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ABSTRACT: 

 

Assessment of NWP model performance is an integral part of operational forecasting as well as in research and development. 

Understanding the bias propagation of an NWP model and how it propagates across space can provide more insight in determining 

underlying causes and weaknesses not easily determined in traditional methods. The study aims to introduce the integration of the 

spatial distribution of error in interpreting model verification results by assessing how well the operational numerical weather 

prediction system of PAGASA captures the country’s weather pattern in each of its climate type. It also discusses improvements in 

model performance throughout the time-frame of analysis. Error propagation patterns were identified using Geovisual Analytics to 

allow comparison of verification scores among individual stations.  The study concluded that a major update in the physics 

parameterization of the model in 2016 and continued minor updates in the following years, surface precipitation forecasts greatly 

improved from an average RMSE of 9.3, MAE of 3.2 and Bias of 1.36 in 2015 to an RMSE of 7.9, MAE of 2.5 and bias of -0.63 in 

2018. 

 

 

1. INTRODUCTION 

The use of numerical weather prediction (NWP) model is one of 

the most relevant components of routine and severe weather 

forecasting and warnings at PAGASA. The WRF-ARW, the 

operational NWP model of the agency has been running since 

2012. It provides forecast up to seven days, covering two 

domains, the one centered on Philippine Island having a 3x3 

horizontal resolution that is mainly used for research and the 

other which covers the Philippine Area of Responsibility (PAR) 

with a 12 x 12 km resolution extensively used for operational 

forecasting. With recent upgrades in physics parameterization, 

its performance must be evaluated. 

 

Operational usage of NWP entails understanding the model’s 

behaviour and errors. Such errors in forecast parameters like 

precipitation and temperature are characterized by their biases 

that may be present for certain periods of the day or season. 

These characteristics, if known by the forecasters, will allow 

them to adjust accordingly and create more insightful analysis 

of the NWP outputs. 

 

Currently, verification analysis on WRF-ARW is centered on 

determining errors arising from the diurnal cycle, seasonal 

changes, and parameterization scheme (Sun, Bi, 2019). The 

proposed study will provide statistical analytics, using forecast 

verification, on the performance and behaviour of the 

operational WRF-ARW to provide more contexts in interpreting 

the model output. Specifically it will look into the geographical 

distribution of errors using point analysis and spatial visual 

analytics. Through these methods, it can be determined if local 

topography and climate type have substantial impacts on the 

forecast quality. Moreover, spatially analysing verification 

statistics will help determine any geographical variability of the 

model error and its error distribution pattern. It will also aid in 

determining local processes that are overlooked or unresolved in 

the model. 

2. DATA AND METHODOLOGY 

2.1  Study Area 

The study area is based on the operational WRF domain which 

encompasses the Philippine Area of Responsibility (PAR); the 

basis of the Operational WRF domain. PAR is the area defined 

by the World Meteorological Organization (WMO) as a part 

wherein the National Weather Service shall undertake 

operational activities pertaining to the observation, moderation, 

modification, reporting of the weather and issue forecasts and 

warnings of weather and flood conditions affecting national 

safety, welfare and economy. (P.D No. 78). The PAR is 

bounded by imaginary lines on the surface of the earth that 

makes equal oblique angles with all meridians joining the 

following points: 5°N 120°E, 25°N 135°E, 5°N 135°E, 5°N 

115°E, 15°N 115°E, 21°N 120°E and back to the beginning. 

Since WRF only accepts rectangular grids, the area of the 

operational domain is bounded by 25°N 114°E,25°N 135°E, 

2°N 114°E, 2°N 135°E. The area covers almost all of the land 

territory of the Philippines, except for the southernmost portions 

of the province of Tawi-Tawi, and some of the country's 

claimed islands in the Spratlys. The area also includes the main 

island of Palau, most of Taiwan, as well as portions of the 

Malaysian state of Sabah. 

 

2.2 Observed Rainfall Data 

The observed surface precipitation was retrieved from the 

archives of the Climate Data Section, PAGASA that were 

collected from 52 synoptic stations. The data consists of 

accumulated rainfall for an interval of 3 hours, 6 hours and 24 

hours. The study utilized the 6-hourly accumulation for a more 

complete data set; the 3-hourly and 24-hourly were also used to 

interpolate missing data. The retrieved data has undergone 

quality check from the Climate Data Section and was measured 

by standardized and calibrated tipping buckets issued by 

PAGASA. 
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2.3 Forecasted Rainfall Data 

The operational WRF model is managed by the Numerical 

Modelling Section of PAGASA. The model is run at the 

Integrated High Performance Computing System (IHPC) 

facility of the agency. It runs every three hours beginning at 

0000 UTC (08:00 AM PST). The model inputs include 

topography and land use classification data from the United 

States Geological Survey (USGS). For the initial boundary 

conditions, inputs are Global Forecasting System (GFS) 

forecast data from the latest initialization; GFS model runs 

every six hours beginning at 0000 UTC (08:00 AM PST). 

Another model input is the Sea Surface temperature data 

sourced from National Centers for Environmental Prediction 

(NCEP). The model has two domains. Domain one has a spatial 

resolution of 12 KM and can forecast up to 144 hours lead time. 

This domain is used for operations such as forecasting and 

product derivation mainly because of the long range of lead 

time.  Domain two has a spatial resolution of 3 KM and can 

forecast up to 48 hours lead time. Domain two is mostly used 

for research purposes such as event analysis, test case analysis, 

and model performance comparison. 

 

The study makes use of WRF post processed data from all 

initializations from the years 2015 to September 2018; all are 

available in standard Grib2 format. Data for the months of 

January to March of 2017 were not available due to model 

malfunction. The surface precipitation forecast for each 

synoptic station was then extracted and stored as CSV files. The 

corresponding grids of the 52 stations were obtained from the 

WRF output using the Grid Analysis and Display Software 

(GrADS) nearest-neighbour algorithm. After extraction, the 

surface precipitation forecast was accumulated to 6-hourly to 

match the time interval of the observed data. 

 

Figure 1. Locations of the synoptic stations used as validation 

points; stations are classified based on climate type of location. 

 

2.4 Verification Metrics 

To quantitatively evaluate the predicted rainfall, a set of 

statistical metrics was utilized. Among the standard methods, 

we used Bias, Root Mean Square Error (RMSE), and the Mean 

Absolute Error (MAE). (Brooks, et.al, 2017) These metrics 

measure the magnitude of forecast errors and how well the 

magnitudes of forecasts correspond with the observed. MAE is 

a measure of average error magnitude with scores ranging from 

zero to infinity, with zero as the perfect score. The RMSE is 

also a measure of “average” error, weighted according to the 

square of the error. It puts greater influence on large errors but 

is not indicative of the deviation direction. This score ranges 

from zero to infinity with zero as a perfect score. Bias, on the 

other hand, is the summation of the difference between the 

forecast and the observed value. It is used as an indicator of 

deviation direction; the score ranges from 0 to infinity with 0 as 

a perfect score, a negative bias is considered as under forecasted 

and a positive score is likewise considered as over forecasting. 
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where N = total number of samples 

 F = forecasted rainfall intensity 

 O = observed rainfall intensity 

 

2.5 Visualization Development 

The main consideration for the visualization was that it can 

show the error growth for each station per month. This was 

accomplished by plotting the locations of the synoptic stations; 

the color of each point is based on the climate type of the area 

of the station. The point size was dependent on the magnitude of 

the error. A map was generated for each month of 2015 to 

September 2018, for all verification tools used, and was 

converted into a GIF animation to monitor the changes in error 

magnitude. 

The final visualization product was characterized by points that 

represent the stations used in the study, color coded according 

to climate type, type I uses red, type II is blue, type III is yellow 

and type IV is green. The magnitude of the verification score is 

depicted by the size of the point, hence larger points connote 

larger errors.  

 

Figure 3. Flowchart showing the series of steps in implementing 

geo-visual analytics on the verification results 
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3. RESULTS AND DISCUSSIONS 

PAGASA has a total of 52 stations scattered across the country. 

Among these 52, 16 are in the climate type one area, another 16 

are in the climate type two area, 12 are in the climate type three 

and the last 8 are in the climate type four area. Ten stations in 

climate type one is located in coastal areas and the rest are 

situated in inland areas. Climate type two stations are all located 

at coastal areas. Stations classified as climate type three 

comprise of ten stations in coastal areas and two in inland areas. 

As for climate type four, the stations area equally divided into 

inland and coastal areas. 

 

3.1      Yearly Forecast Quality Evaluation 

The data were initially evaluated regardless of station location 

to assess the model’s performance through the years since it 

undergoes yearly updates which often include different 

parameterization schemes and/or changes in the numerical 

methods and codes used to represent certain physical processes. 

Based on the resulting scores from the verification tools, 

forecast quality greatly improved beginning in 2016. Based on 

the history of updates there were a lot of changes employed 

during March 2016. The WRF version used jumped from 

version 3.3.1 to 3.7.1. The changes are summarized in the 

following table: 

 

Category Old Setting New Setting Remarks 

Land 

Surface 

Land 

Categories: 

24 (USGS) 

Land 

Categories: 

20 (MODIS) 

The MODIS 

land surface 

data has a 

higher 

resolution 

 

Cloud 

Physics 

Kain-Fritsch 

Scheme 

Kain-Fritsch 

Scheme 

Scheme 

codes and 

numerical 

methods 

were 

updated and 

improved 

 

Micro- 

physics 

Thompson 

Scheme 

WRF 6 

Scheme 

WRF 6 

Scheme is 

faster 

compared to 

Thompson 

 

Vertical 

Levels 

32 36 Increase in 

vertical 

levels can 

improve 

model’s 

ability to 

simulate 

convection 

 

Table 1. Summary of changes made in WRF configuration. 

 

The version update improved forecast quality. 2015 forecast 

were over-forecasted, especially during the onset of the 

Southwest Monsoon. Error propagation with respect to the 

increasing lead time is also prominent for 2015. Diagrams of the 

resulting scores per month and forecast lead-time are provided 

in the appendix. 

 

The largest MAE and RMSE occurrence was during July 2015. 

This month is during the onset of the Southwest Monsoon, the 

large errors may have been related to the El Nino Southern 

Oscillation (ENSO) onset enhanced by the presence of the 

Madden-Julien Oscillation (MJO). The compounded effects of 

these events caused enhanced convections in the Maritime 

Continent. (Islam, et. Al, 2018). These convections may not 

have been well modelled by the operational model due to the 

coarse resolution. Although in comparison with the other 

months against those of the following years, there is still a great 

difference even without the ENSO and MJO which was brought 

about by the WRF version update. 

 

The bias shows directional deviation. As seen in the plots 

above, 2015 exhibits a pattern wherein surface precipitation 

during the dry months (March, April, May) has a high dry bias 

and has a large wet bias during the peak rainfall season (July, 

August, September). While the following years, appear to have 

a consistent dry bias regardless of the season. 

 

The following table summarizes the overall analysis for the 

model’s error propagation. 

 

Year Error Pattern 

2015 RMSE shows that there is a slow error growth as 

lead time increases Bias and MAE shows error is 

most prominent during the rainy season (Jul-Sep) 

Bias shows that there is substantial over-

forecasting  

2016 RMSE shows improvement from 2015, less 

prominent error during 

rainy season 

Bias shows that there is still over-forecasting 

during August. 

Dry season also appears to be more consistent 

regardless of lead time 

2017 RMSE shows that errors are slightly higher 

compared to last year but 

is more evenly distributed throughout the year. 

Bias and MAE show under-forecasting during the 

wet season 

2018 RMSE shows errors prominent during July but 

still greater 

improvement compared to past years. 

MAE and Bias also appear more consistent 

throughout lead times and 

show under-forecasting 

 

Table 2. Comparison of the error distribution per year 

 

3.2  Error Patterns based on Climate Type 

The climate types used in the study was based on the climate 

map provided by PAGASA. The map is based on the Modified 

Coronas’ Climate Classification. The process used yearly type 

of rainfall distribution modals from 1951 to 2010 encompassing 

45 synoptic stations and 66 climate stations. (PAGASA, n.d.). 
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3.2.1 Climate Type One (CT1): Climate type one has two 

pronounced seasons: dry from November to April and wet 

during the rest of the year, experiencing maximum rain during 

June to September. Overall, CT1 exhibits large errors during the 

moths of June to September and has reliable forecasts during 

October and April. The error pattern coincides with the area’s 

peak wet season (high error) and dry season (low error). 

Additionally, June to September is the onset of the Southwest 

Monsoon which enhances the formation of localized 

thunderstorms and small scale convective systems; some weak 

spots of WRF. It is also possible that the notable errors over 

Metro Manila are mostly due to localized convection due to 

urban heating. 

 

Year Error Pattern 

2015 Consistently large error in Manila area  

Large errors in South Luzon in January  

Peak errors in July to September  

Minimal error in November to February 

2016 Peak errors in May to August 

Large errors in Manila from May to September 

Minimal error in January to April, and 

November and December 

2017 Notable errors July to August  

Consistent error decrease from September to 

December 

2018 Minimal errors in January to April Steady 

increase from June to September 

Table 3. Summary of the observed CT1 error patterns per year. 

 

3.2.2 Climate Type Two (CT2): Climate type two is 

characterized by wet season, which peaks from December to 

February. Minimum rain period is from December to February. 

Throughout the timeframe of analysis, this area exhibited 

relatively higher errors during the months of May to September 

and also has notable errors during December. CT2 covers the 

typhoon prone provinces which may explain the high errors 

during typhoon season. Typhoons and other large scale systems 

are actually the strong points of WRF and the low scores may 

be due to the limitations of the point matching verification 

statistics that do not fully assess the systems displacement error. 

The area is also affected by the easterlies wind system that aids 

in the formation of local convective systems. 

 

Year Error Pattern 

2015 Error dominant in January 

Minimal error in February to May 

Steady error increase in June to August 

Large error in November and December 

2016 Minimal error from January to April 

Error increases in May then becomes steady 

towards September 

Larger errors from November to December 

2017 Small error during April 

Slow error increase from June to September 

Relatively large error during December 

2018 Notable errors in January Consistent, low errors 

from February to April Slow and steady error 

increase from May to September 

Table 4. Summary of the observed CT2 error patterns per year. 

 

3.2.3 Climate Type Three (CT3): Climate type three has no 

pronounced maximum rain period with a dry season either from 

December to February or March to May. CT3 has the most 

erratic errors among the other types; there was no specific 

month that consistently had high errors however, November to 

December has notably reliable forecasts. In CT3, most stations 

are situated in islands and coastlines. Such locations are prone 

to local wind systems, also a cause of localized convection 

 

Year Error Pattern 

2015 Small, steady increase in June to July 

Decreases during November to December 

Minimal during February to May 

2016 Overall minimal error  

Least error during January to May 

 Small Increase during September to October 

Decreases again During November to December 

2017 Fluctuating errors throughout the year 

December has notable increase in error 

2018 Peak error at January  

Consistently minimal errors from February to 

September 

Table 5. Summary of the observed CT3 error patterns per year. 

 

3.2.4 Climate Type Four (CT4): This climate type has 

more or less evenly distributed rainfall throughout the year. This 

CT has the most reliable forecasts which consistently have 

minimal errors. This consistency may be due to the area being 

shielded from most weather drivers of the country, therefore 

minimizing localized convection. 

 

 

Table 6. Summary of the observed CT4 error patterns per year. 

 

 

 

 

 

Year Error Pattern 

2015 Minimal changes throughout the year Largest 

error during August to September 

2016 Minimal changes throughout the year Largest 

error during September 

2017 Minimal changes throughout the year 

2018 Minimal changes throughout the year 
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4. CONCLUSION AND RECOMMENDATION 

4.1 Conclusion 

 

Relating the verification scores to their location provides 

insight as to what are the probable causes of errors which 

can help in the model use and continued development. 
 

4.1.1 Operations: In terms of operation, the study shows 

that the model is yielding better results over the years. It can be 

noted that 2018 forecasts have greatly improved compared to 

the forecasts of 2015. Based on previous studies, surface 

precipitation forecast during 2014 to 2015 were highly over-

forecasted. The said years exhibited large diurnal wet biases and 

notably over-forecasts every 12 hours (PAGASA-NMS, 2016). 

As discussed in the previous chapter, after a major change in the 

physics parameterization scheme, forecasts for 2016 onwards 

greatly improved. The PBL scheme was able to address the wet 

bias every 12 hours and lowered the wet bias. However, this 

created a dry bias or under forecasting but the error was 

minimal compared to that of the two previous years. It is also 

notable that error growth with respect to the increasing lead 

time was minimal during 2016 to 2018 unlike in 2015 where the 

longer lead times had large error growths. 

 

4.1.2 Model Interpretation Guidance: For model 

interpretation guidance, the study established that forecast 

biases area affected by climate type. Each climate type exhibits 

a unique pattern of errors which coincide with the peak rain 

season of each type. This leads to the conclusion that model 

interpretation should not solely focus on the general seasonal 

bias: surface precipitation is under-forecasted during the onset 

of the Southwest Monsoon. It also revealed that forecasts are 

most reliable in the climate type four areas; this type showed the 

lowest errors with minimal variance. In contrast with this, the 

study determined that the most erratic errors were exhibited by 

stations located in climate type three areas. This type did not 

exhibit a particular pattern of error changes throughout the time 

frame of analysis and also displayed a large variance. In 

addition, the study shows that there is an uneven distribution of 

stations based on climate type classification; majority of the 

stations are in climate types one and two. Since these types 

comprise almost half of the validation points, the said stations 

greatly influence the overall evaluation. Verification done as a 

whole can lead to the assumption that the model has poor and 

unreliable forecasts due to the underlying forecast errors based 

on climate type. Also, using WRF as a basis of rainfall should 

be done with caution and an understanding of the model’s 

errors. 

 

4.2 Recommendations 

The study can be furthered by test case analysis per climate 

type; this can include focusing on different phenomena i.e. 

localized thunderstorms to provide a concrete evaluation of 

WRF’s reliability in forecasting events due to local convective 

systems. Since the results imply that the operational domain 

does not model convection-caused rainfall adequately, 

PAGASA forecasters should consider the use of the 2nd 

domain, which has a higher spatial resolution at three kilometers 

per grid. Ideally, WRF forecasts at this resolution can resolve or 

model convective systems better. Test case comparison between 

the two domains can support this hypothesis. 

It can also be improved by using alternative sources of observed 

data to create a denser network of validation points or using 

gridded observation data to allow evaluation of the whole WRF 

domain. This can allow comparison between model 

performance over land mass and water bodies. 

Using gridded data can also improve the integration of geo-

visual analytics such as creating a composition chart of which 

climate type has the highest difference between the forecast and 

observed value aggregated by province without bias caused by 

the uneven distribution of stations. This can also highlight 

specific areas that have the highest errors; the analysis used in 

the study was limited by the presence of a synoptic station 

which is not available in all provinces. Furthermore, gridded 

analysis can also highlight the seasonal variation of error based 

on climate type. 
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APPENDIX  

Animated plots used for the geovisual analysis can be found 

here: shorturl.at/bdorH. 
 

The following plots show the resulting verification scores for 

the yearly performance evaluation of the model. 
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