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ABSTRACT: 

 

The fastest urbanization is occurring in the Global South which includes many developing nations in Asia. However, a rapid and 

unplanned urban growth could threaten the sustainability of the process. A key step towards a sustainable urban development is to 

better understand interdependencies amongst urban growth patterns, infrastructure and socio-economic indicators. Here we chose 

Bangkok, Thailand as a megacity case study to assess the spatio-temporal urban growth dynamics and specifically its dependency 

with road density at intra-city scales. The SLEUTH urban growth model is further applied for predicting future expansion over the 

next decade and to assess the future intra-city expansion. Urban expansion patterns for Bangkok were generated for 1987 and 2017 

using Landsat derived urban land-cover maps. Open Street Map (OSM) is used to generate a 2017 road density map. The urban 

expansion (1987-2017) was observed to follow a radially outward expanding pattern inland, with the logarithmic urban expansion 

rate having an inverted concave trend with road density. The rising/falling limbs then indicated an increase/decrease of urban 

expansion for which a road density “turning point” is readily identified and further used to develop a road density-based zoning 

map that highlights the different intra-city urban expansion rates. The SLEUTH predicted urban growth till year 2027 which also 

showed expansion outward from existing urban areas. The future expansion trend is also consistent with the turning point trend. 

This study showed that such spatial-temporal analysis of urban expansion coupled with SLEUTH can be useful for investigating 

likely outcomes of city development plans. 

 

 

1. INTRODUCTION 

The coming decades is expected to witness a major shift in the 

distribution of global population from rural to urban with the 

projected urban population to comprise around 66% of the 

world’s population by 2050 (UNPD, 2018). The world’s urban 

population is expected to rise by 2.5 billion over 2014 to 2050, 

with nearly 90 percent of the increase concentrated in Asia and 

Africa (UNPD, 2018). Corresponding global urban extent is 

predicted to double by year 2025 when compared to 1996 

(Bishop et al., 2000). Seto et al., (2011) further estimated that by 

year 2030, global land urbanized is estimated to increase by at 

least 430,000 sq.km from its existing 2000 value of ~308,000 

sq.km. Asia and Southeast Asia (SEA), in particular, have given 

rise to major megacities (population over 10 million), such as 

Bangkok, Jakarta, and Manila. All these imply large and rapid 

urbanization with huge demands for increased urban residential, 

commercial and industrial areas along with infrastructures. 

 

Urbanization if properly planned and managed, brings important 

benefits to society and to the development of nations. Cities play 

an outsized role in their generation of economic activity 

accounting for 80% of the world GDP and underpinning the 

backbone of world trade (UNPD, 2018). Urbanization and 

sustainable development further have a synergistic relationship. 

Urbanization generally has a positive impact on economic and 

societal development as people are being drawn to cities in search 

for better livelihoods. Whilst proper planning of urban growth 

could lead to favorable economic and social development, rapid 

and unplanned growth could threaten the sustainability of the 

development process with impacting negatively on hydrological 

systems, biodiversity and indeed the global environment. These 

negative risks further increase with increasing urbanization, e.g. 

urban expansion into vegetated lands could alter the carbon flux 

(Seto et al., 2012; Zhou et al., 2013), threatening biodiversity, 

and impacting on climate change (Triantakonstantis and 

Mountrakis, 2012). Figure 1, as adapted from the World 

Economic Forum Global risks perception survey of 2014, shows 

that failure of urban planning as arising from inadequate or 

poorly planned national infrastructure is the major risk in SEA. 

This is amongst the risks faced which includes terrorist risk and 

water crisis. Hence, properly planned infrastructure alongside 

urbanization is vital in the urbanization process. An important 

step towards this is to better understand and model 

interdependencies amongst urban growth, infrastructure and 

socio-economic indicators.  

 

Socio-economic data covering GDP and population are good data 

sources for urbanization studies (Chen et al., 2014; Henderson, 

2003; Pumain, 2004). Population is often the main parameter 

used as a proxy to measure urban growth as assessed via the rate 

of population change and/or population density change with time. 

However, such data is frequently  unavailable at the required 

spatial and temporal resolutions in many less-developed and 

developing nations (Masek et al., 2000) for which remotely 

sensed (RS) data can be a viable alternative, providing data at 

multiple spatial and temporal scales. Optical RS data, especially 

the Landsat data has been widely incorporated to analyze land 

use/land cover changes as well as urban growth dynamics at 

global and regional scales (Almazroui et al., 2017; Bhatta, 2009; 

Subasinghe et al., 2016; Wilson et al., 2003; Yang, 2002). Other 

sources of RS data, mainly the Night-Time Lights (NTL) and 

Visible Infrared Imaging Radiometer Suite (VIIRS) data, have 

also been frequently used for assessing urban growth at global 

and regional scales because of their direct relevance to 

anthropogenic activities (Elvidge et al., 2014; Imhoff et al., 1997; 
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Kamarajugedda et al., 2017; Liu et al., 2012; Ma et al., 2015; 

Pandey et al., 2013; Zhao et al., 2018). However, most reported 

studies on  assessing urbanization dynamics using RS data are for 

the regions of US, Europe, China and India (Batty, 2007; Catalán 

et al., 2008; Cauwels et al., 2014; Chand et al., 2009; Herold et 

al., 2003; Liu et al., 2012; Pandey et al., 2013) with very few for 

SEA cities. Also, road density has been reported as an important 

index in understanding and analyzing complex urban 

developmental patterns (Strano et al., 2012; Zhang et al., 2015).  

 

 
Figure 1. SEA risk perception survey map (Adapted from 

Global risks perception survey 2014, World Economic Forum) 

 

Urban growth prediction can be performed at scales spanning 

global, regional or city as depending on the level of data 

availability. However, growth predication at city and intra-city 

scale have inherent higher uncertainty as cities are complex 

systems with intra-city growth dynamics. Various urban growth 

prediction models (UGPM) are developed with the most common 

being linear/logistic regression, agent-based, and Cellular 

Automata (CA) models, and with CA models being increasingly 

used (Santé et al., 2010). A review paper on UGPM by 

Triantakonstantis and Mountrakis (2012) reported that out of 156 

manuscripts by different researchers, almost 83% used the CA 

model for urban growth predication. The SLEUTH (slope, 

landuse, exclusion, urban extent, transportation and hillshade) is 

one commonly used CA-based UGPM with many reported 

studies (Al-shalabi et al., 2013; Bihamta et al., 2015; Clarke and 

Gaydos, 1998; Herold et al., 2003; Mallouk et al., 2019; Saxena 

and Jat, 2019). In the SLEUTH model, urban growth rules are 

applied on a cell-by-cell within a uniform geographical lattice 

thus making it highly ideal for spatial growth predictions. The 

dataset used by SLEUTH at its initial time period has a set of 

growth parameters and probabilities, as determined via 

calibration using historical urban growth data. This initial, or 

starting ‘seed’ layer is used to generate growth over time with 

each cell acting independently, and growth patterns emerging 

(Clarke and Gaydos, 1998). 

 

In this work, we use Bangkok as a demonstration study megacity 

to assess the spatio-temporal interdependencies amongst urban 

growth, infrastructure and socio-economic indicators, and via 

SLEUTH to further predict the future expansion pattern during 

the next decade. Specifically, we quantified Bangkok’s urban 

areal and population expansion rates over decadal time scales 

(year 1987 to 2017) and delineated the intra-city expansion trend 

based on deduced road density grades, as representing different 

levels of infrastructure.  A turning point in road density is further 

identified wherein the expansion rate is larger before the turning 

point value but slower thereafter. Via SLEUTH, we further 

projected the urban expanded areas to year 2027 wherein we 

show that the derived urban expansion trends with road density 

similarly holds.  This study thus represents one of the few very 

reported at intra-city scales and especially for SEA cities (e.g. 

Zhao et al. (2017) reported on a similar study for Beijing, New 

York, London and Chicago). As such our results and similar 

results from other studies should be find use towards guiding 

urban development planning. 

 

 

2. MATERIALS AND METHODS 

2.1 Study area 

Bangkok metropolis is one of the largest cities in Southeast Asia 

with population of over 5 million. More than half of the 

population in the larger Bangkok metropolitan region, which 

comprises of Bangkok metropolis and 5 adjacent provinces, lives 

in Bangkok metropolis with a high population density of around 

5258 people/km2 (Losiri et al., 2016). About 97 percent of the 

Gross Regional Product (GRP) of the Bangkok metropolitan 

region is further generated by Bangkok metropolis (Losiri et al., 

2016) and Bangkok is reported to have around 19,705 USD per 

capita economic output (Florida and Fasche, 2017). Figure 2 

shows the Bangkok metropolis region used in our study with 

administrative boundary as downloaded from www.gadm.org. 

The general urbanization pattern in the Bangkok metropolis or 

city (the term city is used hereafter to denote metropolis) was 

found along the Chao Phraya River which then expanded along 

the transportation network with centers of smaller urban clusters. 

 

 
 

Figure 2. Bangkok metropolis area (boundary highlighted in 

black) 

 

2.2 Datasets used 

We used the United States Geological Survey (USGS) remotely 

sensed Landsat satellite data to analyze urban growth for 

Bangkok city over a three decadal range. Landsat Thematic 

Mapper (TM) and Operational Land Imager (OLI) sensors 

provide multi-spectral data at 30 m spatial resolution and are 

operational since 1982. Landsat data for Bangkok was obtained 

for two years of 1987 and 2017 as downloaded using the USGS 

earth explorer website (http://earthexplorer.usgs.gov/) and with 

selected images having less than 10% cloud cover. For the 

SLEUTH model development Landsat data for two additional 

years of 1997 and 2007 was included as needed for model 

calibration. 

 

The gridded population of the world version 4 (GPWv4) dataset 

developed by the Center for International Earth Science 
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Information Network (CEISIN) 2017, was used to extract 

population density data for Bangkok. This gridded dataset has a 

spatial resolution of 30 arc seconds (~1 km at equator). The data 

is available for years 2000, 2005, 2010, 2015 with a projection to 

year 2020. We used the UN adjusted GPWv4 population density 

datasets for years 2000 and 2015. Lastly, Open Street Map 

(OSM) polyline road network data for Bangkok for year 2017 

was obtained from http://download.geofabrik.de as licensed 

under www.openstreetmap.org. 

 

2.3 Methodology 

The methodology comprises: 1) Assessing urban expansion 

between 1987 and 2017 and developing correlations amongst 

urban expansion, road density and population at intra-city level; 

2) Developing urban growth prediction model using SLEUTH 

for future urban expansion for Bangkok metropolis. 

 

2.4.1 Urban expansion and correlation analysis 

 

The Maximum Likelihood classifier in ArcGIS 10.0 software 

was used to classify the Landsat imagery into four major classes 

comprising urban, water body, vegetation and barren land. 

Training samples needed in the supervised classification were 

selected via visual inspection. The validation were performed 

using another 200 independently generated ground truth points 

selected with the aid of satellite imagery, google earth and 

topographic maps. A minimum of 85% in overall accuracy, 

defined as percentage correct in urban plus non-urban 

classification, was achieved for the land cover classified maps. 

Spatial overlay analysis was performed to extract the urban 

expansion map of Bangkok between 1987 and 2017 and the result 

shown in Figure 3. 

 

 
Figure 3. Urban expansion map – red pixels indicate new urban 

areas formed between 1987 and 2017 

 

The gridded UN adjusted GPWv4 population density values for 

years 2000 and 2015 were used to derive a population density 

change map over the 15 years, which was then resampled to 

Landsat data spatial resolution of 30 m for maintaining spatial 

uniformity in intra-city analysis. 

 

Kernel density analysis using ArcGIS 10.0 software was 

performed on the road network vector shapefile to generate a road 

density map. Here road density is defined as the ratio of the total 

length of the centerline of roads to the land area (i.e. units of 

km/km2). The road density map was generated at 30 m spatial 

resolution similar to Landsat data and classified using Jenks 

natural break algorithm into 5 grades. The road density map for 

Bangkok is shown in Figure 4. 

 

 
Figure 4. Road density map for Bangkok 

 

Spatial overlay analysis was firstly performed between the 

generated urban expansion, road density and population growth 

maps. The urban expanded pixels over 1987 to 2017 were 

converted to vector shapefile (points) and with the corresponding 

road density and population growth values extracted. Regression 

analysis was then applied to assess the linkage between urban 

expansion rate or population growth rate (specifically the 

logarithm of the expansion/growth rates) with road density as 

following Zhao et al. (2017). 

 

As discussed later, an inverted (downward) concave pattern was 

observed for the logarithm of the expansion/growth rates with 

road density, which was then fitted using a third-order 

polynomial (equation (1)). A “turning Point” (equation (2)) as 

coined by Zhao et al. (2017) at which the slope is zero was 

identified.  

 

    (1) 

 

Turning point               (2) 

 

where   y = urban expansion rate 

            x = road density 

            b0, b1, b2 and b3 = coefficients of the fitted polynomial 

 

Based on the turning point value, a zoning map was developed 

that classified the different developmental status of the zones. 

 

2.4.2 SLEUTH model for Bangkok  

 

The SLEUTH model requires the following datasets to predict 

the future urban growth scenarios: historical urban extent maps 

(at least four urban layers for model calibration), digital elevation 

model (DEM), road networks (at least two years) and an 

exclusion layer. Two additional Landsat imagery for years 1997 

and 2007 were similarly processed to provide the four urban 

layers needed. The exclusion layer indicates where urban growth 

cannot take place. Hillshade layer and slope layers were derived 

from the DEM. While the slope layer is used for SLEUTH’s 

lattice prediction probability computation, the hillshade layer is 

mainly used as a background layer to add lustre to the mapped 

results. Also, it is noted that SLEUTH does not take into 
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consideration the socio-economic and political factors in its 

urban growth prediction. The two road layers used were 1987 and 

2017. The 1987 road layer derived from Landsat image by visual 

digitization and thus is at a lower accuracy than the 2017 layer 

from OSM. 

 

SLEUTH model comprises of three modules mainly: test, 

calibrate and predict. The general SLEUTH model structure is 

shown in Figure 5. 

 
Figure 5. General structure of a SLEUTH model (Source: Al-

shalabi et al. 2013) 

 

SLEUTH’s dynamic urban growth is described by four rules: 

spreading center, edge growth, and road influenced growth. The 

growth rules correspond to a set of coefficients with values 

ranging from 0 to 100, and which indicate how much influence 

the different growth rules have across the study area. There are 

five factors which control the behavior of the urban growth 

model: diffusion factor, breed coefficient, spread coefficient, 

slope coefficient, and road-gravity factor. The relationship 

between these five coefficients and growth rules is represented in 

Table 1. 

 

SLEUTH model calibration is run over three phases of increasing 

spatial resolution, i.e., coarse, fine and final. The input layers 

were prepared according to respective spatial resolutions in GIF 

format, specifically, 120 m, 60 m and 30 m for coarse, fine and 

final resolutions, respectively. Calibration of SLEUTH is the 

most important step for capturing urban growth pattern trends 

and so allow a forecasting based on the trend. During calibration 

best-fit values for the five growth control parameters (Table 1) 

are chosen as best fitting the historical urban extent data based on 

statistical measures. 

 

 
Table 1. SLEUTH model growth types and respective 

coefficients  

 

The calibration was performed progressively at the three spatial 

resolutions with regression metrics obtained at the end of each 

run as representing the goodness of fit between the simulated 

growth and actual growth. The final step of the SLEUTH 

modelling is prediction wherein the calibrated growth 

coefficients together with the historical trends are used to 

generate a future scenario, this representing a “continuation of 

historical urban growth without changing current conditions” 

(Clarke and Gaydos, 1998), i.e. a “business as usual” approach. 

 

 

3. RESULTS AND DISCUSSION 

3.4 Urban expansion and linkages with road density and 

population  

The Landsat derived urban expansion map (Figure 2) showed 

significant expansion of the built-up area for Bangkok over the 

30 years from 1987 to 2017. It is readily seen that the expansion 

pattern is radially outwards, and towards inland from the city core 

which borders the coastline. The urban expanded area over the 

30 years was 287.6 km2 out of Bangkok city’s administrative area 

of 1564.5 km2.  

 

The 30-year urban expansion map was assessed w.r.t. the 2017 

road density map to analyze the intra-urban expansion patterns 

with road density. We partitioned the road density map into 5 

grades using the Jenks natural breaks and then extracted the 

corresponding urban expanded areas within each grade. The road 

density grading and urban expansions area and rates are shown 

in Table 2.  

 

 
Table 2. Urban expansion areas and rates versus the road 

density grades 

 

As seen from Table 2, 83% of the total intra-city expansion area 

of 287.6 km2 occurred over the road density grades of 2 to 4, with 

grades of 1 and 5 having much small expanded areas. A similar 

pattern is seen for the expansion rates. To further assess the 

linkage between intra-city expansion rate and road density, we 

aggregated the expansion areas over road density bins of 0.1 

km/km2 and obtained an urban expansion rate versus road density 

plot shown in Figure 6 (a). The logarithm of the urban expansion 

rate with road density exhibited an inverted concave shape with 

the urban expansion rate initially increases with road density but 

subsequently drops. This is modelled using a third-order 

polynomial with a turning point (equations (1) and (2)). The 

turning point is interpreted as the threshold at which the effect of 

increasing road network density on promoting urban expansion 

changes, i.e. from increasing urban expansion rates to decreasing 

(Zhao et al., 2017). This turning point value for Bangkok is 12.08 

km/km2, a value between road density grades of 3 and 4 (Table 

2).  

 

A city zoning map is next generated based on the turning point 

value to identify regions that are before the turning point, i.e. 

before the peak urban expansion rate, and regions after. This 

zoning map is shown in Figure 7 wherein orange and yellow 
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colors denote areas before and after the turning point, 

respectively, and with the urban expanded pixels (black) overlaid 

for reference. It is noted that while the turning point values 

computed here are based on expanded areas occurring within the 

three decadal timeframe, such maps as generated using different 

timeframes would be helpful in identifying the pre- and post-

turning point regions within each city and so can steer future 

intra-urban growth planning towards a more sustainable path by 

e.g. changes in the road density. 

 

 
 

Figure 6. (a) Urban expansion rate and road density values and 

fitted using a third-order polynomial (upper/lower bounds in the 

fit indicate 90% confidence intervals). (b) As (a) but for 

population growth rate. Turning point values (km/km2) are 

listed within parenthesis. 

 

The population growth rate with road density is similarly 

assessed with results shown in Figure 6(b). The logarithm of 

population growth rate also has a similar inverted concave pattern 

with road density and fitted with the third order polynomial. This 

can be expected as urban expansion rates are tightly coupled with 

population growth patterns. The turning point threshold for 

population growth rate w.r.t. road density is 13.12 km/km2, close 

to that for urban expansion. Also 79% of the expanded population 

have occurred over the road grades of 2 to 4.  

 

 
 

Figure 7. Zoning map for Bangkok based on turning point 

threshold. Overlaid black pixels indicate urban expanded areas. 

3.5 SLEUTH model results  

The SLEUTH model was calibrated with input datasets as 

described earlier with the final growth coefficients obtained after 

the final calibration run. The coefficient values are: Diffusion - 

2; Breed - 20; Spread - 22; Slope - 90; Road gravity – 20 as 

selected based on the Lee-Salee metric. This metric measures the 

degree of spatial match between the modelled extent and input 

data for each combination of variables. The metric value of 0.56 

obtained during the final calibration indicated a successful 

calibration as consistent with reported studies (Clarke and 

Gaydos, 1998; Hua et al., 2014) using SLEUTH. These derived 

coefficient values were used in the predict function of the 

SLEUTH model with the final year 2017 urban layer as the seed 

layer from where the growth prediction variables propagated. 

Here, the growth prediction was run for 10 years, i.e. 2017 – 

2027, i.e. a total of 10 predicted urban layers where the urban 

expanded pixels can be readily analyzed. Figure 8 shows the 

predicted Bangkok growth for 2 years, namely 2018 and 2027. 

 

 

 
 

Figure 8. Urban growth prediction maps for Bangkok. Yellow 

colored pixels represent seed (2017) urban layer; green 

represent urbanized pixels at 80-94% probability. A small area 

is highlighted for clarity showing the expanded (green) pixels 

(Note: Map not drawn to scale). 

 

 

The future growth pattern of Figure 8 shows that that the 

predicted growth follows a radially outward/edge-based 

transition from the seed (year 2017) layer pixels as was also 

observed for the historical (Figure 3). This growth being more 

representative in terms of edge growth/spreading outwards is 

attributed mainly to the spread coefficient value being higher 

than the breed, diffusion and road gravity coefficients. From the 

topography/hillshade data, it is evident that most of the Bangkok 

metropolis region is low-lying without significant topographic 

undulations which augments the spreading pattern observed from 

SLEUTH. Such behavior in urban land expansions is consistent 

with Losiri et al., (2016) who reported that most of the historical 

expansion is from conversion of agricultural lands in Bangkok’s 

plains into urban areas. 

Further, the future urban expanded pixels were accumulated and 

plotted temporally in Figure 9 where a linear trend is seen. The 

10-year projected expanded area of 129.9 km2 can be compared 

with the historical 30-year of 287.6 km2 indicating a faster 

expansion rate going forward.   
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Figure 9. Predicted urban growth (in km2) from 2018 to 2027 

for Bangkok. 

The SLEUTH model prediction results were further analyzed 

w.r.t the road density turning point map developed earlier. The 

turning point highlighted the intra-city zones where the urban 

expansion with road density had rate behavior changing from 

increasing to decreasing. We divided the urban expanded pixels 

into two zones for all the 10 predicted years as based on the 

turning point threshold of 12.08 km/km2. The accumulated urban 

expanded areas within these two zones for the 10 predicted years 

is shown in Figure 10.  

Figure 10 shows the two trend lines of predicted urban expansion 

areas, occurring where the urban expansion rate was increasing 

with the increasing road density (i.e. below the turning point 

denoted by the red-dotted line) and where the rate was decreasing 

(i.e. after the turning point denoted by the yellow-dotted line). 

The trend line over areas after the turning point is consistently 

lower than areas before the turning point. It further flattens as the 

urban expansion within these areas are getting saturated over 

time with such areas mainly representing city core regions with 

new space for built up areas getting increasingly limited. 

Conversely the (red-dotted) trend line for areas below the turning 

point has its urban expansion rate increase initially with time 

before slightly levelling off, but still maintains a higher rate than 

the (yellow-dotted) trend line for areas after the turning point. 

These represent areas which are getting urbanized at a higher rate 

as spreading outward of the core city and would also indicate 

areas with an increased future infrastructure demand. Such areas 

should then be prioritized in terms of urban planning. 

 
Figure 10. Predicted urban growth categorized and quantified 

w.r.t. road density turning point value. 

 

Also, it is observed that about 82% of the total predicted area of 

129.9 km2 (predicted built up area for 2027) have occurred over 

the current road grades of 2 to 4 which correlates well with the 

historical trend (1987-2017). Hence, SLEUTH modelling not 

only helps to identify probable new urbanization areas but 

together with road density turning point map and road density 

grades, be able to inform on the expansion rates as well as 

indicating areas needing additional road infrastructure to support 

the expansion. 

 

 

4. CONCLUSIONS  

Bangkok is continually growing as a major global metropolis in 

terms of population, economy and area as typical of many SEA 

cities. It is thus important to identify and assess the spatial urban 

growth, infrastructure and socio-economic patterns over time and 

also their linkages in order to better plan for future sustainable 

development. Towards this, the results presented herein as based 

on detailed spatial-temporal analysis of urban extents and road 

density provides for a quantification of the urban expansion 

process and its relationship with road density. 

 

The results presented shows that Bangkok has a radially outward 

growing trend with around 287.6 km2 area expanded over a 

historical 30-year (1987-2017) period, and with a SLEUTH 

predicted expanded area of 129.9 km2 over 2017 to 2027. This 

urban expansion was found to depend on derived road density 

grades with a predominant 83% of the urban expanded areas 

historically (1987-2017) and 82% projected (2017-2027) 

occurring over road density grades of 2 to 4. The relationship 

between the intra-city expansion rate and road density exhibited 

an inverted concave pattern and readily modelled using a third-

order polynomial with a turning point. Areas with read density 

before the turning point shows an increasing expansion rate with 

road density and vise-versa. The similar analysis using 

population growth rate also exhibited a similar relationship, with 

turning point value close to that from the urban expansion 

analysis, suggesting strong linkages between urban expansion 

and population growth rates.  These trends, specifically those of 

the urban expansion with turning point and with road density 

grades also hold under the SLEUTH predicted future (to year 

2027) urban growth. 

 

This study highlighted that spatial-temporal analysis of urban 

extents and together with SLEUTH can provide useful 

information towards supporting sustainable development plans. 

The intra-city zoning map could help improve on urban planning 

as well as identify areas likely to require additional infrastructure. 

Follow-on studies should expand on the scope to include other 

SEA cities, analyze infrastructure beyond road networks, as well 

as using different urban growth models to confirm on the 

conclusions reached.  
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