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ABSTRACT:  

 

Radar data has been historically expensive and complex to process. However, in this milieu of cloud-computing platforms and open-

source datasets, radar data analysis has become convenient and can now be performed for more exploratory researches. This study 

aims to perform multi-temporal analysis of radar backscatter to characterize dense and sparse forest from Sentinel-1 images. The 

area of study are reforested sites under the National Greening Program (NGP) of the Philippines. Ground data were collected: (1) in 

2019, from a 1.35 ha -site in Brgy. Calula, Ipil, Zamboanga Sibugay, (2) in 2019, from a 1.10 ha- site in Brgy. Cabatuanan, Basay, 

Negros Oriental, and (3) from PhilLiDAR 2 – Project 3: FRExLS’ 2.4 ha -validated site in Ubay, Bohol. SAR intensity values were 

derived from Sentinel-1 from Google Earth Engine, which is a cloud-based platform with a repository of satellite images and 

functionalities for data extraction and processing. The temporal variation in C-band radar backscatter from 2014 to 2018 were 

analyzed. The results show, for the whole period of analysis, that: in VH polarization, dense forest samples backscatter range from -

11 to -18 dB in VH and -2 to -13 dB in VV; sparse forest samples range from -12 to -21 dB in VH and -7 to -14 dB in VV; ground 

samples range from -12 to -24 dB in VH and -6 to -15 dB in VV; and water samples range from -21 to -30 dB in VH and -11 to -26 

dB in VV. Forest backscatter are expected to saturate over time, especially in dense forests. These variations are due to differences in 

forest species, landscape, environmental and climatic drivers, and phenomenon or interventions on the site.   

 

 

1. INTRODUCTION 

Remote Sensing (RS) is both a technology and science, used to 

observe, measure, and map objects on Earth’s surface from a 

distance. Through the years, it has been the focus of a lot of 

research and development works in terms of sensors, 

processing, simulation, and analysis according to CIFOR (2010) 

One of the key applications of RS is in the field of forestry. RS 

techniques such as forest classification and mapping contribute 

to forest management, inventory, and understanding. Forest loss 

due to deforestation and degradation can now be easily detected. 

Forest resource information can be inventoried without 

laboriously taking direct measurements on the field. Spatial 

variations in physiological characteristics, productivity, 

successional patterns, forest structure, and forest decline can 

also be analyzed. White, et al., (2016) has shown that the wealth 

of remotely-sensed data complemented by advanced remote 

sensing techniques contribute towards accurately and efficiently 

determining forest information for strategic planning and 

management. 

 

There is a need for temporal, spatial, and thematic forest 

information because of their role in global carbon balance and 

sustainable social, economic, and ecological development. RS 

has been used for decades for national forest inventories. 

Different types of satellite data have different uses and different 

drawbacks. Active RS technologies, such as Synthetic Aperture 

Radar (SAR), has been widely used nowadays as it provides 

new opportunities for global forest monitoring and inventory, in  

a cost-efficient manner, as mentioned by Tomppo, Praks, Wang, 

& Waser, (2019) 

 

SAR sensors operate at microwave spectrum; hence, it can 

penetrate through clouds and is not affected by weather 

conditions. An example of SAR data is from European Space 

Agency’s (ESA) Sentinel-1A which acquires a cloud-free 

satellite image every 12-days. Using in conjunction with data 

from Sentinel 1-B which also acquire data every 12 days, users 

technically have data every 6 days. However, radar data has 

been historically complex to process and analyze. Summarized 

by Walker (2016), depending on the application, system 

parameters such as sensor wavelength (X-, C-, L-, or P – band), 

polarization (HH, HV, VH, VV), incidence angle, and 

resolution; and target parameters such as structure (size, 

orientation, and distribution of scattering surfaces), surface 

roughness, moisture content, and slope orientation, must be 

taken into account when choosing what data and approach to 

use.   

 

SAR is sensitive to biophysical parameters and dynamics of 

vegetation, as well as the underlying parameters on the ground 

such as dielectric constant, geometry, deflection and 

irregularity, soil surface roughness, and water content, as shown 

by Nasirzadehdizaji, et al., (2019). Different applications of 

SAR in forestry include mapping of forest cover; mapping and 

analysis of forest structural attributes such as height, basal area, 

biomass and volume; monitoring disturbances such as 

widespread logging and forest fires; change detection for cases 

of deforestation and degradation; and monitoring of forest 

growth and regrowth. The applications supported by a SAR 

sensor, however, depend on the frequency used. 
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SERVIR, (2019) has summarized the applications of different 

wavelengths. Ka-, Ku-, and X- have high frequencies (27-40 

GHz, 18-27 GHz, 12-18 GHz) and shorter wavelengths (1.1-0.8 

cm, 1.7 – 1.1 cm, 2.4-1.7cm), which are rarely used for SAR 

remote sensing. Most space borne sensors use lower frequency 

bands with longer wavelength from X- to P- band, as the 

wavelength of a SAR sensor is linked to the penetration 

capabilities of the transmitted microwave signal. Longer 

wavelengths such as P- and L- band penetrate deeper into 

canopies and soils. X- band (8-12 GHz, 3.8-2.4 cm) SAR are of 

high-resolution, but are more suitable for urban and built-up 

monitoring. They are rarely used for characterizing forests as 

they have limited penetration and fast coherence decay into 

vegetation cover. C- band (4-5 GHz, 7.5-3.8 cm) SAR are of 

moderate to high resolution with increased vegetation 

penetration. There are a lot of SAR systems operating at this 

range because it is seen as a good compromise between X- band 

and longer wavelength L – band, and it allows wide swath 

imaging applicable for large-scale applications. There are very 

little but increasing use of S- band (2-4 GHz, 15-7.5 cm) SAR. 

A lot of developments are still underway for this range. S-band 

NovaSAR has been recently deployed in 2018. L- band (1-2 

GHz, 30-15 cm) SAR, on the other hand, are of medium 

resolution, but their shorter wavelengths allow high canopy 

penetration capabilities. L- band SARs are very useful for 

characterizing canopy and undergrowth structures, especially in 

dense forests. Because of these capabilities, a lot of 

development towards the future of SAR are focused on the L- 

band range. Lastly, P- band (0.3-1 GHz, 100-30 cm) SAR are 

also under development since this frequency is affected by 

ionospheric distortions. The first P- band space borne SAR, 

ESA’s Biomass, will be launched in 2020, and is aimed to focus 

on mapping the distribution and changes in biomass of Earth’s 

forests.             

 

Previous SAR studies mostly focused on forest classification, 

forest biomass estimation, and forest structure analysis. 

Vyjayanthi, et al. (2008)  have studied the SAR interaction with 

deciduous vegetation using advanced polarimetric and 

interferometric techniques on air-borne DLR-ESAR and 

spaceborne C-band ENVISAT-ASAR data. Their team acquired 

polarimetric signatures from L-band DLR-ESAR data for 

different vegetation types, the knowledge of which will aid in 

their qualitative assessment of forest resources. Their results 

show that bamboo exhibit double bounce, teak exhibit single 

bounce, and plantation exhibit corner reflector scattering 

mechanisms. They have also analyzed variations in 

backscattering coefficients in different polarizations (HH, VH, 

HV, and VV) and found VV to have significant variations. As 

they were comparing the results from C-, L- and P- bands of 

DLR-ESAR, they found out that at lower frequency (P- and L- 

band), the branches and trunks of the trees are dominant 

scatterers. But as the frequency increased, like in C-band, the 

effects of the leaves or the canopy are main backscatter 

contributor. The study of Dostalova, Milenkovic, Hollaus, and 

Wagner (2016) analyzed the seasonal variability of forest 

backscatter from dual-polarized Sentinel-1 data. They have 

studied backscatter variation and analyzed them with respect to 

forest type (coniferous, deciduous, and mixed), forest cover 

fraction, height, and structure. Forest cover information were 

derived from full-waveform airborne laser scanning (ALS) 

LiDAR data, collected with Riegl LMS-Q560 and LM-Q680. 

Forest height was derived from the generated normalized digital 

surface model (nDSM). Forest structure, represented by the 

vegetation amplitude fraction, was derived from the generated 

digital terrain model (DTM). In the study, they have shown that 

forest structure have an influence on backscatter seasonality as 

exhibited by the backscatter values of coniferous and mixed 

forests in summer and winter in Austria. Forest height has an 

overall very minimal influence on the backscatter, while forest 

cover fraction and type have the strongest influence on the 

backscatter of deciduous forests.   

 

A lot of SAR remote sensing time series analysis are still being 

developed as the demand for global data sets increase. These are 

also influenced by the increase in available satellite data 

archives. Time Series analysis are valuable in understanding the 

processess, which are very helpful in modelling and calibration. 

However, exponentially growing data volumes require big data 

processing infrastructures, as mentioned by Wagner, (2016). In 

the private sector, examples of big data infrastructures are 

Google Earth Engine, Amazon Web Services, and Helix Nebula 

Science Cloud. In the public sector, initiatives for big data 

infrastructures are triggered mostly by national space 

programmes such as THEIA Land Data Centre (France), 

OPUS/Copernicus Centre (Germany), and European Space 

Agency mission platforms. Wagner (2016) has also summarized 

some applications from time series analysis of Sentinel-1 data, 

as processed on high performance computing platforms. Related 

to forest mapping, forest area were derived from Sentinel-1 

images from January 2014 to March 2015, and seasonal 

backscatter signal over forest  were analyzed from January 2015 

to May 2016, by Dostalova, Milenkovic, Hollaus, & Wagner, 

(2016). 

 

This study aims to characterize dense and sparse forest from 

multi-temporal radar backscatter from Sentinel-1A images. The 

objective of this study is to determine the separability and 

variability of dense and sparse forests of C-band radar temporal 

signature. The sites used in the study are reforestation sites from 

the Philippine’s National Greening Program (NGP) which 

started in 2011. Sentinel-1A data was used because they are 

freely-available and temporally dense with medium-scale 

images acquired every 12 days from 2014. To process such 

huge data from 2014, on the context that SAR data are of big 

file sizes (one scene is typically ~900 MB), high performance 

computing resources would be required. In this milieu of 

supercomputers and large-scale cloud facilities, big data 

processing has become convenient with platforms such as 

Google Earth Engine which provide users high performance 

computing resources through cloud. GEE has been used in this 

study to extract and process SAR data, as it has a large-scale 

analysis functionality and a catalog of satellite imageries.  

 

 

2. METHODOLOGY 

In this study, SAR data from 2014 to 2017 for three (3) 

reforested sites under NGP were extracted from Google Earth 

Engine. Additionally, three (3) samples for four (4) classes: 

dense forest, sparse forest, ground, and water, were made and 

analysed to compare their radar backscatter trends with the 

reforested sites’ trends. 

 

2.1 Data Input 

2.1.1 National Greening Program (NGP) 

 

The Philippines is one of the countries with the richest forest 

biodiversity in the world. However, it is also one of the most 

threatened. The country is among the most deforested in the 

tropics in the last 40 years, according to the study of Walpole, 

(2011) According to the Forest Management Bureau (FMB) of 

the Department of Environment and Natural Resources 
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(DENR), approximately 47,000 hectares of forest cover is being 

lost every year. The forest cover in 2003 accounts to 7.2 million 

hectares, but in 2010, this number went down to 6.8 million 

hectares. This accounts to less than 24 percent of the original 

forest cover from 1900s. Wertz-Kanounnikoff and Kongphan-

Apirak (2008) has shown that the key-drivers of deforestation in 

the Philippines are widespread logging, both legal and illegal. 

Since 2015, deforestation in the Philippines has decreased 

through government initiatives and increased law enforcement. 

According to the United Nation’s Food and Agriculture 

Organization (FAO) 2015 Global Forest Resources Assessment, 

the country has increased its forest area by 240,000 hectares per 

year from 2010 to 2015. This is attributed to the government’s 

massive forest rehabilitation program, the National Greening 

Program (NGP). The NGP seeks to plant 1.5 billion trees in 1.5 

million hectares of forest lands in the country for a period of six 

(6) years, from 2011 to 2016. The main objective of NGP is 

reforestation, to address poverty reduction, food security, 

environmental stability, biodiversity conservation, and climate 

change mitigation and adaptation. As of 2017, this program 

boasts that 1.6 million hectares of forest lands have been 

rehabilitated.  Now called Enhanced National Greening 

Program (ENGP), it aims to rehabilitate the remaining 

unproductive, denuded, and degraded forestlands from 2016 to 

2028.  

 

2.1.2 Site Descriptions 

 

The select NGP data used in this study were acquired from the 

Department of Environment and Natural Resources (DENR), 

Digital Imaging for Monitoring and Evaluation – Monitoring 

and Assessment of Planting Activities and other Applications 

(DIME – MAPA) Project, and PHIL-LIDAR 2: Nationwide 

Detailed Resources Assessment – Forest Resource Extraction 

from LiDAR Surveys (FRExLS) Project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.2.1 Ubay, Bohol 

 

The Bohol NGP site located at Barangay San Pascual, Ubay, 

Bohol was ground validated by the FRExLS team on November 

7-16, 2016. This site was established in 2011 with Mangium 

(Acacia Mangium), Auri, and Teak, with minimal planting of 

Ipil-Ipil and Mahogany (Swietenia macrophylla). The size of 

the site was 2.4 hectares, with 1,716 geo-tagged trees. The slope 

of the site is uneven, lying on the mountain slopes. 

2.1.2.2 Ipil, Zamboanga Sibugay 

 

The Zamboanga Sibugay site located at Barangay Calula, 

Roseller T Lim, Zamboanga Sibugay was ground validated by 

the DIME-MAPA team on February 25 – March 6, 2019. The 

1.35-hectare site with 1,149 inventoried trees is 82.8% 

composed of Rubber (Hevea brasiliensis). Other species in site 

are: Banana (Musa acuminata), Coconut (Cocos nucifera), and 

Gmelina (Gmelina arborea). The site lies on a flat terrain. 

 

2.1.2.3 Basay, Negros Oriental 

 

The Negros Oriental site located at Barangay Cabatuanan, 

Basay, Negros Oriental was ground validated by the DIME-

MAPA team on February 4-13, 2019. The 1.1-hectare site with 

1,416 geo-tagged trees is composed of 92.4% Mangium (Acacia 

Mangium) trees. The only other species in the area is Agboy 

(Mussaenda philippica). The site lies on uneven mountain 

slopes, ranging from 50-120% grade.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Location map of the study areas. Corresponding geo-tagged trees map of the NGP sites in Bohol, 

Zamboanga Sibugay, and Negros Oriental are included. 

Philippines 
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2.2 Google Earth Engine 

2.2.1 Sentinel-1A SAR Data 

 

Earth Engine has a collection of Sentinel-1 Level 1 Ground 

Range Detected (GRD) images processed to backscatter 

coefficient (σ°) expressed in decibels (dB). The default pre-

processing steps applied were: 

 

• Apply Orbit file 

• GRD border noise removal 

• Thermal noise removal 

• Radiometric calibration 

 

The whole image collection available from 2014 to 2017 for the 

three (3) sites and from 2014 to 2018 for the select samples 

were accessed and processed on GEE. The data from 76 

imageries from October 14, 2014 to December 21, 2017, and 

from 106 imageries from October 14, 2014 to October 24, 2018, 

were used in the study. 

 

2.2.2 Data Processing 

 

Since no filtering was applied yet on the Sentinel-1A data, a 

speckle filtering algorithm was also added on the code in Earth 

Engine to remove speckle. The Speckle filter applied was 

Refined Lee which is a well-known filter for despeckling and 

enhancing of SAR images, according to Yommy, Lim, & Wu, 

(2015). The code for Refined Lee used is based from the work 

of Guido Lemoine, who adapted the Refined Lee speckle filter 

as coded in SNAP 3.0 S1TBX, in GEE.  

 

The filtered temporal radar backscatter data expressed in dB 

were extracted and then plotted using Matplotlib. The resolution 

used was 10m x 10m. 

 

2.3 Time Series Analysis 

 

2.3.1 Samples for dense forest, sparse forest, ground and 

water 

 

In order to model dense and sparse forest on multi-temporal 

SAR images, samples for different classes were made for dense 

forest, sparse forest, water, and ground in Bohol. 10m x 10m 

sampling was done was done using the canopy height model 

(CHM) generated from LiDAR from FRExLS, and by using 

PLANET images with up to 3-meters resolution. Three (3) 

samples per class were made. Their radar backscatter temporal 

data were extracted from GEE and then plotted. The purpose of 

performing analysis with these samples is to provide an idea of 

the possible backscatter ranges of different cover types, which 

will aid in the qualitative assessment of the NGP sites’ radar 

backscattering.   

 

 

2.3.2 Analysis of the NGP sites 

 

The C-band radar temporal signature for Bohol, Zamboanga 

Sibugay, and Negros Oriental NGP sites were plotted. Analysis 

based on site knowledge, radar temporal signature, and 

corresponding rainfall and temperature data from Philippine 

Atmospheric, Geophysical and Astronomical Services 

Administration (PAG-ASA) were done. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 General overview of the methodology 

 

 

3. RESULTS AND DISCUSSION 

Google Earth Engine was used to extract Sentinel-1A data for 

the sites and sample classes from multiple radar images (from 

2014 to 2017). The regions of interest are defined in the code as 

a geometry. To get the mean of the pixel values in the specified 

region on the image collection of interest, reducers were used. 

After aggregating the data, a Refined Lee filter was applied. The 

processed radar temporal data from 76 and 106 images, 

respectively, were then exported. Additional normalization was 

done to improve the time-series data. 

 

 

3.1 Time-series analysis of sample classes 

The corresponding Speckle Filtered and normalized temporal 

signatures for the sample classes are shown at Figures 3 and 4.  

There is one graph each for VV and VH polarization, and each 

line on a graph correspond to one sample. Every line 

corresponds to the radar temporal backscatter of each sample 

from 2014 to 2018. There are three (3) samples per class. For 

better representation, results were expressed in boxplots. 

 

On the study made by the Committee on Earth Observation 

Satellites (CEOS) in 2015, they have summarized and compared 

the backscatter values of different land cover types in L-band 

(ALOS-2) and C-band (Sentinel-1). However, their study was 

limited, only using single-date images in their analysis. Their 

results show dense tropical homogenous forest in Colombia to 

have a C-band -12.4 (+/- 1.9) dB response in VH, and -6.2 (+/- 

1.0) dB in VV. Areas with deforestation and secondary forest 

growth have a -13.1 (+/- 1.4) DB response in VH, and -8.4 (+/- 

1.7) DB in VV. Agriculture composed of dryland crops, in 

Switzerland, have -17.8 (+/- 2.6) dB in VH, and -11.3 (+/- 2.3) 

DB in VV. Rangeland and pastures, composed of different 

vegetation (e.g. grass), in Brazil, have -19.4 (+/- 2.7) dB in VH, 

and -12 (+/- 2.3) dB in VV. Open water have -22.5 (+/- 1.5) dB 

in VH, and -17.5 (+/- 5) dB in VV. Lastly, rough and uneven 

terrain in Kenya have -18.4 (+/- 3.1) dB in VH, and -8.3 (+/- 2) 

dB in VV. For comparison, the resulting backscatter values of 

the samples in this study are shown at Figures 7 and 8. 

 

From the boxplots on Figures 5 and 6, water (blue) samples are 

easily separable from the rest, in VH and VV signals. These 

samples are taken from Bayongan Lake in Ubay, Bohol. On a 

SAR image, the lake looks dark, with the interpretation that the 

water body is a smooth surface, hence, the specular reflection. 

Solbø and Solheim (2005) and Braun (2017) have shown that in 

the case of calm and open water bodies, the incoming 

microwave signal is reflected at the surface. Due to the radar 

sensors’ side-looking geometry, majority of the reflected signals 

are heading in to the look direction, instead of returning to the 

sensor. This is the reason why water exhibit low backscatter 

values (~ -20 dB). In VH, the water samples’ inter-quartile 
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range, as well as their median have high agreement with each 

other. In VV, the water samples’ median are close, yet, their 

boxes are uneven in size. It is also interesting to note, that while 

the boxes for water have relatively high agreement in both VH 

and VV, their whiskers are long, which means that the 

backscatter values outside of the middle 50% stretch over a 

wide range. Referring to Figure 4, the water samples’ signatures 

overlap but their overall radar temporal signatures, after 

applying speckle filter and minimal normalization, are still 

erratic.  

 

Dense forest, sparse forest, and ground samples were made in 

Ubay, Bohol using the LiDAR derived Canopy Height Model 

(CHM) and geo-tagged trees in 2016 from FRExLS, and 

PLANET satellite imageries. 10m x 10m pixels with high CHM 

values around 20-40 meters, were considered for dense forest 

samples. This is based on the assumption that adjacent pixels 

with high CHM are fully covered by the forest canopies as the 

CHM resolution is 1m x 1m. For sparse forest, 10m x 10m 

pixels with less CHM values around 10 meters, and are 

partially-covered by forest canopies were chosen. This is based 

on the assumption that sparse sample pixels have a fractional 

cover comprising of trees, soil, and undergrowth (e.g. grass). 

For ground samples, PLANET images and Google Earth were 

used to confirm that the samples are consistent bare soil for the 

period of study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The temporal signature of dense forest samples (L) 

and sparse forest samples (R), in VH and VV. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The temporal signature of ground samples (L) and 

water samples (R), in VH and VV. 

 

 

The inter-quartile range of dense (green) samples are higher 

than sparse (yellow) samples, but sparse and ground (red) 

samples’ range are overlapping, in VH. Sparse forest and 

ground samples have a very high agreement in VH, with their 

medians being close.  Similarly, in VV, the inter-quartile range 

of dense samples are higher than sparse, but sparse and ground 

ranges are still overlapping, but not as high in agreement as in 

VH.  

 

In C-band wavelength, the radar signal scatter directly on the 

leaves of the dense forest canopy without penetrating deeper 

through the foliage. Mature dense tropical forests are expected 

to have uniform radar temporal signature in both VH and VV  

(CEOS, 2018) , but as shown on Figure 3, this is not always the 

case. However, the median values of the dense forest samples 

range from -12.34 to -13.69 DB in VH and from -6.49 to -7.78 

DB in VV, which are relatively close to the values from the 

study conducted by CEOS.  

 

C-band wavelength is highly sensitive to grasses and low 

vegetation, which has a strong response at both VH and VV.  

(CEOS, 2018) However, presence of different vegetation, with 

varying structure and growth stages, will affect the response at 

both VH and VV. Sparse forest samples’ median are around -17 

DB in VH, and around -11 to -12 DB in VV, which are close to 

the ranges for agricultural dryland crops and pasture grasslands 

by CEOS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Box-plot of samples in VH polarization (dB). Green 

samples are dense forest samples, yellow-orange are sparse 

forest samples, red-brown are ground samples, and blue are 

water samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Box-plot of samples in VV polarization (dB) 

 

However, the sparse forest and ground samples’ ranges are 

overlapping. This might be caused by the selected samples for 

ground, because they might actually have low vegetation, which 

the C-band wavelength is sensitive of. C-band rocky terrain 

were identified to have high values at VV, around -8 dB, and 

have moderate values at VH, around -18 dB. The results for the 

ground samples are also close to the identified values by the 

CEOS study, with around -17 dB in VH, and around -8 to -11 

dB in VV. Further research with better sampling, matched with 
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periodic ground validation, is recommended to analyze the radar 

backscattering of different land cover types. It is very important 

to have a good site knowledge for analysis, since local 

vegetation characteristics, local weather, and seasonal 

conditions at the time of acquisition, greatly affect the 

backscatter.  
 VH polarization 

Sample 
minimum 

value 

first 

quartile 
median 

third 

quartile 

maximum 

value 

standard 

dev 

dense1 -17.01 -14.43 -13.69 -12.85 -9.56 1.36 

dense2 -18.56 -15.60 -14.74 -13.49 -9.39 1.73 

dense3 -16.30 -13.75 -12.34 -11.19 -8.79 1.67 

sparse1 -22.34 -18.48 -17.52 -16.54 -12.41 1.67 

sparse2 -20.79 -17.95 -16.74 -14.96 -12.25 2.14 

sparse3 -20.68 -18.51 -17.66 -16.53 -12.84 1.54 

ground1 -21.67 -19.24 -17.86 -16.75 -12.50 1.98 

ground2 -24.68 -19.66 -17.83 -16.50 -12.65 2.19 

ground3 -23.90 -18.93 -17.03 -15.39 -12.18 2.31 

water1 -32.97 -27.34 -26.16 -24.95 -21.55 2.03 

water2 -32.81 -27.19 -25.79 -24.45 -21.24 1.98 

water3 -32.14 -26.88 -25.76 -24.41 -21.76 1.89 

 

Figure 7. VH backscatter values of the samples (dB), from the 

boxplot from Figure 5. 

 
 VV polarization 

Sample 
minimum 

value 

first 

quartile 
median 

third 

quartile 

maximum 

value 

standard 

dev 

dense1 -13.33 -8.73 -7.78 -7.00 -5.31 1.36 

dense2 -11.96 -9.42 -8.62 -7.20 -3.49 1.74 

dense3 -9.44 -7.68 -6.49 -5.27 -2.53 1.46 

sparse1 -14.90 -12.67 -11.79 -10.94 -7.30 1.34 

sparse2 -14.55 -11.97 -10.92 -9.90 -6.93 1.52 

sparse3 -14.46 -12.73 -12.28 -11.27 -8.11 1.14 

ground1 -14.10 -12.12 -11.32 -10.03 -6.76 1.50 

ground2 -15.04 -12.90 -11.83 -10.84 -8.30 1.42 

ground3 -13.01 -9.66 -8.68 -7.73 -2.55 1.67 

water1 -26.11 -22.65 -21.29 -19.61 -11.15 2.27 

water2 -24.88 -21.85 -21.06 -19.86 -12.20 2.03 

water3 -25.09 -21.65 -20.66 -19.01 -13.22 2.08 

 

Figure 8. VV backscatter values of the samples (dB), from the 

boxplot in Figure 6. 

 

3.2. Backscatter Time Series Analysis of NGP sites 

  

 

The corresponding time-series plot of Bohol, Zamboanga 

Sibugay, and Negros Oriental NGP sites are shown at Figure 9. 

Provided are the sites’ mean backscatter from 2014 to 2017 in 

VH, VV, and ratio of VH/VV. Also included below the graphs 

are the corresponding rainfall and temperature plots, per site. 

Daily Rainfall and Temperature were acquired from PAG-ASA. 

Rainfall (mm) and Temperature graph will serve as reference, 

whether changing environmental conditions affect radar 

backscattering, according to the study by Dostalova, 

Milenkovic, Hollaus, & Wagner, (2016).  

 

Referring to Figure 9, the temporal signatures of the NGP sites 

are grouped by date, hence the obvious discontinuity at some 

points. Blue lines are 2014 data; yellow for 2015, green for 

2016, and red for 2017. The temporal signature was grouped by 

years, for easier discussion and visualization of changes in radar 

backscatter, since the sites are growing reforestation sites 

established from 2011 and 2012. By 2014, these forests are 

around 2- 3 years old.  

 

Among the three sites, the Zamboanga Sibugay NGP site is the 

most ideal, as it lies on a flat terrain and it is a homogenous 

rubber-plantation. This site fits a good regular shape covering 

dense forest cover, which will be reduced well when aggregated 

using ee.reduceRegion on Google Earth Engine. This means 

that with its shape, the reduction and averaging of backscatter 

for its area will only include dense forest cover. This is unlike 

the shape of Negros Oriental, for example, which is spread out, 

and will include adjacent pixels without much forest cover on 

its region aggregation. According to the study by CEOS (2015), 

forest plantations of rubber in Vietnam have a -12.8 (+/- -1.1) 

dB in VH and -6.5 (+/- -1.2) DB in VV. The temporal 

signatures of the Zamboanga Sibugay site, in both VH and VV, 

are within this range. Also, these temporal signatures fall within 

the range of the dense forest samples identified previously. 

Rubber trees are of deciduous forest type, with leaf sizes up to 

13-15cm which are larger than the C-band wavelength. The 

dominant backscatter mechanism will be direct canopy 

scattering (in C-band) because the leaves of the dense forest 

canopy will cause direct scattering, where the transmitted signal 

is reflected directly back to the sensor.   

 

Looking at Figure 9, all three sites are forested, however, only 

Zamboanga Sibugay and Negros Oriental sites, have a similarity 

in their trends and have closer backscatter ranges to dense forest 

samples. They both have a peak towards the end of year 2015 

(yellow line), then a big drop in early 2016 (green line), and 

then increase in backscatter again and maintain the variation of 

around 2 dB until 2017 (red line), at both VH and VV. The 

Bohol NGP site’s temporal signature fall within the identified 

range of sparse forest samples. This might be caused mainly by 

the heterogeneity of species planted, and the uneven planting on 

the site caused by steep slopes. The dominant backscatter 

mechanism here would be diffuse scattering, where the signal is 

scattered into different directions. Again, this is because C-band 

is sensitive to the presence of different vegetation with varying 

structure and growth stages, which affects the backscatter. 

Comparing with the Negros Oriental sites’ radar temporal 

signature, its values still fall within the range of dense forest 

samples even if it is situated on a very steep slope too. The 

majority of the trees planted on it are Mahogany trees, which 

are fast-growing, with an increase in height of 3-4 feet per year. 

This indicates that the slope of the terrain and height of trees, 

are not the major factors affecting backscatter, but the 

homogeneity or heterogeneity of species planted and the 

planting spacing (with too much undergrowth) are.  

 

Dense and sparse forests’ mean values are, in VH: -13.59 dB 

and -17.31 DB, and in VV: -7.63 DB and -11.66 dB, 

respectively. It is hard to completely separate the two by just 

using the ranges as reference, since they have around 1-3 dB 

variation in VH, and around 1-4 dB variation in VV, where their 

radar backscatter values overlap in the overall temporal 

signature. 
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However, in terms of trend, dense forests have higher 

backscatter response compared to sparse forests because of the 

scattering mechanisms they exhibit. Dense forests are mostly 

influenced by direct scattering, whereas sparse forests are 

mostly influenced by diffuse scattering. Recall, the three sites 

were established in 2011, which indicates that they are around 3 

years old in 2014. Looking back at the trend of their temporal 

signatures in Figure 9, they all started with a fairly low 

backscatter in 2015, going up until the end of the year. This 

trend is repeated again, when the sites are 5 years old, in year 

2016. From the increase in magnitude from the end of 2015, the 

sites’ radar backscatter dropped significantly as the summer 

season ends, in the Philippines. The summer season in the 

country is from November to May, while the rainy season is 

from June to October. These significantly low radar backscatter 

values in summer 2016 increased, as the rainy season started. 

The trend repeated again in 2017, subtlety, unlike in 2016. The 

drop in radar backscatter is still present as the summer ends, and 

increased again as the rainy season started. However, the values 

at this point are not as varying anymore. This may be attributed 

to the saturation of forest signals. Joshi, et. al (2017) has shown 

in their study that there is an increase in backscatter due to 

changes in forest properties such as increasing stem sizes, which 

are compensated by an equal decrease in the magnitude, caused 

by other properties like increase in tree height, contributing to 

the saturation of radar signals over forest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. CONCLUSION 

Google Earth Engine was used to derive the C-band Sentinel-

1A radar temporal data of select sample sites (dense forest, 

sparse forest, ground, and water) and the reforestation sites in 

Ubay, Bohol, Zamboanga Sibugay, and Negros Oriental from 

2014 onwards. For dense forest samples, the typical backscatter 

ranges from -11 to -18 dB in VH and -2 to -13 dB in VV. 

Sparse forest samples range from -12 to -21 dB in VH and -7 to 

-14 dB in VV. Ground samples range from -12 to -24 dB in VH 

and -6 to -15 dB in VV. Water samples, on the otherhand,  

range from -21 to -30 dB in VH and -11 to -26 dB in VV. 

However, as seen from the boxplots showing the distribution, 

median, and variability of radar backscatter of each samples, it 

is difficult to fully distinguish dense forest signals from sparse 

forest. 

 

Forest type, homogeneity of species planted, and seasonal 

behaviour are three of the major factors contributing to the 

backscattering variation on forests’ temporal signature. Forest 

backscatter are also expected to saturate over time, especially in 

dense forests. The variations are due to differences in forest 

species, landscape, environmental and climatic drivers, and 

phenomenon or interventions on the site.  For further research, it 

is suggested to have better sampling, site knowledge, ground 

data, and separate analysis of data by known forest type 

(coniferous, deciduous), structure, and season. It is also 

Figure 9. (From left) Temporal signature of Bohol, Zamboanga Sibugay, and Negros Oriental NGP sites. Provided are (from top 

to bottom) their plots in VH (dB), VV(dB), VH/VV, rainfall (mm), and temperature (Celsius). The temporal signature for VH, 

VV, and VH/VV are grouped and color-coded by year: blue (2014), yellow (2015), green (2016), and red (2017). 

Ubay, Bohol RT Lim, Zamboanga Sibugay Cabatuanan, Negros Oriental 
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suggested to have additional external data such as forest cover 

fraction, height, and structure for modelling.  
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