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ABSTRACT: 

Regular monitoring of water quality in Laguna Lake is important for it supports aquaculture and provides water supply for Metro 

Manila. Remote sensing makes it possible to monitor the spectral conditions of the lake on a regular time interval and with complete 

coverage except for the areas with cloud and shadow cover. Along with in-situ water quality measurements, bio-optical models can 

be developed to determine the relationship between spectral and bio-optical properties of the lake water and consequently enables 

the estimation of water quality through remote sensing. However, radiometric calibration is needed to minimize the effects of the 

changing atmospheric conditions over time and to account for the difference in sensors (e.g., Landsat-8 OLI, Sentinel-2 MSI) used 

for water quality assessment. Canonical correlation analysis is used to detect pseudo-invariant features (PIFs), which are ground 

objects that do not dramatically vary in spectral properties over time. Road surface and other large man-made infrastructures are 

the commonly detected PIFs. These PIFs are used to compute for the parameters used to normalize reflectance values of remotely-

sensed images obtained on different dates and using different sensors. The normalization resulted to a reduction of difference in 

reflectance values between the reference image and the adjusted image, though not marginal. This is due to the use of a linear 

equation to adjust the image, which limits the ability of the reflectance values of the image to fit to the values of the reference 

image. 

 

 

 

1. INTRODUCTION 

Remote sensing is a technology that acquires earth surface data 

using a sensor attached to a platform such as an aircraft or a 

satellite. Depending on remote sensing system’s temporal 

resolution, the sensor revisits the same portion of the earth 

surface after a certain period of time. Atmospheric conditions 

vary on every satellite revisit. These variations affect the change 

measurements on the earth surface (Denaro, et al, 2018). 

Therefore, it is important that these variations be minimized to 

obtain a more accurate assessment of the earth cover change. 

Radiometric calibration aims to solve this problem. It works by 

searching for pseudo-invariant features (PIFs) which are ground 

objects that tend to retain their spectral properties over time. 

Examples of these are roads, roofs and large rocks. A direct 

subtraction of the reference image from the target image can be 

used to find PIFs. However, PIFs that are obtained using this 

method are not optimal because the two images can be further 

differentiated. The optimal PIFs are detected by maximizing the 

variance between two images consisting of a reference image and 

the image to be adjusted. This can be done through canonical 

correlation analysis. It determines the coefficients that can be 

multiplied to the arrays representing the images and will produce 

linear combinations with maximum variance. Better PIFs can be 

detected using this method and will provide better adjustment 

parameters (Canty, et. al, 2004). 

 

The University of the Philippines Multi-platform and Cross-

sensor Water Quality Monitoring (UP MCWQM) Project aims to 

monitor the water quality across the entire Laguna Lake through 

the use of remote sensing and water quality modelling. The 

project proposes an alternative to costly and labour-intensive in-

situ sampling for water quality measurements that only covers 

several points in the lake. Through remote sensing, water quality 

measurements across the entire lake can be derived which gives 

way to a much detailed spatial and temporal analysis of water 

quality. Reflectance values provided by the satellite images can 

be used as independent variables for the computation of water 

quality parameters such as turbidity and chlorophyll-a 

concentration (Barrett & Frazier, 2016). Various water quality 

models such as the BOMBER bio-optical model (Giardino, et. al, 

2012) and WASI-2D software (Gege, 2014) are used for this task. 

In-situ measurements are used for the calibration and validation 

of these models. The project also looks into the potential of using 

remotely-sensed images from an unmanned aerial system (UAS) 

for water quality modelling. 

 

An important step prior to water quality modelling is the pre-

processing of the satellite images. It involves atmospheric 

correction, cloud and shadow masking and radiometric 

calibration. The project uses multivariate alteration detection 

(MAD) method to detect PIFs for radiometric calibration. MAD 

uses the aforementioned canonical correlation analysis to 

maximize the difference between 2 images to find the optimal 

PIFs. MAD is sensitive to the presence of clouds because MAD 

can misclassify clouds as PIFs due to their consistent appearance. 

If a certain location captured by the satellite image that is covered 

with clouds for both its target and reference image, there is a high 

probability that it will be mistaken as a PIF (Lin, et. al, 2017). 

Due to this problem, novel approaches such as the iteratively 

reweighted MAD (IR-MAD) are developed (Nielsen, 2007). 

However, since cloud and shadow masking precedes radiometric 

calibration in the project, a simple MAD approach could be 

sufficient. This research investigates the effectivity of using 

MAD for radiometric calibration if the images that are to be 

calibrated are cloud and shadow-masked beforehand. 
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2. METHODOLOGY 

2.1 Image Pre-processing 

 

There are 3 satellite platforms used in the study: Sentinel-2, 

Landsat-7 and Landsat-8. Images undergo atmospheric 

correction according to which sensor is used. Sentinel-2 uses 

sen2cor while Landsat-7 and Landsat-8 both use FLAASH. After 

atmospheric correction, the images will undergo cloud and 

shadow masking using Tmask algorithm (Zhu, Z. & Woodcock, 

C., 2014). Pixels that are detected to have cloud and shadow 

cover are then replaced with pixel value of zero across all bands. 

Along with the masking process is the cropping of the images 

using the bounding box of the Laguna Lake’s watershed. 

  
Figure 1 boundaries of 4 cloud-masked Sentinel-2 images 

covering Laguna Lake 

 

One issue regarding Sentinel-2 is that it takes 4 scenes to 

complete the coverage of Laguna Lake while both Landsat-7 and 

Landsat-8 only takes 1. Therefore, it will be necessary for the 4 

scenes of Sentinel-2 to be mosaicked into a single image before 

calibration. Sentinel-2 follows a naming convention to name the 

tiles according to their position.  For Laguna Lake, the images 

that cover it have index names PTR, PTS, PUR and PUS. The 

PUR and PUS images are acquired by the Sentinel-2 satellite 

consecutively then returns after a short period of time to acquire 

PTR and PTS images. Since the time difference between the 

acquisition of PUR and PUS images is very small, the difference 

between raw pixel values of the 2 images within their overlap will 

be very small. Therefore, no radiometric calibration will be 

needed between PUR and PUS image pair. The PTS and PTR 

image pair also has the same condition. However, the time 

difference between the acquisition of PTS and PUS images are 

significant that it requires radiometric calibration. It is the same 

case for PTR and PUR images. The process of radiometric 

calibration will be discussed in the succeeding chapter. But first, 

PTS and PTR will be mosaicked by feathering. Feathering will 

also be used for mosaicking PUS to PUR. Then, radiometric 

calibration will be done between the PUS – PUR image pair and 

the PTS – PTR image pair. 

 

During the feathering process, the DN values in the overlap are 

computed by multiplying the DN values from PTS and PTR to 

their respective weights and then adding the 2 products together. 

The weight is based on the position of the pixel in the overlap. 

PTS pixels have higher weights over PTR pixels in locations 

closer to PTS, which are basically on the top portion of the 

overlap. On the other hand, PTR pixels will have higher weights 

in the lower portion of the overlap. The same scheme is done for 

the PUS – PUR pair. 

 

Two image mosaics are then produced, one on the left side and 

the other on the right. As discussed earlier, these pairs cannot be 

directly mosaicked since there is significant time difference on 

the time of acquisition between these images and will require 

radiometric calibration prior to mosaicking. The right side, the 

PUS – PUR pair, will serve as the reference image while the left 

side, the PTS – PTR pair, will be the one to be adjusted. The 

reason for this is because the PUS – PUR pair cover the greater 

portion of the Laguna Lake and choosing the PUS – PUR pair as 

the reference image will lessen the number of pixels that need 

adjustment.  

 

Radiometric calibration involves detection of PIFs. After the 

detection of PIFs, the adjustment parameters are derived and the 

PTS – PTR pair is adjusted. Then, the two pair are adjusted. But 

in this case, instead of using feathering, the PUS – PUR pair, 

which is the reference image, is given priority in the overlap. If a 

PUS – PUR pixel is present (because it is not covered by cloud 

or shadow), regardless if there is also a PTS – PTR pixel present 

in the same position, the final mosaic will adopt the values of the 

pixel from the reference image. The only time that the final 

mosaic will adopt a pixel from the adjusted PTS – PTR pair is 

when there is no PUS – PUR pixel available on a specific 

location. 

 

2.2 Detection of Pseudo-Invariant Features 

 

The difference between two images can be directly obtained by 

simply subtracting the target image from the reference image. 

The pixels with small difference can be considered as PIFs and 

their difference values can be the basis for the image adjustment. 

However, this is not the optimal solution since the difference 

between two images can further be increased using canonical 

correlation analysis (Nielsen, et al., 1998). Maximizing the 

difference between the two images results in the detection of the 

optimal PIFs for adjustment. 

 

An image is converted first to a numpy array. This numpy array 

is 3-dimensional wherein the first dimension is the number of 

bands while the other two dimensions represent the height and 

the width of the images. The numpy array is then reduced to 2 

dimensions by flattening each 2-d numpy band into a single row 

of pixels. The new dimensions of the new numpy array will be 

the number of bands by the number of pixels. Before the 

detection of pseudo-invariant features, the cloud and shadow 

masks are first detected to be excluded during the computation. 

 

The numpy arrays will then be used to compute for the variance 

and covariance of the images. The product of the reference and 

the target image is the covariance. The reference image 

multiplied to itself is its variance. The variance of the target 

image is also obtained. The square of the variance is then 

multiplied to the inverses of variance of the reference and target 

image. The resulting matrices are shown in the equations below. 

 

∑XX
-1∑XY∑YY

-1∑YXa = ρ2a    (1) 

∑YY
-1∑YX∑XX

-1∑YXb = ρ2b    (2) 
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∑XX and ∑XY are the variances of the reference and the target 

images, respectively. ∑XX and ∑XY on the other hand represent 

the covariance between the 2 images. The resulting matrix will 

undergo Eigenvalue decomposition in order to obtain coefficients 

a and b and the correlation ρ. The number of eigenvalue – 

eigenvector pair will be equal to the number of bands. In the case 

of Sentinel-2, there will be 9 eigenvalue – eigenvector pairs. Each 

eigenvalue represents a square of correlation between the 

reference and target image. Each of the reference and the target 

image will have its own eigenvector. The lowest eigenvalue 

corresponds to the eigenvectors that produce the highest variance 

between the reference and the target image. Each element in the 

eigenvector will be multiplied to each band of the image. The 

resulting product is called the linear combination and is 

represented by variables U and V for the reference and target 

images, respectively. The linear combination of the target image 

will be subtracted to the linear combination of the reference 

image as shown on the equation below where i refers to the band 

number. 

 

MADi = Ui – Vi = ai
TXi - bi

TYi   (3) 

 

The sum of the resulting differences is then normalized using the 

standard deviation. PIFs are determined using the normalized 

sum. A chi-squared test is applied wherein the normalized sum is 

compared against the threshold. Pixels with normalized sum 

above the threshold are considered as PIFs (Wang & Lin, 2016). 

 

    (4) 

 

PIFs are then divided into 2 sets: training and test sets. The 

training set is used to derive the adjustment parameters. The DN 

values of reference and target image within the training PIFs are 

gathered across all bands. The standard deviation of these DN 

values are calculated. The ratio between the standard deviation 

derived from the target image and the standard deviation from the 

reference image will serve as the slope that will be used for the 

adjustment. The intercept is also determined using the equation. 

 

It is preferred that the reference image will be the same for 

Landat-7, Landsat-8 and Sentinel-2. Having a separate reference 

image for each platform will prevent cross-sensor image analysis. 

In the adjustment scheme, the reference image will be from 

Sentinel-2. It is because it has a higher number of bands 

compared to Landsat-7 and Landsat-8.  

 

Band Sentinel-2 

(reference) 

Landsat-8 Landsat-

7 

Coastal Aerosol  B1  

Blue B2 B2 B1 

Green B3 B3 B2 

Red B4 B4 B3 

NIR B8A B5 B4 

SWIR 1 B11 B6 B5 

SWIR 2 B12 B7 B7 

VRE B5, B6, B7   

Table 1. Band matching among Sentinel-2, Landsat-8 and 

Landsat-7 images for radiometric calibration 

 

Table 1 shows the scheme used for the matching of the bands for 

the cross-sensor calibration. The bands listed in the table are 

based on the bands that are retained after atmospheric correction 

and cloud and shadow masking. The coastal aerosol band of 

Landsat-8 has no corresponding reference image from Sentinel-

2. Therefore, a separate image from the coastal aerosol band of 

Landsat-8 is used as a reference for other coastal aerosol band of 

other Landsast-8 images. 

 

 
 

      
Figure 2 Raw reference image (top); reference image filled with 

unadjusted image at cloud mask (bottom left); reference image 

filled with adjusted image at cloud mask (bottom right) 

 

2.3 Image Adjustment 

 

The DN values from both reference and target images of the 

training PIFs are obtained for the computation of the adjustment 

parameters. The adjustment parameter computation used is based 

on the study of (Du, et al, 2002). 

 

αj = σQref / σQj     (5) 

βj = Ǭref – α ∙ Ǭj    (6) 

 

The first adjustment parameter α is measured by dividing the 

standard deviation of the DN values of the PIFs from the 

reference values by the standard deviation of the DN values of 

the PIFs from the target image. Each α is unique per band and j 

denotes the band number in the equation. It can be interpreted 

that α is the slope of the standard deviation between the PIFs of 

the reference and the target image. The second adjustment 

parameter β is computed using equation 6. Ǭref is the mean of the 

DN values of PIFs from the reference image while Ǭj is the mean 

of the DN values of the PIFs from the target image. It can be 

interpreted that β is the intercept. The usage of the adjustment 

parameters are shown on the equation below. 

 

Qadj = α ∙ Qj + β    (7) 

 

Therefore, the adjustment method proposed by (Du, et al, 2002) 

is based on a simple linear equation. The training PIFs that are 

detected can reach up to several hundred-thousand for every pair 

of images with minimal cloud cover. All of their DN values are 

used to derive a linear equation. The next chapter discusses if a 

linear equation is enough to represent the number of PIFs. 

 

In Figure 2, the reference image is shown with cloud and shadow 

mask. To test the visual improvement regarding the adjustment 

of the target images, a comparison is made between the 

unadjusted and adjusted images filling the cloud mask of the 

reference image. The unadjusted image is darker than the 

reference image and mosaicking them together may not be as 
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seamless compared to mosaicking adjusted image with the 

reference image as seen in Figure 2. It is preferable to do visual 

comparison in urban areas where more PIFs are present. To 

quantify the improvement caused by the adjustment, t-test is 

used. 

 

2.4 Validation 

 

To validate the effectiveness of the radiometric calibration, t-test 

is used. In a t-test, the level of significance of the difference 

between the observed measurement and the reference is 

measured. A low t-test score infers that the difference between 

the adjusted image and the reference image is statistically 

insignificant. Statistical insignificance can be interpreted as the 

difference between the adjusted and the reference image is lower 

than the magnitude of the random noise in the image. To do this, 

PIFs are divided into training and test sets. 70% of the PIFs are 

selected randomly to be part of the training set which will 

determine the adjustment parameters. The remaining 30% are 

used to check the effectiveness of the adjustment using a t-test. 

 
Date  

2015 

t-test scores for 

unadjusted images 

t-test scores for 

adjusted images 

blue green red blue green red 

Jan 

25 

16.368 -11.346 -5.672 -0.700 -0.307 -1.058 

Feb 

10 

-4.389 -23.223 -11.831 -0.074 1.279 0.763 

Feb 

26 

-

10.277 

-39.641 -33.776 -0.785 -0.989 -0.729 

Mar 

14 

-9.687 2.695 -0.824 0.169 2.406 -0.411 

Mar 

30 

-

40.060 

-

117.256 

-80.418 0.103 0.569 0.827 

Table 2. The computed t-test scores of sample unadjusted and 

adjusted images from Landsat-8. 

 

The training and test sets are selected at random and rerunning 

the radiometric calibration algorithm will provide the same 

population of PIFs but slightly different adjustment parameters 

and t-test scores. There are several cases wherein the adjustment 

receives a failing t-test score but readjustment causes a new 

selection of training PIFs and a passing t-test score. 

 

Table 2 shows the t-test scores of sample unadjusted and adjusted 

Landsat-8 images in the blue, green and red bands. For Landsat-

8 which has 7 bands after atmospheric-correction and cloud 

masking, the t-test score must be greater than -2.365 but less than 

2.365 to conclude that the image is statistically the same as the 

reference. The highlighted cells in Table 2 indicate that a certain 

band at a certain date did not pass the criteria. It can be seen that 

none but one band on the sample unadjusted images passed the t-

test. Also, the magnitude of several t-test scores of unadjusted 

images are too large compared to the magnitude of the threshold 

which is 2.365. Conversely, all of the t-test scores of the sample 

adjusted image passed except for one. In cases wherein at least 

one band of an adjusted image has a failed t-test score, the 

algorithm is re-run until an effective combination of training and 

test sets of PIFs provides passing t-test scores across all band. 

 

 

3. CONCLUSION 

Basic MAD method is proven to be sufficient to radiometrically 

calibrate atmospherically-corrected and cloud and shadow-

masked Sentinel-2, Landsat-7 and Landsat-8 images. The t-test 

proves that MAD is able to adjust the target images to have 

statistically insignificant difference from the target image.  
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