 - 40 20 - 30 0.12 - 0.20 5 - 15 0.6 - 0.9 

Dense trees A > 90 < 10 < 10 0.10 - 0.20 

 

>= 2 

Scattered trees B > 90 < 10 < 10 0.15 - 0.25 0.25 - 0.5 

Bush, scrub C > 90 < 10 < 10 0.15 - 0.30 0.1 - 0.25 

Low plants D > 90 < 10 < 10 0.15 - 0.25 0.03 - 0.1 

Bare rock or paved E < 10 > 90 < 10 0.15 - 0.30 0.0002 - 0.0005 

Bare soil or sand F > 90 < 10 < 10 0.20 - 0.35 0.0002 - 0.0005 

Water G > 90 < 10 < 10 0.02 - 0.10  

Table 2. Geometric, surface cover, and thermal properties of each LCZ type
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Part C. Detection of Cluster Centers  

 

6. Clusters large enough to be an LCZ was detected using a 5x5 

square neighborhood window. If a pixel has at least 13 pixels 

(including itself) within the neighborhood, the pixel is detected 

as a cluster center. The idea is that an LCZ is a zone of at least 

500 m diameter, and a circle of 500 m diameter is composed of 

at least 13 pixels of 100 m size (see Figure 6).  

7. Pixels detected as cluster centers were assigned a final LCZ 

type same as its primary LCZ type.  

 

 
Figure 6. A 5 x 5 square neighborhood used for detecting the 

center of clusters of at least 13 pixel-size  

 

Part D. Zoning 

 

8. If a pixel still without a final LCZ type has an adjacent cluster 

center in its Von Neumann neighborhood and the primary LCZ 

type of the pixel is same as the final LCZ type of the cluster 

center, the pixel is assigned a final LCZ type same as the cluster 

center. This was iterated 10 times.  

9. If a pixel still without a final LCZ type has an adjacent cluster 

center in its Von Neumann neighborhood and the secondary LCZ 

type of the pixel is same as the final LCZ type of the cluster 

center, the pixel is assigned a final LCZ type same as the cluster 

center. This was iterated 10 times.  

10. If a pixel still does not have a final LCZ type, the final LCZ 

type was assigned as the majority final LCZ type of the Moore 

neighborhood pixels. This was iterated 10 times. 

 

2.6 Validation of LCZs 

The generated LCZ map was validated by means of visual 

inspection. The LCZ map was overlaid on a satellite image in 

ArcGIS. Each LCZ type that was generated was cross-checked 

through the researchers’ local knowledge of the area.  

 

2.7 Evaluation of LCZ map by Land Surface Temperature 

(LST) 

Daytime and Night-time LST images were processed and 

downloaded through an online Integrated Development 

Environment in Google Earth Engine. The images with the least 

cloud cover were selected and used in the study. A spatial analyst 

tool was used to obtain the mean value of the land surface 

temperature within the generated local climate zones.  

 

 

3. RESULTS AND DISCUSSION 

3.1 Fuzzy layers 

The degree of membership for each pixel to each LCZ type was 

generated and is shown in Figure 7. A white pixel indicates no 

membership while a brown pixel indicates a possibility or full 

certainty that the pixel belongs to the LCZ type. It was observed 

that for most of the LCZ types, the degree of membership ranges 

from 0 to 1. It was noted that no pixels were identified to belong 

under LCZ E (Bare-rock or paved) which was expected since no 

largely paved areas such as airport runways were identified in the 

study area using a satellite image. Based from the fuzzy layers, 

it seems that the study area is mostly composed of low-rise 

buildings (LCZ 3 and 6) with small portions of medium to high-

rise buildings. High memberships to dense trees and water were 

also identified in the watershed area of the city.  

 

 

Figure 7. Degree of membership of each pixel to LCZ 1 

(Compact high-rise), LCZ 2 (Compact midrise), LCZ 3 

(Compact low-rise), LCZ 4 (Open high-rise), LCZ 5 (Open 

midrise), LCZ 6 (Open low-rise), LCZ 7 (Lightweight low-rise), 

LCZ 8 (Large low-rise), LCZ 9 (Sparsely built), LCZ 10 (Heavy 

industry), LCZ A (Dense trees), LCZ B (Scattered trees), LCZ C 

(Bush, scrub), LCZ D (Low plants), LCZ E (Bare rock or paved), 

LCZ F ( Bare soil or sand), LCZ G (Water). 
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3.2 LCZ map of Quezon City 

After running the developed tool, the LCZ map of Quezon City 

was generated (Figure 8). The map shows that seven out of ten 

built-up LCZs (LCZ 1, 2, 3, 5, 6, 8, 9) and six out of seven land 

cover LCZs (LCZ A, B, C, D, F, G) were identified in Quezon 

City, Philippines. It can be observed that LCZ 6 (Open low-rise) 

dominates the city with an area covering 42.26% of the city 

followed by LCZ 3 (Compact low-rise) which covers 29.13% of 

the total area of the city. On the other hand, LCZ A (Dense trees) 

is the largest non-built-up type with an area covering 13.38% of 

the city. 

 

 

Figure 8. Local Climate Zone map of Quezon City, Philippines 

 

Through visual inspection on a base map, the mapped LCZs were 

confirmed to match with the features of the city. Shown in Figure 

9 are some of the identified areas as shown in satellite image 

subsets for each LCZ type. A part of Eastwood, which is the 

business district in the city, was classified under the LCZ 1 

(Compact high-rise) wherein a cluster of tall buildings is located. 

Residential areas were classified in LCZs 3 (Compact low-rise), 

5 (Open midrise), 6 (Open low-rise), and 8 (Large low-rise) 

while LZC 2 (Compact midrise) captured areas which are mostly 

commercial in use. Though the study area is highly-urbanized, 

there were still areas that were classified under the land cover 

LCZ types. Notable areas are the Quezon City Memorial Circle 

(QCMC), University of the Philippines (UP) Diliman Campus, 

and the La Mesa Watershed. Portions of UP and La Mesa 

Watershed were classified under the LCZ A (Dense Trees), but 

some were under the group of Scattered Trees (LCZ B) together 

with the QCMC. Barangay Bagong Silangan is composed of 

three different land cover LCZ types which are LCZ B (Scattered 

Trees), C (Bush, scrub), and D (Low plants). Lastly, La Mesa 

Dam was categorized under the LCZ G (Water). 

 

  

 

Figure 9. Images of each identified LCZ in Quezon City from 

ESRI World Imagery Map 

 

3.3 LST for each LCZ Type 

 

Figure 10. Mean daytime (left) and night-time (right) LST per 

Local Climate Zone in Quezon City, Philippines 

 

Evidently, mean LST was higher in the daytime with a maximum 

value of 33.87°C as compared to the night-time maximum mean 

LST of 22.09°C (Figure 10). The highest daytime temperature 

was identified in LCZ 3 (Compact low-rise), which are mostly 

located in the southern residential portion of Quezon City. Some 

of the areas which were classified in this type were Krus na 

Ligas, East and West Kamias, and Kamuning where houses are 

densely constructed — a factor for localized UHI. The lowest 

daytime mean temperature was identified in LCZ A (Dense trees) 

located in UP Diliman Campus and La Mesa Watershed. For the 

night-time, LCZs 1, 2, 5, and G obtained the highest night-time 

temperature (visualized as red in night-time LST in Figure 10).  

The built-types in these areas (LCZs 1, 2, and 5) are composed 

of high to mid-rise buildings that result to more trapping of heat 

being emitted by building materials at night. LCZ G (Water) 

displayed high-night time temperature because of its high 

specific capacity, which result to a slower release of heat at night 

The lowest night-time mean temperature (visualized as blue in 

LCZ 1 (Eastwood) LCZ 2 (Ugong Norte) LCZ 3 (Krus na Ligas) LCZ 5 (Vista Real Executive 

Village in Brgy Batasan Hills 

LCZ 6 (Violago Home Parkwood 
Hills in Brgy Bagong Silangan) 

 

LCZ 8 (UP Village) LCZ 9 (UP Diliman) 

LCZ A (La Mesa Watershed) 
 

LCZ B (QC Memorial Circle) LCZ C (Bagong Silangan) 

LCZ D (Bagong Silangan) 
 

LCZ F (Bagong Silangan) LCZ G (La Mesa Dam) 
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night-time LST in Figure 10) was identified in LCZ A (Dense 

trees) and LCZ F (Bare soil or sand). 

    

 

Figure 11. Mean daytime and night-time LST per Local 

Climate Zone in Quezon City, Philippines 

 

The variations in daytime and night-time LST (Figure 11) 

showed consistency with profiles from other literature (Yang et 

al., 2017; Wang et al., 2017; Cai et al., 2018). Earth’s surface 

absorbs heat during the day and radiates it back at night. It occurs 

in the building material used in the cities to a much greater extent 

than areas covered in vegetation. This is evident in the higher 

decrease from the daytime to night-time mean LST values of the 

LCZ built types (1, 2, 3, 5, 6, 8, and 9). The change in the surface 

temperature of water is much lower than built types and other 

land cover types. Excluding water, LCZ 1 (Compact high-rise) 

was the hottest at night among all LCZ types due to its more heat 

trapping form. LCZs A (Dense trees) and F (bare soil or sand) 

were the coolest at night due to more evapotranspiration. 

 

 

4. CONCLUSION 

Several methodologies have already been developed to map 

LCZs. Conventional methods used a remote sensing-based 

approach where satellite images are classified based on different 

algorithms. However, these methods rely on local knowledge of 

the area and may introduce errors in the creation of training areas. 

Solving this problem, several studies have developed GIS-based 

LCZ mapping methodologies. These methods use derived 

geometric, surface, and radiative properties of the LCZs to 

differentiate the LCZ types. Fuzzy logic or reclassifying 

techniques are used to generate different layers of LCZ types. A 

problem with these methods is that the produced LCZ 

classification has noisy pixels, which needs filtering to smoothen 

the zones. 

 

To address this problem, this paper developed a GIS-based 

methodology to map LCZs from seven derived properties using 

fuzzy logic and a cellular automata-based classification and 

aggregation algorithm. Results showed that the generated fuzzy 

layers displayed the membership percentages of a pixel to each 

LCZ type. Quezon City displayed pixels of high membership to 

low-rise building types, LCZ 3 and LCZ 6. Produced LCZ map 

of Quezon City matched with local knowledge of features in the 

city such as golf courses, open parks, dense tall buildings, and 

assembly of malls. Thirteen out of 17 LCZ types were identified 

in the whole city, namely LCZ 1, 2, 3, 5, 6, 8, 9, A, B, C, D, F, 

and G. The city is mainly composed of LCZ 3 (Compact low-

rise) and LCZ 6 (Open low-rise) covering 29.13% and 42.26% 

of the city’s total area, respectively. 

 

Assessment of the Land Surface Temperature (LST) profile for 

each LCZ type for day and night showed consistency such as the 

highest night temperatures in LCZ 1 (Compact High-Rise) 

among other built-types and lowest in LCZ A (Dense Trees) and 

LCZ F (Bare Soil or Sand) in the land cover types.  

 

A GIS toolbox “Local Climate Zones” was also developed which 

incorporates the fuzzy logic and cellular automata specifications. 

The toolbox can be easily used to map the LCZs of other cities 

and just needs the seven derived property layers of the subject 

area.  
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