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ABSTRACT: 
  

Unprecedented urbanization in Metro Manila has led to the proliferation of the urban heat island (UHI) effect. This is characterized 

by a prominent difference in the temperatures of the urban and its surrounding rural and less urbanized areas. Temperature 

differences occur within these UHI’s indicating the existence of intra-urban heat islands (IUHI). UHI’s and IUHI’s are well-

documented indicators of urban environmental degradation and therefore puts the population of Metro Manila at risk. In anticipation 

of these effects, their detection and the characterization of their behaviour through time can contribute to proper urban planning 

thus mitigating harmful effects. Google Earth Engine was used to retrieve land surface temperatures (LST) from Landsat data from 

1997 to 2019 using emissivity estimation. The Local Moran’s I statistic was then used to identify cluster and outlier types (COT). 

A histogram with 10 bins representing the net COT frequencies per barangay was then used to identify IUHI’s. Annual temperature 

measurements and COT areas were plotted against time and based on linear-fit trend lines they characterize the study area as to 

having an annual increase in temperature of roughly 0.18°C and hotspot area extent of around 0.03 km2, and a decrease in coldspot 

area extent around 0.01 km2. Hotspots were found to be frequent in the cities of Caloocan, Manila, Pasay, and Quezon while 

coldspots were found to be frequent in the cities of Caloocan, Las Piñas, Malabon, Navotas, and Valenzuela. In conclusion, IUHI’s 

were detected with statistical basis, both spatially and temporally. 

 

 

1. INTRODUCTION 

 
The Philippines is an urbanized nation based on a report by the 

Asian Development Bank (ADB) in 2014 which also said that 

close to 50 percent of the Philippine population live in the 

country’s urban areas. This urbanization along with the growth 

of the urban population, entails continuous conversion of natural 

land cover surfaces into impervious surfaces ultimately leading 

to higher land surface temperatures (LST) as observed in 

numerous studies. It is also known that urbanization has caused 

widespread climatic, ecological, and health-related problems 

(Bartkowiak and Osinska-Skotak, 2018; Jeevalakshmi et al., 

2017). One of the most familiar effects of urbanization is the 

Urban Heat Island (UHI) phenomenon (Pahlavani et al., 2017). 

UHI was first described by Howard in 1818 and is characterized 

as urban areas having LST’s higher than its periphery of less or 

non-urbanized areas (Howard, 1818; Xian and Crane, 2005 as 

cited in Pahlavani et al., 2017). However, significant temperature 

differences exist within city limits or within the extents of these 

UHI’s. This has led to the belief of the existence of Intra-Urban 

Heat Islands (IUHI). Clearly, this puts the Philippine population 

health at risk of severe heat stress as well as foreseeable increased 

energy demand among many other adaptive measures. To 

address this problem, urban planning in the country should 

consider detecting Urban Heat Islands (UHI), particularly Intra-

Urban Heat Islands (IUHI) in order to mitigate its development, 

expansion, and harmful effects.  

 

Bartkowiak and Osinska-Skotak (2018) claimed that the use of 

satellite imagery as in this study, allows the possibility of  

assessing climatological phenomena as in this case, spatial and 

temporal distribution of LST. Google Earth Engine (GEE) allows 

planetary-scale analysis of geospatial data (Gorelick et al., 2017). 

This study aims to detect IUHI’s by defining temperature 

thresholds with respect to spatial reference as in Martin, 

Baudouin and Gachon (2015) and their development and 

persistence through time in Metro Manila from the years 1997 to 

2019.  

 

Integrated remote sensing and Geographic Information Systems 

(GIS) techniques were used to achieve the results of this study. 

LST data were retrieved from Landsat 5 Thematic Mapper (TM) 

and Landsat 8 Operational Land Imager/Thermal Infrared Sensor 

(OLI/TIRS) using GEE further detailed in the succeeding parts 

of the paper. Statistically significant clusters were identified 

using GeoDa and a database of LST and cluster identification 

summarized in 100-meter by 100-meter grid cells covering the 

study area, was done in ArcGIS. Other necessary processing to 

identify IUHI’s were also done in ArcGIS.  
 

2. STUDY AREA 

 

The Philippines is a tropical country routinely experiencing high 

climatic temperatures often in conjunction with high humidity 

levels. Metro Manila is composed of 16 cities namely: Caloocan, 

Las Piñas, Malabon, Manila, Mandaluyong, Marikina, 

Muntinlupa, Navotas, Parañaque, Pasay, Pasig, San Juan, 

Taguig, and Valenzuela with the inclusion of the municipality of 

Pateros. The region is claimed to be the center of culture, 

economy, education and government in the Philippines with an 

area of 619.57 square kilometers and a population of 12,877,253 

as of 2015. Metro Manila has a tropical wet and dry climate 

bordering on a tropical monsoon climate. The country’s 

proximity to the equator causes temperature to range from 20°C 
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to 38°C. Dry seasons last from January to April while the wet 

seasons from May to December (National Nutrition Council, 

2015). 

 
Figure 1. Map of study area (a) Philippines, (b) Metro Manila. 

Source: Esri, DigitalGlobe, GeoEye, EarthstarGeographics, 

CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the 

GIS User community. 

 

3. MATERIAL AND METHODS 

 

3.1 Data  

The data that were used in this study are summarized in Table 1. 

Satellite images, particularly the thermal bands from Landsat 5 

TM, and Landsat 8 OLI/TIRS covering the time period 1997 to 

2019 were used in the study. A 100-meter by 100-meter grid was 

created with the same extent as the regional boundary of Metro 

Manila and immediate bounding municipalities to address the 

well-known edge effects in spatial statistics. Corresponding 

point labels were created simultaneously with the use of the 

“Create Fishnet” tool in ArcGIS.  

 

Data 
Spatial 

Resolution 
Source 

Landsat 5 TM 

(1997-2011) 

100 resampled 

to 30m 

Google Earth 

Engine 

Landsat 8 

OLI/TIRS (2013-

2019) 

100 resampled 

to 30m 

Google Earth 

Engine 

NCR Boundary - PhilGIS.org 

Grid (Feature) 100m NCR extent, 

snapped to Landsat 

pixels 

Grid Label 

(Point) 

- Created along with 

Grid 

Table 1. Data summary. 

 

3.2 Land Surface Temperature Retrieval 

 

LST data were retrieved from Landsat 5 TM and Landsat 8 

OLI/TIRS satellite imagery. The methodology used for LST 

retrieval is from Jeevalakshmi et al. (2017) which used 

emissivity estimation. The general workflow of the LST retrieval 

is shown on Figure 2 and is further elaborated in the following 

sections. After retrieving the LST of the two decade-worth of 

data (171 images for Landsat 5, 110 images for Landsat 8) they 

were then grouped and then reduced into annual maxes in Google 

Earth Engine using the ee.Reducer.max() function. This was 

done to mask out unlikely low LST values from clouds and other 

atmospheric effects. The reduced images were then inspected for 

prevalence of such unlikely low LST values for exclusion. Such 

prevalence signifies that reducing the images into annual 

maximum values was not enough to mask out or at least 

minimize cloud cover or atmospheric effects for that particular 

year. The result is a collection of annual maximum LST values 

for the study area. 

 

Jeevalakshmi et al.’s (2017) methodology was originally for 

Landsat 8 OLI/TIRS data only. It was adapted for application to 

Landsat 5 TM data in this study. For Landsat 8, Band 10 TIRS 1 

was used since it yields more accurate results (Yu et al., 2014 as 

cited in Bernales et al., 2016).  

 

3.2.1 Top-of-Atmosphere Radiance 

 

Equation 1 was used to convert Band 10’s digital number (DN) 

values into top of the atmosphere radiance (ToA Radiance - Lλ): 

 

 Lλ =  
(𝐿𝑚𝑎𝑥−𝐿𝑚𝑖𝑛)∗𝑄𝑐𝑎𝑙

(𝑄𝑐𝑎𝑙𝑚𝑎𝑥−𝑄𝑐𝑎𝑙𝑚𝑖𝑛)
 + Lmin – Oi (1) 

 

Where  Lmax = maximum radiance (Wm-2sr-1μm-1)  

Lmin = minimum radiance (Wm-2sr-1μm-1)  

Qcal = DN value of pixel  

Qcalmax = maximum DN value of pixels 

Oi = correction value for the thermal band (Band 5 for 

Landsat 5 TM, Band 10 for Landsat 8 OLI/TIRS) 

 

3.2.2 Brightness Temperature 

 

The computed ToA Radiance, the thermal band data should then 

be converted to Brightness Temperature (BT) using the thermal 

constants (K1 and K2) indicated in the satellite images’ metadata 

and the following equation: 

 

 BT = 
𝐾2

𝑙𝑛⁡(
𝐾1

𝐿𝜆
)
− 273.15 (2) 

 

Where K1 and K2 are the satellite images’ thermal constants 

indicated in their metadata and Lλ is the computed ToA 

Radiance. The addition of an absolute zero (-273.15) allows the 

direct conversion to degrees Celsius. 

 

3.2.3 Normalized Difference Vegetation Index 

 

The computation of the Normalized Difference Vegetation 

Index (NDVI) is necessary for a general differentiation of the 

land cover types of the study area and is given by the following 

equation (Jeevalakshmi et al., 2017): 

 

 NDVI = 
(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝑁𝐼𝑅+𝑅𝑒𝑑)
 (3) 

 

Where NIR = reflectance value of the near infrared band 

           Red = reflectance value of the red band 

 

3.2.4 Proportional Vegetation 

 

Using the NDVI, the proportional vegetation (Pv) layer can be 

calculated. This gives the estimation of the land cover type from 

which the land surface emissivity (LSE) can be computed from 

(Jeevalakshmi et al., 2017). The Pv layer can be computed using 

the following equation: 

 

 Pv = (
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑠

𝑁𝐷𝑉𝐼𝑣−𝑁𝐷𝑉𝐼𝑠
)2 (4) 

 

Where NDVI = NDVI value at a certain pixel 

NDVIv = NDVI value for vegetation (0.5 default; 0.8 

for highly vegetated areas) 

 NDVIs = NDVI value for soils (0.2) 
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Figure 2. Process workflow for detecting Intra-Urban Heat Islands (IUHIs).  

 

3.2.5 Land Surface Emissivity 

 

The Land Surface Emissivity can then be computed using the 

following equation (Sobrino et al., 2004 as cited in Jeevalakshmi 

et al., 2017): 

 

 ελ = εvλPv + εsλ (1-Pv) + Cλ (5) 

 

Where ԑv and ԑs are the vegetation and soil emissivities 

respectively, and C is the surface roughness taken as a constant 

value of 0.005 (Jeevalakshmi et al., 2017). The emissivity is then 

estimated using the NDVI threshold method: 

 

  (6)  

 

3.2.6 Land Surface Temperature 

 

The LST can now be estimated using the following equation 

(Stathopoulou & Cartalis, 2007): 

 

 Ts = 
𝐵𝑇

{1+[(
𝜆𝐵𝑇

𝜌
)𝑙𝑛𝜀𝜆]}

 (7) 

 

Where, Ts is the LST in Celsius (°C), BT is at-sensor BT also in 

Celsius, λ is the average wavelength of the thermal band, ελ is 

the emissivity calculated from equation 6 and ρ is (h x 
𝑐

𝜎
) which 

is equal to 1.438 x 10-2 mK in which 𝜎 is the Boltzmann constant 

(1.38 x 10-23 J/K), h is Planck's constant (6.626 x 10-34) and c is 

the velocity of light (3 x 108 m/s). 

 

3.3 Intra-Urban Heat Island Detection  

 

Annual maximum LST values were extracted into the grid point 

labels. These grid point labels are the centroids of the grid 

created using the Create Fishnet tool in ArcGIS. LST values 

from the grid point labels were then joined to the grid cells 

resulting to a database of annual maximum LST values that 

match the extent of NCR. A weights matrix file parameter was 

created using Queen contiguity with a value of 1. This signifies 

that for a cell, its immediate adjacent neighbour cells affect it. 

Each field in this database then served as an input to the 

univariate Local Moran’s I function in GeoDa. This produced 

Cluster and Outlier Type (COT) maps per year in the study 

period. The significance filter was set to α = 0.001 for all years.  

Output annual COT classifications were then included in the 

existing LST database. Identified “High-High” clusters were 

regarded as hotspots and “Low-Low” clusters as coldspots. 

Hotspots were assigned a value of 1, while coldspots were 

assigned a value of -1. Using the raster calculator, the total sum 

of these annual COT classifications was taken to create the net 

frequency of the COT occurrence for the study area for the study 

period 1997 to 2019. The number of cells per output class (38) 

were graphed to provide a broad idea of the COT distribution in 

the study area. To arrive at definitive areal identifications, 

barangay (village) zonal means were used to summarize the net 

frequency scores. A histogram with ten bins representing the net 

COT frequencies was used to identify IUHI’s. The bin 

representing the barangays with the highest net COT frequencies 

were regarded as the IUHI’s.   

 

3.3.1 Local Anselin Moran’s I 

 

The Local Moran statistic identifies local clusters and local 

spatial outliers (Anselin, 1995). This statistic takes the form: 

 

 c ● zi Σjwijzj (8) 

 

Where, z denotes the deviation from the mean, and c denotes a 

scalar value that is the same for all locations obtained by means 

of conditional permutation method, where, in turn, each zi is held 

fixed, and the remaining z-values are randomly permuted to 

yield a reference distribution for the statistic (Anselin, 1995).  

 

3.4 Trend Characterization 

 

With the use of the histogram’s top and bottom bins, respective 

barangays classified as frequent hotspots and coldspots were 

also identified. This histogram groups values into ranges and 

taller bins indicate that more data fall in that range. It also shows 

the spread of the data. 

 

Cluster type change was also mapped. Succeeding years were 

paired (y1 and y2) and corresponding COT classification change 

from y1 to y2 was mapped. Existing COT classifications were 

“HH” for high-high, “LL” for low-low clusters and blank for 

neither. These were reclassified into 2’s, 1’, and 0’s respectively.  

Using the raster calculator, y1 was multiplied by 10 and then the 

y2 raster is added. This results to a two-digit number whose tens 

place value digit represents the initial condition (y1) and whose 

ones place value digit represents the new condition (y2). Nine 

different cluster type changes referred to as “behaviors” were 

identified: (1) Neutral (no change)-00, (2) Neutral to Coldspot-

01, (3) Neutral to Hotspot-02, (4) Coldspot to Neutral-10, (5) 

Coldspot (no change)-11, (6) Coldspot to Hotspot-12, (7) 

Hotspot to Neutral-20, (8) Hotspot to Coldspot-21, and (9) 

Hotspot (no change)-22.   
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City zonal means of LST, hotspot, and coldspot area percentages 

(cluster area divided by city area) were also plotted against time 

to provide a broad idea of the surface temperature trends and the 

spatial and temporal behavior of the clusters.  

 

4. RESULTS AND DISCUSSION 

 

4.1 Intra-Urban Heat Island Detection 

 

Different areal units were utilized to investigate and detect 

IUHI’s in the study area. The first one was with the use of 100-

meter by 100-meter grid cells. Figure 3 shows a graph 

summarizing the count per output grid cell (pixel) value in the 

net COT frequency map in raster format (Figure 5.a). On one 

hand, 1,411 100-meter grid cells were identified to be occurring 

as coldspots for a total of 19 times out of the 19-year study 

period. On the other hand, 2 grid cells were identified to be 

occurring as hotspots a total of 18 times. Noticeably, grid cells 

with value 1 were found to be the dominant class in the output 

(8,344 grid cells). The output net frequency ranges from -19 to 

18 (coldspots: -19 to -1; hotspots: 1 to 18) wherein the 

magnitudes represent the frequency of occurrence of the 

respective cluster type. With the use of a different areal unit of 

analysis—city boundaries, average frequency values were taken. 

A histogram of 10 bins representative of the classes of the output 

values of the city zonal means were utilized to identify the 

IUHI’s (frequent hotspots) as well as anti-IUHI’s (frequent 

coldspots). Based on the histogram graph (Figure 4), a total of 26 

barangays were identified as IUHI’s (Figure 6) and 12 as anti-

IUHI’s (Figure 7). Barangays identified as IUHI’s are mainly 

from Caloocan City, Manila, Pasay City, and Quezon City while 

those identified as anti-IUHI’s are from Caloocan City, Las 

Piñas, Malabon, Navotas, and Valenzuela. The reported mean 

frequency of the top-tier bin in the histogram ranges from 10.97 

to 14.2 while for the bottom-tier bin it was -18.08 to -14.85. It 

should be noted however that the use of zonal statistics leads to 

some loss of spatial detail about the data.  

 

The identified IUHI’s as shown in Figure 6 show a common 

characteristic, its form is of the built environment (referring to 

man-made structures that are the settings for various human 

activity-residence, work, recreate). This is expected for 

barangays in NCR given that it is the center for culture, economy 

and education as previously mentioned, and it’s the most densely 

populated region of the Philippines (42,857 people per km2) 

based on the 2015 census data from the Philippine Statistics 

Authority. The built environment is a key component of the city 

but characterizing that of Metro Manila’s is problematic. The 

lack of public spaces such as parks and plazas further 

exemplified by the existence of contradicting land uses can be 

traced to the poor urban planning issue in the region which has 

been made an economic and political issue rather than an 

environmental and health-concerning topic (Mojarro, 2017).  

These detected IUHI’s should serve as basis as to where local 

government units and corresponding planning offices can 

intervene in the face of the worsening temperature conditions. 

This is due to the built environment playing a huge role in 

addressing global and local challenges including climate change 

among many other as according to the United Nations 

Environment Programme.  

 

The detected anti-IUHI’s are mainly the barangays with an 

evident presence of either water bodies and/or vegetation. Figure 

7.a show the barangays from Navotas, Malabon, and Valenzuela. 

Figure 7.b shows the barangays in Caloocan City in the proximity 

of the La Mesa watershed. Lastly, Figure 7.c shows the Las 

Piñas-Parañaque Critical Habitat. It would be naive to simply say  

 
Figure 3. Grid cell (pixel) value vs count of output net 

frequency of cluster and outlier type (COT) in Metro Manila for 

1997 to 2019.   

 

 
Figure 4. Histogram (10 bins) of output net frequency of cluster 

and outlier types (COT) in Metro Manila for 1997 to 2019.   

 

 
Figure 5. Net Cluster and Outlier Type (COT) Frequency maps 

of Metro Manila for years 1997 to 2019. (a) Raster (100-meter 

resolution), (b) City Zonal Means. 
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that the establishment of urban green spaces within Metro Manila 

shall counter the effects of the UHI phenomenon. This is because 

in developing countries like the Philippines, there is an immense 

pressure for space, resources and development (Haq, 2011). 

However, emphasis on the roles of such spaces is significant. 

According to the World Health Organization, these kinds of 

spaces play a critical role in cooling cities, reducing health 

inequalities, and improving overall well-being. This is the goal 

of this study, to support the idea that urban green spaces can serve 

as measures to counter the adverse effects of worsening 

temperature conditions in consideration of the vulnerable 

population. These findings should solidify the idea of the role of 

urban cooling islands—areas that have lower temperature 

compared to its surrounding, especially in the case of Metro 

Manila (Lee et al., 2016).   

 

Since this study mainly investigates surface temperature as the 

causal variable for how the IUHI’s and anti-IUHI’s are 

distributed in the study area, the effect of other variables is 

disregarded.   

 

 

 
Figure 6. Intra-Urban Heat Islands (IUHI) in the barangays of 

(a) Quezon City, (b) Caloocan City, (c) Manila, and (d) Pasay 

City.  

 

 
Figure 7. Anti-Intra-Urban Heat Islands (Anti-IUHI’s) in the 

barangays of (a) Navotas, Malabon, and Valenzuela, (b) 

Caloocan City, and (c) Las Piñas.  

 

4.2. Trend Characterization 

 

4.2.1 Spatio-Temporal Cluster Behaviour 

 

With the output cluster type change maps from 1997 to 2019, 

nine different types of cluster behaviours were identified as 

mentioned previously. A graph showing the grid cell count per 

change type is shown on Figure 8. Evidently, the “Neutral (no 

change)” behavior is the most dominant. This can be attributed 

to the fact that the significance filter for the Univariate Local 

Moran’s I function in GeoDa was raised to 0.001 which led to a 

stricter classification of COT’s based on the input LST’s. 

Additionally, based on the graph in Figure 8, the intensity of 

cluster type changes varies over time. It can also be said that the 

cluster type changes vary over space, except for some of the areas 

with grid cells classified into the “Coldspot (no change)” 

behavior. The reported spatial and temporal variations of the 

cluster type change phenomenon in the study area is summarized 

in Figure 8 and is portrayed in Figure 9. Temperature is known 

to be a non-stationary process. This means that the intensity 

should vary spatially and temporally. This also means that the 

temporal distribution of the identified cluster areas should also 

vary over time. However, patterns in the distribution and 

intensity of LST led to the emergence of IUHI’s and anti-IUHI’s 

which is suggestive of non-stationarity. Therefore, the existence 

of a possible underlying spatial or temporal characteristic 

causing the emergence of such patterns cannot be dismissed.  

 

 
Figure 8. Grid Cell Count per Cluster Type Change of year 

pairs from 1997 to 2019.  

 

4.2.2 Land Surface Temperature and Cluster Area Trend 

 

Mean surface temperatures of the whole study area, along with 

the mean cluster areas in km2 were recorded and plotted against 

time (Figure 10). Linear trendlines fit to the graph show 

increasing trends of the surface temperatures (0.18 increase in °C 

per year), and the hotspot area (0.03 km2 per year) and a 

decreasing trend for the coldspot area (0.01 km2 per year). The r-

squared value however denotes weak positive correlations 0.2, 

0.05, 0.02 respectively of the mean variable values to year. It 

should be noted however, that r-squared is biased with regards to 

the number of inputs.  

 

Noticeably, LST’s peaked at years 1997, 2006, 2010, 2015 and 

2018. Coincidentally, the years 1997, 2002, 2006, 2010, and 

2015 were recorded as to have had El Niño episodes by the 

NOAA and the Australia Bureau of Meteorology. El Niño affects 

the weather in such a way that the tropical Pacific waters undergo 

warming affecting wind circulation patterns leaving the region 

unseasonably dry recurring at irregular intervals (NOAA, 2015; 

Kovats et al., 1999). The El Niño is a “warm event” and has an 

effect on the Asian monsoon and hurricane activity and in some 

cases is followed by a less pronounced La Niña (a “cold event”). 

The dips in LST’s of the succeeding years after an El Niño 

episode as shown in Figure 10 is characteristic of the El Niño-La 

Niña relationship. Unfortunately, high LST’s are just one of the 

El Niño phenomenon’s effects. Warmer temperatures are linked 

and related to cause more destructive typhoons, widespread 

vectorborne diseases  such as dengue (Kovats et al., 1999), water 

shortages such as in Cape Town, South Africa and in Botswana 

back in 2015, low electricity supply  (hydropower) in Lusaka, 

Zambia in 2015 and widespread drought conditions in South 

Africa (Gannon et al., 2018) among many others. These are 

regardless of whether the areas are urban or rural. The El Niño-

La Niña relationship (peaks and dips) substantially characterizes 

the LST trends which succeedingly dictates the cluster area trend 

for the study area. It could then be suggested that climatological 

and meteorological phenomena significantly affects these trends.  

a b 

c d 

a b

b 

c 
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Figure 9. Cluster type change behaviors in Metro Manila per 

year pair (left to right, top to bottom: 1997-1998 to 2018-2019).  

neutral (no change), neutral to coldspot, neutral to hotspot, 

coldspot to neutral, coldspot (no change), coldspot to hotspot, 

hotspot to neutral, hotspot to coldspot, and hotspot (no change). 

 
Figure 10. Mean values of LST (°C), Hotspot, and Coldspot 

Areas (km2) for Metro Manila.  

 

 
Figure 11. Time series plots of LST per city superimposed with 

cluster area percentages (cluster area divided by city area) for 

Metro Manila. 

 

LST values and cluster area percentages were plotted against 

time. Figure 11 shows the annual variation of all three variables 

throughout the study period (1997-2019) as plotted per city of 

the study area. Area percentages were used since the use of km2 

fail to capture the detail of the cluster area data especially for 

cities with small areas such as Pateros and San Juan. Noticeably, 

Malabon and Navotas appear to not conform to the trend of the 

cities of dominantly having a greater percentage of their area 

categorized as hotspots. This can be attributed to the fact that 

these cities enclose substantial extents of water bodies in their 

administrative boundary which was used as the spatial unit of 

analysis. It is worth noting also that the spikes in hotspot area 

percentages coincide with the pronounced El Niño episodes. 

Another substantial observation is how the hotspot area 

percentages peak where coldspot area percentages dip and vice-  
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City 
Area* 

(km2) 

LST trendlines Hotspot area (km2) trendlines  Coldspot Area (km2) trendlines 

Slope Intercept p-value Slope Intercept p-value Slope Intercept p-value 

Caloocan  46.98 0.121 -211.285 0.208 -0.147 303.569 0.455 0.014 -23.782 0.872 

Las Piñas 33.19 0.159 -286.682 0.041 0.096 -187.173 0.717 -0.058 118.325 0.091 

Makati  31.76 0.110 -190.245 0.212 -0.122 247.881 0.217 0.041 -35.553 0.659 

Malabon 14.61 0.176 -324.823 0.016 0.047 -94.227 0.266 0.056 198.310 0.103 

Mandaluyong 10.95 0.130 -229.335 0.163 -0.052 106.075 0.236 0.028 -3.158 0.941 

Manila 36.68 0.133 0.133 0.121 -0.001 6.158 0.996 0.061 52.970 0.690 

Marikina 22.14 0.208 -385.727 0.021 0.327 -651.29 0.006 0.052 94.249 0.389 

Muntinlupa 38.52 0.126 -222.049 0.091 -0.016 35.803 0.947 0.091 8.487 0.972 

Navotas 7.87 0.128 -228.166 0.046 0.015 -29.894 0.051 -0.017 37.598 0.381 

Parañaque 44.18 0.149 -267.601 0.053 0.078 -151.48 0.732 -0.051 104.425 0.178 

Pasay  18.68 0.125 -218.421 0.187 -0.130 264.136 0.391 -0.042 84.702 0.200 

Pasig  31.56 0.161 -291.961 0.055 0.170 -336.455 0.126 0.050 -98.423 0.426 

Pateros** 1.96 0.183 -335.302 0.024 0.010 -20.332 0.312 0.001 -0.166 0.298 

Quezon  148.00 0.134 -237.579 0.131 0.233 -441.054 0.585 0.222 -423.010 0.459 

San Juan 5.78 0.132 -234.049 0.129 -0.035 71.839 0.248 0.002 -3.050 0.760 

Taguig 27.66 0.158 -285.855 0.029 -0.017 37.326 0.851 -0.159 323.903 0.024 

Valenzuela 37.25 0.122 -214.106 0.167 -0.095 195.626 0.609 0.007 -8.837 0.909 

*computed from PhilGIS.org shapefile 

**Pateros is a municipality 

Table 2. Table summary of linear trendlines (slope, intercept, and p-value of the line) for each LST, hotspot area, and coldspot 

area time-series plots per city in Metro Manila. 

 

versa which supports the idea of the inverse relationship between 

the two.  

.  

As a main aim of the study, linear trendlines were used to identify  

whether trends of the variables rise or fall. Table 2 summarizes 

the linear trendlines’ slope, intercept, and the p-value per variable 

per city. Linear trend models were computed for coldspot area 

(km2), hotspot area (km2), and LST given year. Corresponding 

model formulas are shown on equations 9-11. 

 

 Coldspot area (km2) * City * (year + intercept)  (9) 

 

  Hotspot area (km2) * City * (year + intercept)  (10) 

 

 LST (°C) * City * (year + intercept)  (11) 

 

The models may be significant at p ≤ 0.05 but p-values 

(significance) of trendline models are less than 0.0001. The 

number of modelled observations for all models is 323 with 

degrees of freedom equal to 34 and the residual degrees of 

freedom equal to 289. Respective r-squared values per model are 

as follows: (1) 0.82, (2) 0.62, and (3) 0.25. Such r-squared values 

describe the models respectively as being substantial, moderate, 

and weak (Henseler et al., 2009). Standard errors of the models 

are 2.59, 5.06, and 2.33 respectively. The slopes denote the 

predicted increase or decrease in the values of the variables (°C 

for LST, and in km2 for the cluster areas) per increment in year. 

Four different types of trends were observed based on the 

equations of the linear-fit trendlines. First is a trend characterized 

by an increase in LST, a decrease in hotspot area but an increase 

in coldspot area. This may be contradictory, but this could mean 

that the low-range LST’s increased collectively. Second is a 

trend characterized by increasing LST and decreasing cluster 

areas. The decrease can be attributed to the development of 

variance in the LST’s which could have led to the decline of 

clusters of both high and low LST’s. Third is a trend 

characterized by increasing LST and hotspot area, and a 

decreasing coldspot area. This is possibly due to a substantial 

increase in high-range LST’s in the study area leading to larger 

clusters of high LST’s. Last is a trend characterized by increasing 

LST and cluster areas. This is probably due to spatially consistent 

increase in LST or simply that the whole range of LST values 

increased as a collective leading to larger cluster areas.  

 

5. CONCLUSION AND RECOMMENDATIONS 

 

The use of the Univariate Local Moran’s I along with remote 

sensing theory applications and GIS techniques in this study 

prove the existence of IUHI’s within the UHI that is Metro 

Manila. The existence of IUHI’s support the notion that the 

urban environmental condition in the study area is degrading. 

Clearly, this urban environmental degradation is further 

aggravated by the observed increasing trend in LST that is 

consistent for all cities in Metro Manila. Expected increases in 

hotspot areas and decreases in coldspot areas are just some of the 

repercussions of this trend in LST as can be observed from the 

results of this study. The located and identified clusters also 

show how dependent the intensity and distribution of LST is to 

the urban form—surface roughness, geometry and land use-land 

cover distribution. Although inconclusive, this sheds light on the 

importance of the presence of vegetative cover and water bodies 

in thermal environment of urban areas. This also sheds light on 

the underlying spatial and temporal characteristic of the study 

area which is the cause of the observed stationarity of 

temperature in the existence of the IUHI’s and the anti-IUHI’s. 

In general, it can be said that in this study, LST distribution and 

trends are influenced by urban form, land use and land cover 

distribution, and meteorological and climatological phenomena. 

This study supports the incorporation of the thermal 

environment properties in urban planning of the cities in order to 

address and mitigate the adverse effects of the UHI 

phenomenon.  

 

It should be noted that this study investigated surface 

temperatures retrieved from satellite data. The data used came 

from the “tier 1” collection from Google Earth Engine which is 

considered as analysis-ready data. Satellite data with finer 

resolutions maybe able to yield results at a finer scale since the 

resolution of Landsat data particularly its thermal bands, is 100 

meters and is resampled only to 30. Other spatial units of 

analysis should be explored because larger units can lead to loss 

of spatial detail and finer units can lead to high variance. 

Trendlines that are more fit for the dataset should also be 

explored for further studies since annual LST’s are not linearly 

increasing. Although linear trendlines served its purpose in this 

study in characterizing whether the trends are increasing or 
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decreasing, it is in a way unyielding. Lastly, this is a univariate 

study of the LST in Metro Manila, but temperature is an 

anisotropic process. Therefore, future studies should consider a 

multivariate approach to better understand LST intensities and 

distribution and consequently, the distribution and the 

behaviours of clusters specifically IUHI’s and anti-IUHI’s 

through time.  

.  
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