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ABSTRACT:  

 

Fertilizer application is a crucial farming operation for regulating crop health thus crop yield. Optimal fertilizing doubles 

agricultural production subsequently raising farmers’ income, food security and economic agriproducts. To optimize the 

application of fertilizers, initial monitoring of the current nutrient status of the crops is required. This research will focus on 

Nitrogen (N), the most extensive fertilizer nutrient in crop cultivation. Conventional N monitoring involves the use of Leaf 

Color Charts (LCC) wherein leaf color intensity is associated with the N content of the crops. Despite its ability to quantify 

the optimal amount of needed fertilizers, the LCC method requires extensive on-site labor and lacks accuracy. This study 

developed a method that incorporates capabilities of Unmanned Aerial Vehicles (UAVs) equipped with a multispectral sensor 

in N monitoring specifically in rice crops, a major agricultural product in the Philippines. In situ N level information collected 

through LCC was correlated with remote sensing data, particularly vegetation indices (VIs) extracted from UAV multispectral 

imagery of a rice plantation in San Rafael, Bulacan. Several VIs sensitive to crop N content were tested to determine which 

has the highest correlation with the LCC data. Through Pearson correlation and regression analysis, NDVI Red Edge was found 

to be the most strongly correlated with LCC data suggesting its potential in mapping variability in fertilizer requirements. An 

equation modelling LCC observations and NDVI Red Edge values that estimates the N levels of an entire rice plantation was 

generated along with the N concentration map of the study area. 

1. INTRODUCTION 

1.1 Background of the Study 

 

Nutrient management is an integral part of fertilizer 

application. Practical methods in balancing nutrients 

optimize crop yield, maintain soil health and reduce the 

chances of surface and ground water contamination. 

Optimizing fertilization involves monitoring the existing 

nutrient status of the present vegetation stage. The level and 

concentration of crop nutrients are initially assessed to 

quantify sufficient amounts of needed fertilizers.  

 

Nitrogen (N) is a primary crop nutrient essential for rapid 

growth, grain yield and quality. Among the fertilizers used 

by local farmers, 39.4% of which are N-based making it the 

most commonly used nutrient in farming (Cruz P. S., 1997). 

These type of fertilizers, when applied at optimal amounts 

significantly increase agricultural output at low cost. 

However both excessive and deficient fertilizer application 

result to imbalances in the agricultural setting. Thus, the 

research industry continues to seek efficient ways for N 

management in farmlands. Through the collaboration of the 

International Rice and Research Institute (IRRI) and 

PhilRice, the Philippine agricultural sector adopted the use 

of Leaf Color Charts (LCCs). These are four-panel tools with 

varying shades of green conventionally used to determine 

leaf color intensity directly related to crop N level (Cruz & 

Obien, 1997). Similar to other conventional ground-based 

methods, the use of LCCs require extensive on-site labor and 

involves subjective measurements which are highly prone to 

inaccuracies. Several studies suggest the integration of these 

conventional methods with Unmanned Aerial Vehicle 

(UAV) capabilities. Multispectral imagery captured by 

UAVs has been proven to be capable of providing 

information on crop conditions necessary for nutrient 

management. This study proposes a method that incorporates 

drone technology with the conventional LCC method to 

develop an efficient N monitoring scheme for optimal 

fertilizer application on rice plantations. 

 

1.2 Research Objectives 

 

This research aims to develop a method of crop N monitoring 

using remote sensing technology particularly UAVs. 

Primarily, the goal is the integration of a conventional 

ground-based farming practice, the LCC method, and drone 

technology. This study intends to provide a more accurate 

and modernized version of the LCC method through the 

incorporation of UAV imagery analysis. Through the 

correlation of LCC observations and parameters extracted 

from aerial imagery related to N content, a predictive model 

that estimates N levels of rice plantations will be generated. 

Specific objectives of the study include the assessment of N-

sensitive Vegetation Indices (VIs) and the determination of 

the VI which is the most strongly correlated with LCC 

values. An equation modelling LCC readings and the best VI 

will be generated to predict the N levels throughout the study 

area. The output of this study is an N concentration map of a 

rice plantation in San Rafael, Bulacan. Such map aims to 

serve as guide for crop N management useful for fertilizer 

application. Furthermore, the outputs of this study may serve 

as supplementary information to assist agricultural sectors in 

implementing policies that will reduce fertilizer expenses 

and the adverse effects of N use in farming. 
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1.3 Significance of the Study 

 

Conventional ground-based farming methods for N 

monitoring are often laborious and time consuming. 

Moreover, ground operations, if not costly, lack accuracy in 

measuring crop N levels. Farmers also deserve the 

convenience and benefits of technological advancements, 

thus, through the incorporation of UAV remote sensing, N 

monitoring may be made more convenient and efficient. This 

study assessed the capability of UAV imagery for N 

management. This integration of agriculture and remote 

sensing will allow farmers to manage crop’s N level for 

optimal fertilization. Optimal fertilizing doubles agricultural 

production subsequently raising farmer’s income, food 

security and economic agricultural products. This study 

envisions a system of N monitoring which will significantly 

raise agricultural output. This study proposes a method of 

using UAVs that could be a potential long term investment 

for agricultural municipalities to centralize N monitoring 

covering plantations within the municipality’s boundaries. 

 

1.4 Related Literature 

 

Crop N monitoring is an essential requisite for optimizing 

fertilizer management. Through an efficient assessment of 

the current N status, required fertilizer inputs can be 

quantified to meet the sufficient nutrient requirement of 

crops without compensating the environment (Rochester, et 

al., 2009). Conventional methods include the actual on-site 

field observations using leaf sampling for laboratory analysis 

and chlorophyll level inspection through visual inspection of 

leaf greenness index. However, these procedures exhibit 

restrictions including time, productivity and cost. In 

acknowledgment of this, recent technological advancements 

showed an increase in the use of UAV capabilities in 

precision agriculture. As compared to satellites and other 

spaceborne platforms which requires scheduled overpass, a 

low-cost UAV allows time flexible data acquisition at a 

higher resolution. 

 

Agricultural sectors have been widely utilizing UAVs for 

convenience and efficiency in drought stress detection, yield 

prediction and nutrient status assessment (Maes & Steppe, 

2018). In particular, several studies has been suggesting the 

potential of drone and multispectral sensor integration in 

estimating crop N levels. Pölönen (2013) demonstrated 

image-based crop biomass and N content estimations 

through imagery acquired from a sensor mounted on a light-

weight UAV. VIs extracted from the imagery were 

correlated with biomass and N content (Pölönen, 2013). Liu 

(2018) conducted a study on a winter oilseed rape farm and 

used optimal VIs from in situ hyperspectral data along with 

multispectral UAV imagery to estimate the crops’ N 

nutrition index (NNI). Results of the study showed that 

among the tested VIs, the Normalized Difference VI 

(NDVI), Modified Soil-Adjusted VI 2 (MSAVI2) and Red 

Edge Chlorophyll Index (CI Red Edge) showed the most 

accurate NNI estimations (Liu, et al., 2018). Pagola (2009) 

incorporated digital color image analysis on the estimation 

of crop N status. Correlation between VIs and Soil and Plant 

Analysis Development (SPAD) measurements were 

calculated proving the potential of VIs to predict N 

deficiencies (Pagola, et al., 2009). 

 

Walsh, et al. (2018) assessed the N concentration level of a 

rice crop field through determining the most appropriate 

vegetation index (VI) extracted from UAV imagery. In the 

same study, the study area was grouped into test and training 

data sets. Statistical analysis was performed to determine the 

R2 and RMSE to evaluate each model equation. The study 

proved that remotely sensed VIs can provide valuable 

information on Nitrogen status (Walsh, et al., 2018). The 

methodology and parameters used for this research from the 

data acquisition up to the final map generation were all based 

from related studies regarding N monitoring using UAV 

imagery analysis. 

2. METHODOLOGY 

2.1 Field Visits and Planning 

 

Consultation with research advisers and experts in the field 

of agriculture guided the methodological framework. 

Different factors that may affect the study were considered 

such as the study area and crop to be assessed, instruments 

and software availability, and the available budget to be used 

throughout the study. Through the Agricultural Municipal 

Office of San Rafael, Bulacan request for site access on a rice 

plantation was granted. Site inspection of the rice fields 

situated in Brgy. Caingin was done under the supervision of 

the municipal’s agricultural technologist. 

 

2.2 Study Area 

 

The study area is a specific agricultural site situated in 

Barangay Caingin, San Rafael, Bulacan. The chosen region 

is specifically a rice crop plantation encompassing an 

approximate area of four (4) hectares. The area comprises of 

three (3) farmlands with varying fertilizer management 

practices particularly in terms of types and quantities of N-

based fertilizers. The rice by the time of data acquisition were 

medium early maturing variety crops. The crops are at their 

active tillering stage which means that they have been 

cultivated for 24-28 days. 

 

 

 

 

 

 

Figure 1. Delineation of Study Area in San Rafael, Bulacan 

 

 

 

 

 

 

 

 

 

Figure 2. Rice Plantation Documentation 

2.3 Flight Planning 

 

Before the actual UAV employment, necessary flight 

parameters were set through flight planning and design. The 

flight path of the UAV covering the desired area was 

established by mission planning using the eMotion software. 

Wind condition, climate, obstructions, and other regions of 

high risk were taken into account. The final flight altitude 
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used in the operation on the region of interest was 74.3 m 

generating an output ground spatial distance resolution of 7.0 

cm. The total flight area covered approximately eleven (11) 

hectares. Three (3) ground control points were established 

situated outside the study area boundary. 

 

 

 

 

 

 

 

 

Figure 3. Flight path represented in red lines 

. 
2.4 Instruments 

 

2.4.1 Parrot Sequoia 

 

Parrot Sequoia has been proving the worth of its existence in 

the field of agriculture. This commercial sensor allows 

absolute reflectance measurements even without the use of 

reflectance targets. In this study, this multispectral sensor 

was used to monitor crop N status for optimization of 

fertilizer strategies to improve overall farm productivity. It is 

a 28 x 41 x 59 mm unit weighing 107 grams. It captures four 

different bands (Red, Green, Red Edge and Near Infrared) 

and has an additional 16 megapixel RGB camera. Parrot 

Sequoia comes with a sunshine sensor that records light 

conditions in the same spectral bands as the multispectral 

sensor. It records the irradiance for each image in each band 

and allows the normalization of the varying illumination 

during the data acquisition. Moreover, the sunshine sensor 

enables GPS data recording. Together, the two sensors obtain 

the true value of light and location at any given period. This 

unit was acquired through Envisage under the Department of 

Geodetic Engineering, University of the Philippines 

Diliman. 

 

2.4.2 Sensefly eBee 

 

For the image acquisition, the UAV used in the study was 

Sensefly eBee, a fixed wing drone, mounted with a Sequoia 

multispectral sensor. This is a fully autonomous mapping 

drone suited for various agricultural purposes. This unit 

weighing 700 grams can cover a maximum area of 1200 ha 

in a single automated mapping flight. The system includes 

batteries, an RGB camera, radio modem and an eMotion 

software. This drone enables the acquisition of high 

resolution imagery which can be further transformed into 

orthomosaic and 3d maps. 

 

2.5 Data Acquisition 

 

2.5.1 Ground Control Point (GCP) Establishment 

 

Three (3) GNSS receivers were stationed on the field using 

a range pole and bipod setup. The tip of the metal shoe of the 

range pole was positioned at the center of the GCP marker. 

The bipod’s legs were adjusted until the setup was stable. 

The receiver was then mounted on the pole. The receiver and 

controller were connected via Bluetooth prior to the actual 

fieldwork. Local coordinates were used in the study. Using 

the Trimble controller, parameters and configurations were 

changed to make use of Post Process Kinematic (PPK) as 

survey style. Locations where recorded using the GPS 

controller simultaneously with the LCC observations. The 

exported file from the receiver were processed using the 

Trimble Business Center (TBC). 

 

Figure 4. Setting up the GNSS Receiver (left) and actual 

target on GCP (right) 

. 
2.5.2 UAV Multispectral Imagery Acquisition 

 

The project site was inspected to find an optimal location for 

the drone launching. An open space with less obstruction and 

low risk was chosen. Relative humidity and wind situation 

were taken into account. Upon finish of the GPS 

observations on each GCP, multispectral image acquisition 

using the fixed wing drone was performed. Imagery of the 

rice crop plantation was obtained through the equipped 

multispectral sensor. The drone was employed by a licensed 

pilot in autonomous mode. A total of three (3) flights with 

high overlap was executed by the drone to cover the study 

area. 

 

2.6 In Situ N Level Data Collection 

 

In obtaining ground values for N content, the conventional 

method of determining the N status of crops using an LCC 

was used. A total of twenty-two (22) sampling portions 

randomly placed on the field were established. Each 

sampling portion encompasses an area of 1 square meter. The 

coordinates of each corner of the plot was obtained using 

GNSS PPK and was recorded. For every plot, ten (10) 

healthy plants were selected. The topmost, fully-expanded 

and healthy leaf of each of the ten (10) plants was compared 

to the leaf color chart to assess the level of N content. When 

observing, the LCC was made sure to not be exposed to 

direct sunlight. Only one researcher examined and took LCC 

readings from the first to the last plot. The LCC used was 

acquired from the municipal agriculture office of San Rafael 

Bulacan. 

 

Figure 5. Stakes for marking sampling quadrants (left) and 

LCC measurement (right) 
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As part of the validation process, leaf samples from two (2) 

quadrants on the field were obtained. A total of two (2) 

kilograms of leaf samples was gathered and submitted to the 

Plant Tissue Analysis Laboratory of the Philippine Coconut 

Authority. The samples were limited to two quadrants to 

comply with the allowed kilogram of plants to be obtained in 

the farm. Leaf sample collection is destructive for the crops 

thus it was greatly reduced. 

 

2.7 Data Processing 

 

2.7.1 GNSS Data Processing 

 

The data acquired from the Static GNSS survey was 

processed in TBC. Necessary parameters including antenna 

height was fixed to 2.00 meters. Upon processing and 

adjustment of the network, the processed data containing the 

coordinates of the GCPs was exported. Same method was 

done to extract the coordinates of the sampling quadrant 

corners from the Kinematic dataset. 

2.7.2 Image Post-processing 

 

Multispectral image sets from the first and third flights were 

processed in Pix4Dmapper Pro. All 2780 images were 

geolocated with output coordinate system auto detected to be 

WGS84/ UTM zone 51N. The processing option used was 

Ag Multispectral, a template that uses sensors in a camera to 

generate radiometrically calibrated reflectance index, 

classification, and application maps for precision agriculture. 

The compatible cameras for AG Multispectral include Parrot 

Sequoia, Micasense Red Edge, and Airinov multiSPEC. For 

this study, Parrot Sequoia was used as the multispectral 

sensor. The final output are the reflectance tiles for each band 

(green, red, red edge and NIR). These reflectance tiles were 

used in the generation of the vegetation index maps. 

 

2.7.3 GCP Application for Precise Image Positioning 

 

After initial processing, GCPs were marked in the rayCloud 

of images. The adjusted coordinates exported from the Static 

Data Processing were used as GCPs for post-processing the 

multispectral imagery. Exact locations of GCPs on the image 

were marked. At least two (2) marked images were done to 

enable automatic marking of the GCPs. The software 

automatically selected the location of the GCP on every 

image through color correlation of the marked pixel on the 

rest of the images. Upon marking all GCPs on the image set, 

the processing was reoptimized.  

. 
Figure 6. GCP marking in rayCloud view Pix4D 

. 
2.7.4 Generation of Vegetation Index Maps 

 

Post-processed multispectral images were used to generate 

the VI maps processed using ArcMap 10.3. Image tiles 

having the same band were mosaicked to create a full band 

image. Using combinations of these mosaicked images (Red, 

Red Edge, Green, and NIR), VI maps were generated using 

a raster calculator. This tool builds and executes an 

expression using a Python syntax in a calculator-like 

interface. Mathematical formulas for each VI sensitive to N 

content (CI Green, CI Red Edge, MTCI, NDVI, NDVI Red Edge, and 

RTVI Core) were based from Walsh, et.al (2018).  

 

Table 1. Vegetation Indices sensitive to crop Nitrogen 

Feature polygons representing the sampling quadrants in the 

field were established and was overlaid in each VI map. 

These features were created using the Northings and Eastings 

of the corners obtained by GNSS. The mean VI for each of 

the twenty-two (22) quadrants were extracted using Zonal 

Statistics. 

2.8 Statistical Analysis 

2.8.1 Pearson Correlation 

Pearson correlation was used to determine the best VI which 

has the strongest correlation with LCC value. Generally, the 

strength of correlation between remote sensing data and in 

situ ground data was determined by calculating the 

correlation coefficient (r). The VI and LCC values were 

treated as the independent (x) and dependent (y) variables 

respectively. The mathematical formula for computing r is 

shown in equation 1. The variable n represents the total 

sample population. The VI with the highest r value was 

chosen to generate the final model equation. 

 

                          𝑟 =  
𝑛 ∑ 𝑥𝑦−(∑ 𝑥)(∑ 𝑦)

√𝑛 ∑(𝑥2)−(∑ 𝑥)
2√𝑛 ∑(𝑦2)−(∑ 𝑦)

2

 

 

2.8.2 Regression Analysis 

 

Upon determining the VI with the highest correlation with 

LCC values, regression analysis was performed. Regression 

was done to find the line of best fit for the two sets of data, 

VI and LCC datasets. This is the most commonly used 

modeling method. Mathematical trend lines including linear, 

exponential, logarithmic, polynomial and power equations 

were fitted with the data. The trend line and its respective 

equation, which exhibited the best fit and obtained the 

highest coefficient of determination (r2) was used as the final 

model. This model shall predict LCC values representing 

Nitrogen concentration levels using the best vegetation 

index. 

 

 

(1) 
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2.8.3 Leave One-Out Cross-Validation 

 

Leave-one-out cross-validation (LOOCV) was used to assess 

the performance of the model equation. This model 

validation technique measures how accurate the predictive 

model is. In LOOCV, the dataset was divided into training 

and test sets. Each iteration excluded one observation to be 

the test set, all the remaining belonged to the training set and 

was used to generate a model equation. The model tested the 

excluded observation. The root mean squared error (RMSE) 

for each iteration was computed and averaged to determine 

the coefficient of variation (CV). The lower the value of the 

CV, the more precise the estimate is. The formula for RMSE 

is shown in Equation 2. The variable n is the total sample 

population. 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝐴𝑐𝑡𝑢𝑎𝑙𝑖)2𝑛

𝑖=1

𝑛
 

 

2.9 Generation of Nitrogen Concentration Map 

 

The resulting model equation from the best relationship fit 

between the LCC observations and UAV-based VI was used 

to generate the N concentration map. After processing, mean 

values of VIs for each quadrant were recalculated using for 

quantitative validation. The resulting map showed the LCC 

levels throughout the study area which represents the N 

concentration level. 

 

3. RESULTS AND DISCUSSION 

. 
3.1 LCC Observations and Laboratory Results 

 

A total of twenty-two (22) sampling plots were observed 

from the three farmlands comprising the study area (Farms 

A, B, and C). Based from the Philippine Rice Research 

Institute (PhilRice) guidelines regarding the use of LCC, if 

most of the LCC readings are 4 and 5, then the plot where 

the LCC observations were obtained have sufficient 

Nitrogen level while those plots with mostly 2 and 3 readings 

have Nitrogen deficiency. A 30kg N/ha of fertilizer must be 

applied during dry season and 23 kg N/ha during the wet 

season.  

Since the study area is not an experimental field, obtaining 1 

kg of leaf samples on each sampling quadrant is impossible 

because it may affect the health of the rice crops. Hence, the 

2 sets of leaf samples were gathered randomly from Farms A 

and B only and submitted to the laboratory. According to 

Munson (1998) the nitrogen concentration in plant tissue is 

deficient (if less than 2.50%), sufficient (if 2.50% to 4.50%) 

and excessive (if greater than 6.00%) (Munson, 1998).  

 

Table 2. Summary of Nitrogen Level in Farms A and B 

Table 1 shows the summary of N level in Farms A and B. 

Following the PhilRice guidelines on using the LCC, the 

sampling quadrants in Farm A have sufficient N level while 

Farm B has N deficiency. From the laboratory analysis using 

UV-Vis Spectrophotometry, Farm A with 2.761% N total has 

sufficient nitrogen level while Farm B with 1.921% N total 

is deficient in N level. The results from the two different 

methods of N assessment are comparable. The average 

values of the LCC observations in both farms are relative to 

the laboratory result. 

 

3.2 GNSS Data Processing 

 

This study doesn’t involve global coverage and is not 

concerned with the position relative to a datum, thus Local 

Positioning System (LPS) was used during the fieldwork. 

Problems encountered during the GPS data processing 

include error in the network adjustment due to cycle slips. 

The discontinuity in the receiver’s phase lock was fixed by 

editing the data manually. Table 2 shows the adjusted grid 

coordinates used for the GCP marking in the image post-

processing.  

 

Table 3. Adjusted GCP grid coordinates 

3.3 Sampling Quadrants 

 

The coordinates from the exported PPK file served as the 

corners of the sample quadrants where the LCC observations 

were obtained. The northings and eastings data were used to 

create polygons in ArcMap 10.3 representing the sampling 

quadrants in the map. Figure 7 shows the distribution of 

sampling quadrants in Farms A and B plotted in the 

mosaicked Red Edge band imagery. Farm A has 11 sample 

points while Farm B has 9 sample points. The LCC readings 

were mostly obtained near the embankment between the rice 

fields since it is the most accessible area for observation. 

. 
Figure 7. Sampling quadrants in Farm A and B 

3.4 Image Post-processing Quality Report 

 

The Ag Multispectral template in Pix4D Mapper was used to 

process the flights to generate the reflectance tiles per band. 

Upon completion of the post-processing method, a quality 

report (shown in Table 4) assessing the output images was 

generated. 

Images Median of 6362 keypoints per image 

Dataset 2696 out of 2780 images calibrated 

Camera 

Optimization 

0.02% relative difference between 

initial and optimized internal camera 

parameters 

Matching Median of 1363.72 matches per 

calibrated image 

Georeferencing No 3D GCPs 

 

Table 4. Image quality specifications 

All 2804 images from flights 1 and 3 are geolocated. Since 

the number of keypoints is less than 10000, this suggests that 

less visual content could be extracted from the images. 

Farm LCC Observation Laboratory Result 

Farm A 3.91 2.761 

Farm B 2.86 1.921 

GCP Easting (m) 
Easting 

Error 
Northing (m) 

Northing  

Error 

1 277636.91 0.001 1655670.25  0.000 

2 277613.53  0.001 1655782.74  0.001 

3 277804.48  ------- 1655610.28  ------- 

(2) 
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Camera parameters such as shutter speed and exposure time 

should be adjusted. This variable however has a small impact 

on the overall analysis since the study does not dwell on 

visual inspection but on the actual pixel information to be 

extracted. 96% of all images are calibrated in a single block. 

The difference between the initial and optimized internal 

camera parameters is 0.02%. This falls under the 5% 

standard for relative difference of the optimized value. A 

median of more than 1000 matches in this case 1363.72 

denotes that the results in the calibrated regions are likely to 

be of best quality 

The reflectance tiles (red, green, red edge, NIR) generated 

after processing demonstrated good quality specifications 

denoting reliability for further analysis.  

 

3.5 Vegetation Index Maps 

 

The Parrot Sequoia multispectral sensor used in the study 

captured four (4) discrete spectral bands: Red, Green, NIR, 

and Red Edge. Figure 8 shows the mosaicked images of the 

four bands. These mosaicked images were used to generate 

the vegetation index maps (shown in figure 9).  

 

Figure 8. Mosaicked tile images per band 

. 
Subsequently, the mosaicked images were used to generate 

the vegetation index maps. The N-sensitive VI maps shown 

in figure 9 were created as mathematical combinations of the 

different mosaicked image bands. By visual inspection, the 

output VI maps vary from each other. No VI performed the 

same since each is a different combination of various 

multispectral bands. 

 

Figure 9. Vegetation Index Maps 

3.6 Zonal Statistics 

 

Upon generation of all necessary VI maps, the mean VI (CI 

Green, CI Red Edge, MTCI, NDVI, NDVI Red Edge, and RTVI Core) 

for each quadrant was extracted using the ArcMap zonal 

statistics tool. The range of mean values for each vegetation 

index is shown in table 5.  

. 
Table 5. Mean Vegetation Indices 

Each VI exhibits a certain range of values. The NDVI values 

ranged from 0.6 to 0.9 which are values close to 1. This 

suggests that the regions where the VIs were extracted are 

areas of vegetation which holds true since the quadrants were 

established within the plantation. The NDVI Red Edge provides 

better measurements for latter stage crops since it can 

measure further down into the plant canopy. The values 

range from 0.27 to 0.49 which falls within the standard range 

for green vegetation for NDVI Red Edge. The Chlorophyll 

Index (CI) is used to calculate the chlorophyll content in 

leaves. The values of these indices are sensitive to even the 

slightest variations in chlorophyll content. The mean VIs for 

CI Green falls within 2.25 to 7.16 while CI Red Edge ranged from 

0.77 to 1.94. The MTCI is a VI highly sensitive to 

chlorophyll concentration since reflectance values from NIR, 

Red and Red Edge bands were used in the calculation. The 

mean index values for each quadrant ranged from 0.61 to 

1.69. The RTVI Core is another index that incorporated the 

reflectance values of the red edge band. The VI values for 

RTVI Core are relatively smaller than the other VIs.  

 

3.7 Statistical Analysis 

 

3.7.1 Pearson Correlation of LCC and VI datasets. 

 

Pearson correlation was used to determine the VI which has 

the strongest correlation with in situ data for N concentration. 

The correlation coefficient between the VI and the LCC 

datasets were calculated to measure the degree of 

relationship between the two variables. Figure 10 shows the 

correlation coefficients (r) visualized as scatter plots. Among 

the VIs, NDVI Red Edge exhibited the strongest correlation 

with LCC observations with an r equal to 0.97.  

. 
Figure 10. Pearson correlation visualized as scatter plot 
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3.7.2 Regression Analysis 

 

Regression analysis was performed to determine the line of 

best fit with the NDVI Red Edge values (independent variable) 

and the LCC values (dependent variable). Different trend 

lines including linear, exponential, logarithmic, polynomial 

and power were fitted to obtain the equation that will model 

the LCC and NDVI Red Edge values. The whole datasets for 

both dependent and independent variables were used to 

generate the final model. The coefficient of determination 

(R2) was also determined per best fit line. A high value of R2 

indicates that one variable is highly predictable from the 

other variable. The polynomial equation obtained the highest 

R2 value of 0.9731 therefore, this was used as the final model 

equation for estimating LCC levels. 

. 
Table 6. Regression equations 

. 
3.7.3 Leave One-Out Cross-Validation 

 

Using LOOCV, the performance of the final model equation 

was tested. LOOCV involves the calculation of RMSE per 

iteration. This was used to compute for the coefficient of 

variation (CV). The CV was computed to be 0.03, in 

statistics, a CV < 1 indicates low variance thus the generated 

equation is suggestive of a good model fit. Estimates that will 

be predicted by the model are precise and reliable. 

 
LCC = -35.312 (NDVI Red Edge) 2 + 41.362 (NDVI Red Edge) – 6.9594    (3) 
 

3.8 Nitrogen Concentration Map 

 

Using the final model equation in (3), the N concentration 

map for the surveyed rice plantation in San Rafael, Bulacan 

dated February 5, 2019 was generated. Non-vegetation 

pixels were masked. The output map shows the 

corresponding predicted LCC values throughout the area. 

Interpreting this, portions exhibiting LCC 2 and LCC 3 

indicates Nitrogen deficiency. According to the PhilRice 

guidelines, a 30 kg/ha of Nitrogen must be applied to these 

areas. Portions with LCC 4 and LCC 5 values denote 

sufficient Nitrogen levels. 

 

Figure 11. Nitrogen concentration map and corresponding 

fertilizer quantities according to PhilRice 

 

 

4. CONCLUSION AND RECOMMENDATIONS 

. 
4.1 Conclusion 

 

Integration of agriculture and remote sensing by UAV 

technology is a potential strategy for boosting agricultural 

output.  Through efficient Nitrogen monitoring, fertilizer 

application may be optimized. This study proved an existing 

correlation between ground-based Nitrogen data obtained 

through Leaf Color Chart (LCC) observations with 

parameters extracted from drone imagery. Specifically, 

vegetation indices (VIs) acquired from the drone image 

processing were assessed to see the VI which is the most 

highly correlated with the LCC dataset. Primarily, the results 

of the study showed the possibility of using UAV-based 

Nitrogen sensitive VIs to quantify actual crop Nitrogen 

content in an evidently more efficient and reliable way as 

compared to most existing Nitrogen monitoring methods. 

 

UAV integrated with a multispectral sensor having four 

discrete spectral bands (Green, Red, NIR, and Red Edge) is 

a promising technology specifically for precision agriculture. 

It was proved that UAVs are good aerial platforms for 

Nitrogen monitoring and a multispectral sensor is highly 

suitable for the determination of crop nutrient status. The 

methodology used for the assessment of Nitrogen 

concentration of rice crops in Farms A and B was ideal to 

reduce the detrimental effects of high levels of Nitrogen on 

the environment at the same time increase the economic yield 

of farmers.  Lastly, the study is an advantage for large-scale 

Nitrogen monitoring. The method proposed in this research 

could be a long-term investment for agricultural 

municipalities to centralize Nitrogen monitoring covering all 

plantations within its boundary. 

 

Upon the assessment of the six vegetation indices, NDVI Red 

Edge had the highest correlation with the LCC observations. 

This denotes NDVI Red Edge is a better indicator of Nitrogen 

level. This study proved findings on related literature 

suggesting that NDVI Red Edge is the best VI to use when 

mapping variability in fertilizer requirements. The Nitrogen 

concentration map of a rice farm was generated from the best 

fit model equation along with the corresponding 

interpretation regarding the amount of needed fertilizer per 

portion. The output map showed its potential as reference for 

efficient Nitrogen management. 

 

4.2 Recommendations 

 

Since NDVI Red Edge had the highest correlation with the LCC 

dataset, it is recommended to use a sensor with red edge 

band. In addition, LCC observations must be obtained in the 

morning, 8:00 – 10:00 AM, to avoid inaccuracies since the 

sunlight's glare affects the reflectance on the leaf samples. 

Moreover, LCCs must be measured in several sampling 

quadrants for sufficient training and test datasets. To have 

better validation, leaf samples must be gathered from the 

sampling quadrants where the LCC readings were obtained. 

However, due to its destructive effect, experimental fields 

must be used as study area. Other major agricultural crops 

such as corn and sugarcane may be explored and used as 

subject crops. Furthermore, the rice plantation used as study 

area only involved crops in their active tillering stage. 

Further studies may incorporate the growth stage and 

varieties of the subject crop as model variables. 

 

NDVI Red Edge 

Trendline Equation R2 

Linear y = 14.536x – 1.9352  0.9431 

Exponential y = 0.6628e4.4001x 0.9089 

Logarithmic y = 5.4637ln(x) + 8.9132 0.964 

Polynomial y = -35.312x2 + 41.362x – 6.9594  0.9731 

Power y = 18.011x1.6723 0.9499 
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