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ABSTRACT: 

 

Urban fire continues to be a persistent disaster, especially with the proliferation of highly dense urban settlements. As a response, 

several measures were established to help mitigate the losses caused by fire including simulating the fire spread. The cellular 

automaton system has been widely used to simulate the complex process of fire development along with Physics-based models. A 

data-driven approach has been rarely employed. This paper presents the result of incorporating machine learning techniques to the 

existing cellular automaton based urban fire spread models. Specifically, instead of manually calculating the ignition probability of 

each cell in the automaton, the Extreme Learning Machine (ELM) was used to learn the ignition probability from the historical data. 

After building the model, its performance was evaluated using the data collected from the four fires in Basak, Lapu-Lapu City. By 

using a confusion matrix to compare the actual and the predicted values, the Burned Actual - Burned Predicted relationship was 

derived. Results suggest that the proposed method can effectively describe the development of fire, and the model accuracy is quite 

good (i.e., the Burned Actual - Burned Predicted relationship ranges from 78% to 83%). Lastly, the study was able to demonstrate the 

possibility of using a data-driven approach in creating a simple cellular automaton fire spread simulation model for urban areas. 

Further studies utilizing more fire incident data on with varying properties is recommended. 

 

 

1. INTRODUCTION 

Fire is a natural process that has an essential contribution to the 

ecosystem. However, fire can become very risky and even 

deadly depending on various circumstances. Because of that, 

different mitigation and preventive measures have been 

established to control its negative effects. It is important to 

develop these measures as they could serve as the basis for 

devising plans for future firefighting activities. Given these, 

various methods have been introduced as tools for formulating 

these strategies, such as fire danger estimation systems 

(Vasilakos et al., 2009), fire loss assessment systems (Zhao, 

2011), and fire spread modelling and simulation systems 

(Bertinshaw, Guesgen, 2002). Virtual simulation of the spread 

of the fire was considered since then by many researchers as an 

integral instrument for the fire departments to create effective 

plans for fire disaster mitigation. 

 

There have been many models created to predict the spread of 

fire. The majority of these models target forest or wildfires 

although there are targeted at urban fires. These models produce 

good results and can definitely predict fire spread. To date, the 

field of study continues to grow. Existing cellular automata fire 

spread models on urban areas are assumed to be non-flexible 

because of the fact that the models are created for specific areas. 

In addition, there is currently no urban fire spread model that 

uses cellular automaton and machine learning together which 

was considered a promising approach in forest fire spread 

modeling (Zheng et al., 2017). On the other hand, physical-

based models, although promising, are considered too complex 

because of the fact that the model requires extensive research 

and high-end resources to operate (Himoto et al., 2008). This 

situation of finding the balance between the accuracy of the 

model and the complexity of the results leads to more time and 

expense to researchers. With the focus of further improving the 

simulation results of the existing models without compromising 

the simplicity through integrating the methodologies of these 

existing representations, an urban fire spread model that could 

possibly yield good results of fire spread simulation can be 

created. 

Generally, this study aimed to explore the development of a 

new approach to predicting fire spread by utilizing existing 

Cellular Automata fire spread models and incorporating 

Machine Learning techniques to identify the ignitability of cells. 

This paper reports the results of training and experiments 

involving four fire incidents in Barangay Basak, Lapu Lapu 

City, Philippines. 

 
1.1 Cellular Automaton Models 

With the goal of making firefighting activities more effective, 

different fire spread models were created and proposed. One of 

the models proposed to simulate the spread of fire uses cellular 

automaton as a framework. In a cellular automaton, each cell in 

the system is restricted to local neighborhood interaction only. 

Thus, the automaton is one of the simplest methods, time-wise 

and memory-wise, that can represent a phenomenon, such as 

traffic congestion (Yuen, Kay, 2010). But in spite of its 

simplicity, the cellular automaton can easily model physical 

systems and processes where local interactions are involved and 

produce astonishing results. Therefore, the employment of the 

framework is considered as the most common approach for fire 

modeling (Ohgai et al., 2004). That being said, there are 

variations of the model ranging from the traditional cellular 

automaton to cellular automaton with integrated machine 

learning techniques to further improve the accuracy of the 

results. 
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1.2 Forest Fire Spread Models 

One of the earliest fire spread models that use cellular 

automaton was devised and proposed by Karafyllidis and 

Thanailakis in 1997. The model focuses on simulating the 

spread of fire for both homogeneous and heterogeneous forests. 

Karafyllidis and Thanailakis (1997) created their own transition 

rules for the eight (8) neighboring cells, which can serve as one 

of the deciding factors of how the model works. The authors 

also created their own algorithm that can determine the behavior 

of fire at a certain time. Ultimately, Karafyllidis and Thanailakis 

(1997) adjusted their algorithm so that it can easily model the 

effects of weather and topography into the spreading of fire. 

This can be considered as the greatest achievement of the 

research because weather and topography are considered as two 

of the most important factors in the spreading of fire, especially 

in a forest setting (Cheney et al., 1993). According to the 

authors’ simulations, the results produced by the algorithm were 

in good agreement with the experience of fire spreading in real 

forests. This work of Karafyllidis and Thanailakis (1997) was 

also used as the basis for other succeeding forest fire spread 

models. One of the most notable fire spread models is a 

modification of Karafyllidis’ and Thanailakis’ work by 

Hernández Encinas et al., (2007). Instead of the linear front 

presented by the former, a circular spreading of the fire front 

was shown. The authors did this by modifying the transition 

algorithm used for diagonal neighboring cells. As a result, the 

modified model proposed by Hernández Encinas et al. (2007) is 

more realistic and precise compared to the original model. 

Another spread cellular automaton model was proposed by 

Wang Xuehua et al., (2016). Wang Xueha et al. (2016) 

drastically improved the effects of wind in the previous model. 

This improvement allowed the model to reach new heights in 

simulating the spread of fire and yield better results than the 

base model. 

In 2016, Zheng et al. improved the use of cellular automaton by 

incorporating machine learning techniques in model creation. 

This method promises to solve the problem pointed out in the 

previous forest fire spread models; i.e. human errors (Zheng et 

al., 2016). The authors also created their own cell states and 

local transition rules but the rules are very similar to the existing 

models. Because the model is still in its exploratory stage, some 

of the important fire driving forces were not present in the 

model; it only considered wind speed and direction. Despite the 

fact that it lacks the important parameters, the simulation 

accuracy can range between 59% and 82%, which is better than 

that of the previously reported studies in most cases (Zheng et 

al., 2016). 

Despite producing good simulation results, models that are 

based on discrete values can most likely have discrepancies 

(Hernández Encinas et al., 2007). One of the main issues of the 

presented models is that the weather variable incorporated only 

refers to the velocity and direction of the wind. The models did 

not include several factors related to weather such as the 

weather condition itself (e.g. rainy, sunny. etc.), humidity or air 

temperature, and the time of the day. Some of these variables 

are labeled as primary driving forces of the propagation of fire 

especially in the forest setting (Williams, 1977; Pitts, 1990; 

Baeza et al., 2002). Another problem with most of the presented 

models is that the local transition rules used are subject to 

human errors. In other words, the performance and efficiency of 

their algorithm heavily depend on the way the authors 

implemented it. This means that in the process of creating the 

rules, comprehensive studies about the physical principle of fire 

are involved (Zheng et al., 2016). Although some discrepancies 

are present in the models, they can still be useful references for 

future studies about the spreading of fire. Hence, this research 

was inspired by the work of Zheng et al. (2016) wherein a data-

driven approach was incorporated in creating the model. 

1.3 Urban Fire Spread Models 

Cellular automaton has already been applied to fires in the 

urban setting. Takizawa (2000) studied fire spread modelling 

using stochastic cellular automaton in a city setting. Like the 

previous forest fire propagation models, the reason that the 

cellular automaton was chosen to be its basis is that it can 

imitate complex processes in such a simple manner. What 

separates this study to the other works of literature is the use of 

stochastic cellular automaton (Takizawa, 2000). This means that 

the new entities’ states are chosen based on some probability 

distributions. In other words, this model can also be viewed as a 

discrete-time random dynamical system. Looking into the 

results of the simulation, Takizawa (2000) concluded that the 

model can simulate the actual spread of fire quite well despite 

its simplicity. 

One major setback with the model of Takizawa (2000) is that it 

assumes that the building materials are all wooden. This means 

that the model created was not applicable to almost all urban 

areas but only to the area of focus which was in Wakamatsu-

cho, Nagata Ward. Another problem with this model is that it 

does not incorporate the most important factor in fire spread, 

which is the wind speed and direction. As a result, the created 

model is not flexible enough to model various urban settings; in 

fact, it just adds inaccuracy. 

Another cellular automaton fire spread model that uses urban 

setting as its subject area was developed to help community-

based planning for disaster mitigation (Ohgai et al., 2004). 

Compared to the fire spread model of Takizawa (2000), Ohgai 

et al. (2004) added several cell states and incorporated wind 

speed and direction into the model in a unique manner. Also, 

Ohgai et al. (2004) proposed that the ideal size of the cells in a 

cellular automaton model for urban areas is 3x3 meters. The 

authors also implemented a sub-model simulating the effects of 

firefighting activities which proves to be useful for a much 

better simulation of fire propagation especially in diverse areas 

(Alexandridis et al., 2011). As an outcome, it was shown that 

the simulation results can reproduce the actual fire spreading 

records approximately. However, although the simulation 

results were better compared to the work of Takizawa (2000), it 

remains that the model presented by Ohgai et al. (2004) also 

assumes that the building materials are uniform. Therefore, just 

like the Takizawa model, this model is assumed to be obsolete. 

Nevertheless, this research still considered these studies as a 

vital part for devising a better model. The fact that the models 

were focused on an urban setting can greatly influence the study 

itself. Also, the studies mentioned several parameters that can 

prove useful when modelling a real urban area. Examples of 

these parameters are building materials, building height, 

building density, cell size, etc (Takizawa, 2000; Ohgai et al., 

 2004; Gao et al., 2008). Therefore, this study shall refer 

specifically to the works of Ohgai et al. (2004) and Gao et al. 

(2008) together with the work of Zheng et al. (2016) to create a 

representation for urban areas. 

1.4 Physical-based Models 

Aside from cellular automaton, there are also systems that use 

physical principles to model the spread of fire. One of the 

famous models that use this methodology was devised by 

Rothermal (1972). This model uses different mathematical 
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equations to predict the propagation of fire in wildland fuels 

(Rothermal, 1972). Its main concept is to create an equation 

based on the laws of Physics. The equations for the heat 

required for ignition, propagating flux, reaction intensity, and 

the effects of wind and slope were all considered in formulating 

the model. As a result, the outputs were highly accurate that the 

model was used as a basis for appraising fire spread and 

intensity in the National Fire-Danger Rating System. 

Another physical-based implementation of the fire spread 

simulation was proposed by Himoto and Tanaka in 2003. This 

model focuses on predicting the fire propagation in urban areas. 

Like the Rothermal (1972) model, this system also uses the 

physical principle to simulate the spreading of fire in an 

individual building. These individual building fires are then 

accumulated to create a realistic simulation of urban fire spread 

(Himoto, Tanaka, 2003). It also incorporates the wind variable 

into the model. The model is still at its exploratory stage but 

based on the results, it is heading in the right direction and has 

high potential. Accordingly, the representations have a high 

potential in producing more accurate results. However, there are 

relatively few studies regarding the subject matter. One of the 

possible reasons for this is that it is too specific to create a 

general model, thus, increasing the complexity of the system. 

Another reason for that is its nature; where multiple 

mathematical equations are converted into computer algorithms, 

a high-performance resource is needed to cater to the lengthy 

computations of the model (Himoto, Tanaka, 2003). 

 
2. METHODOLOGY 

The main focus of this study is to implement the existing 

algorithms for urban fire spread simulation using cellular 

automaton and integrate machine learning techniques in its 

implementation. Essentially, fire spread will be simulated using 

cellular automaton using wind speed and direction following the 

work of Ohgai et al. (2004) and Gao et al. (2008). The 

probability of the cell catching fire is estimated using machine 

learning of houses/buildings’ properties. The use of machine 

learning in estimating this probability for urban settings has 

rarely been explored. 

The research design is divided into three main sections: (a) 

Dataset preparation, (b) Modeling and Simulation, and (c) 

Validation. 

2.1  Dataset Preparation 

Meteorological and Fuel or Driving Force data were collected 

for the study. In particular, wind speed and direction 

(meteorological) were used to simulate the direction and rate of 

spread of fire while building construction material, fire load 

(driving forces) and presence of firefighting facilities were used 

to estimate the probability of the unit to catch fire. 

Each sample in the dataset was manually processed since some 

of the features were not suitable inputs in a neural network 

machine learning. The samples were manually tagged with the 

appropriate class label, i.e. 0 for not burned and 1 for burned. 

QGIS, an open-source desktop tool for processing geospatial 

data, was used to preprocess the raw information. After the 

preliminary processing, 6,944 distinct building footprints were 

generated as the training dataset. Of which, 4,387 or 63% of the 

training dataset were extracted from burned areas and 2,557 or 

37% were extracted from unburned areas. Preprocessed data 

from Sitio Balutan Tangke and Sitio Lanao Danao served as 

testing dataset while data from Sitio Tamiya and Sitio San 

Roque will be used as training dataset. 

2.1.1 Preprocessing Fire Load Types: Fire Load pertains to 

the type of material for the basic commodities (i.e. bed, sofa, 

table, etc.) found inside the house.  The different fire load types 

can be wood, plastic or foam. The counts of each fire load type 

found in the household/building were used as values for the 

feature. These were eventually normalized to get a value 

between zero and one. Fire load types were treated equally 

which means that no weights were assigned for each type. 

 

2.1.2 Preprocessing Fire Fighting Facilities: In contrast to 

fire load types, the data for firefighting facilities were encoded 

individually to indicate the number of each firefighting facility. 

The values were also normalized resulting in a value between 

zero and one. 

 

2.1.3 Mapping the Buildings to Cells: The shapefile that 

contains the target building footprints were mapped in a grid of 

3x3-meter cells as shown Figure 1. The data of each building 

footprint were then distributed to the cells that it intersects. The 

footprint outside of the fire extent, i.e. those that were not 

burned, were also include in the dataset. The number of not 

burned footprints varied from one fire incident to another. As a 

rule, buildings that are unlikely to catch fire such as those from 

across the street or too far away from the origin are no longer 

included. Making sure that the number of unburned footprints 

that are included in the dataset is in proportion with the number 

of burned footprints is considered as well. 

 

 
Figure 1. Tamiya Mapping of Buildings to Cells 

 

In Figure 1, each box represents a building footprint while the 

blue polygon represents the extent for fire in the area. The star 

indicates the origin of fire. The grid cells are represented as 

green cells in the background. 

For each cell or sample, the values of its driving force were 

labeled as the input (i.e., xi) of the ELM model. If the sample 

was extracted from a burned area, its class label was set to 1. 

Otherwise, it was set to 0. The final dataset would look like 

Table 1. 
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- - - - - - - - - - 

Table 1. Sample Dataset 
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2.2  Fire Spread Simulation and Ignitability Modelling 

In this study, the works of Ohgai et al. (2004) and Gao et al. 

(2008) were considered as the blueprint of the model but instead 

of manually calculating the ignition probability of each cell, a 

data-driven approach was used. Furthermore, the overall 

process of the model could be described by the following 

flowchart: 

 
Figure 2. Fire Spread Simulation Flow Chart 

 

2.2.1 Characteristics of the Cell: Gao et al. (2008) 

mentioned that there are three main factors that can affect the 

spread of fire in an urban area. Therefore, these factors were 

considered as the attributes of a cell in the cellular automaton: 

3. Building condition - composed of building materials, floor 

area, and height of a building. These attributes are the 

main factors for the possibility of a building burning. 

4. Weather condition - composed of wind velocity and 

direction. This relates to the direction, range, and the 

possibility of spreading (external factor). 

5. Characteristics of the area - composed of vacant land and 

road. These are mainly considered as the factor for spread 

control. 

 

As mentioned previously, each cell in the automaton represents 

a feature in the dataset which holds the pieces of information 

derived from the buildings that intersect the cell. 

Moreover, in modelling the spread of fire using cellular 

automaton, the size of the cell is assumed as one of the most 

vital parts of the framework (Gao et al., 2008). The smaller the 

size of the cell, the more detailed simulation results can be 

obtained. However, the downside of this feature is that it 

increases the calculation time and the volume of data needed. 

Therefore, the size of the cell must be set properly to maintain a 

balance between the results and the complexity of the model. In 

this study, the size of the cell is set at 3 by 3 meters (3x3 m) 

following the research of Ohgai et al. (2004). 

5.1.1 Neighborhood: Like the models of Ohgai et al. (2004) 

and Gao et al. (2008), the neighborhood type of this study is 

dependent on the speed of the wind (see Figure 2). According to 

Ohgai et al. (2004), this adjustable neighborhood is based on the 

idea of the limit of distance that fire can spread which was 

presented by Jirou and Kobayashi. 

 

 
Figure 3. Neighborhood in the model (Ohgai et al., 2004) 

 

5.1.2 States of the Cell: To minimize the complexity of 

implementing the model, this study chose to work on a square-

lattice and the usual 2D square grids were used as cells in the 

framework. Additionally, the states of a cell were adapted from 

the works of Ohgai et al. (2004) and Gao et al. (2008). 

Therefore, each square in the grid can be described by the 

following states: 

 
State 0: Unburnable; A cell containing no fuel 

State 1: Not burning; A cell containing fuel has the possibility 

to ignite 

State 2: Catching fire; A cell containing fuel is burning but has 

no ability to spread fire 

State 3: Burning; A cell containing fuel is burning and has the 

ability to spread fire 

State 4: Extinction; A cell containing fuel has already been 

burned 

5.1.3 Transition Rules: In order for a cell in an automaton 

to change between the aforementioned states, a finite set of 

local transition rules is required. In this research, these rules 

were established as follows: 

 
Rule 1: A cell without any fuel (State 0) is unburnable and 

never changes during the simulation period. 

Rule 2: A burned cell (State 4) remains burned in the 

succeeding time steps. 

Rule 3: A burning cell (State 3) must be updated into the 

burned state (State 4) if the current burning time of the cell is 

equal or greater than a defined time, ty. 

Rule 4: A burning cell with no ability to spread fire (State 2) 

must be updated into the burning state (State 3) if the current 

burning time of the cell is equal or greater than a certain time, tx. 

Rule 5: An unburned cell containing fuel (State 1) must be 

updated to a burning state (State 2) if one or more of its 

neighboring cells is burning and its transition probability is 

higher than a random probability threshold. 

Following the researches of Ohgai et al. (2004) and Gao et al. 

(2008), the equation for the transition probability in this study 

was given as: 

               Pt
i, j = 𝛼 • p(i, j)t  •  W(i, j)β

t  •  p(tckl)                              (1) 

where p(i, j)t is the igniting probability of the cell considering 

the fire’s driving forces in that cell and W(i, j) is the wind 

factor. p(tckl) refers to the ability of the burning cell to cause fire 

spreading. 𝞪 is an adjustable parameter whose value is changed 

to wind effects such as slowing of the spreading velocity and 𝜷 

is also an adjustable parameter which determines the direction 

and range of spreading. Finally, Pt
i, j refers to the transition 

probability of a cell or the ability of a cell to catch fire. 

5.1.4 Building the Igniting Probability Model: In the 

works of Ohgai et al. (2004) and Gao et al. (2008), the ignition 

probability of a cell was manually calculated. The calculation 

also considered the building structure parameters or building 

materials. Instead of manual calculation, this study used a 

machine learning technique to predict the ignition probability 

values of the cells. 

 

In this research, the Extreme Learning Machine (ELM) 

technique was used (see Figure 4). This machine learning 

technique was proven to be a simple and efficient learning 

algorithm for single-hidden layer feedforward neural networks 

(Huang et al., 2006; Yang et al., 2011; Zheng, et al. (2017). 
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Figure 4. ELM Model (Yang, et al, 2011) 

In the ELM model, given N arbitrary distinct samples, the 

objective is to find a quantitative relationship between the 

inputs and the output. Each cell’s data of the driving forces of 

fire were labeled as inputs and the cell’s igniting probability 

was considered as the output of the model. 

5.1.5 Effects of Neighboring Wind: In this work, the effect 

of wind in a cell (see Figure 5) was also derived from the study 

of Ohgai et al. (2004) and Gao et al. (2008). 

 

 

 
Figure 5. Effects of Western Wind (Gao et al., 2008) 

As shown in Figure 5 the number of cells that could possibly 

burn increases as the speed of the wind increases. In addition, if 

the wind speed is strong enough, the cells on the leeward side 

take a higher fire spreading probability than the cells on the 

windward side. 

5.1.6 Spreading the Time Step: This study highlighted two 

important time factors that should be observed. First is the time 

required that a cell in State 2 (catching fire state) should change 

to State 3 (burning and can cause the fire to spread). This time 

variable (tx [min]) was calculated using the equation given by 

Ohgai et al. (2004) and Gao et al. (2008): 

 

                 tx = (3 + 3a / 8 + 8d / D) / (1 + 0.1v)                  (2) 

The second time variable that was considered in the model is 

the time (ty [min]) until a cell burns after catching fire is defined 

as follows (Ohgai et al., 2004): 

                           ty = (w / 5.5) / (Aw √H / Af )                        (3) 

It is also important to note that these time variables were used 

for calculating the value of p(tckl) - the ability of the burning cell 

to spread the fire. The value of p(tckl) gradually increases the 

longer the burning time, tkl , of the cell is. Similarly, it is 

assumed that the longer a material is exposed to heat, the higher 

its chances of igniting. 

5.2 Model Validation 

Since the output of the Extreme Learning Machine is an igniting 

probability, there is no ground truth to test the performance of 

the model because there are only two classes in the dataset (i.e. 

1 and 0). Thus, the results of the machine learning model were 

plugged into the overall system and a fire spread simulation was 

performed. This means that the performance of the simulation 

was also the basis of the accuracy of the machine learning 

model. 

In this research, the confusion matrix was used. It is a 

quantitative method of characterizing classification accuracy in 

the form of a table that relates the classification result and the 

actual values. Fire spread was simulated in the two test 

communities – Sitio Tangke Balutan and Sitio Lanao Danao, 

within the reported duration of the fire incidents. Using this 

metric, five quantitative measurements were obtained after the 

simulation - (1) percentage of burned actual-burned predicted; 

(2) percentage of burned actual-not burned predicted; (3) 

percentage of not burned actual-burned predicted; (4) area of 

actual burned in km2; and (5) area of burned predicted in km2. 

 
6. DISCUSSIONS AND CONCLUSIONS 

6.1 Dataset 

As mentioned in the previous sections, the features of each 

sample are composed of building materials, building height, fire 

load types, and firefighting facilities. It was also mentioned that 

the majority of the building structures in the target areas were 

all residential and the type of construction materials used was 

generally light. Furthermore, a comparison of the features in all 

study areas and a summary of the features for both the training 

data and testing data is shown in Table 2 and Table 3. 

 Training Testing 

Features Tamiya San 

Roque 

Balutan 

Tangke 

Lanao 

Danao 

Wood 91.48% 78.41% 54.13% 82.06% 

Cement 52.99% 91.60% 79.34% 93% 

Metal 0.56% 9.85% 0% 36.32% 

Plastic 1.19% 7.32% 0% 0% 

Wooden 4.20% 3.22% 11.64% 3.88% 

Plastic 8.68% 1.84% 6.89% 5.08% 

Foam 3.98% 1.36% 3.31% 5.47% 

Firefighting 

Facility 

0% 2.93% 0% 0% 

Table 2. Comparison of features of the four study areas 

 
Table 2 shows that Sitio Tamiya is mostly composed of wooden 

than cemented structures. In contrary, the rest of the sitios (i.e. 

San Roque, Balutan Tangke, and Lanao Danao) are mostly 

composed of cement than wood. Furthermore, Table 2 shows 

that all four study areas have similar values on Plastic-made 

structures. It was mentioned previously that the buildings 

involved in the fire incidents were all residential types which 

imply that the construction materials used are also similar to 

each other. 

 

In terms of the relationship between the fire load types of the 

four sitios, Table 2 implies that all four areas have similar fire 

load types distribution. Additionally, the firefighting facilities of 

the four places are all close to zero. Again, this is due to the fact 

that almost all the structures in the fire sites are residential 

which means that fire extinguisher, smoke sensor, etc., are 

hardly present. 
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Features Training Testing 

Wood 84.63% 72.39% 

Cement 73.22% 88.27% 

Metal 5.43% 23.75% 

Plastic 4.40% 0% 

Wooden 3.69% 6.57% 

Plastic 5.10% 5.70% 

Foam 2.61% 4.72% 

Fire Fighting Facility 1.54% 0% 

Table 3. Summary of features of the Training and Testing Data 

 
Moreover, the four study areas were grouped into two to 

produce the training and testing dataset. The training data was 

composed of sitio Tamiya and sitio San Roque as these two fire 

incidents have the largest burned area covered, which means 

that a larger dataset for training could be derived. Consequently, 

the remaining two study areas were used to test the performance 

of the model. 

6.2 Performance Evaluation Results 

The data from Sitio Tamiya and San Roque were used for 

training the neural network model. The model was then used as 

a factor in the fire simulation among other factors such as wind 

speed, wind direction, etc. for all four fires used in this study. 

Figures 7 and 8 show the results of the fire spread simulation in 

the four study areas. The figures also present a comparison with 

the actual extent or perimeter of the fire. For each study area, 

the simulation results exhibit an acceptable agreement with the 

actual fire extent. 

 
Figure 6. Fire Simulation Results Legends 

 
Figure 7. Simulation Results on Training Set, Tamiya (a) and 

San Roque (b) 

 
Figure 8. Simulation Results on Test Set in Balutan Tangke (a) 

and Lanao Danao (b) 

 

 
Training Testing 

 
Tamiya 

San 

Roque 
Balutan 

Lanao 

Danao 

Burned Actual - 

Burned Predicted 

[%] 

82.84 83.26 79.29 78.07 

Burned Actual - Not 

Burned Predicted 

[%] 

17.16 16.74 20.71 21.93 

Not Burned Actual - 

Burned Predicted 

[%] 

0.45 2.2 1.5 2.46 

Actual Burned Area 

[m2] 
8262 3915 504 1494 

Predicted Burned 

Area [m2] 
6844.5 3259.8 399.6 1166.4 

Table 4. Quantitative comparison between 

simulation results and actual values 

From a quantitative perspective, Table 4 shows the Burned 

Actual - Burned Predicted percentage ranges between 78% and 

83%. The table also displays that the Burned Actual - Burned 

Predicted relationship between the training and testing dataset 

only differs by 3% to 5%. This implies that the proposed model 

has a consistent performance for both seen and unseen data. 

One factor for this high precision is because both the building 

materials of the training and testing set are considered to be 

generally similar. 

6.3 Simulation Discrepancies 

Parts of the simulation results highlighted with the black boxes 

were the discrepancies of the results. For both San Roque and 

Lanao Danao areas, it can be observed that the fire reached 

beyond the expected extent (see Figure 7 (b) and Figure 8 (b)). 

It’s highly probable that this deviation is because of existing 

high walls and firewalls which were not included in the data 

collection. It is also possible that the topography of the place, 

which was not considered in this study, played a role in shaping 

the actual fire extent. According to Hernández Encinas et al. 

(2007), fire shows a smaller rate of spread when it descends a 

downward slope than when it climbs up an upward slope. Thus, 

neglecting this factor in the proposed model could lead to model 

discrepancies and inaccuracy. 

Furthermore, in a layman’s perspective, the simulation results 

should have exceeded the actual fire extent simply because 

there were no firefighting activities integrated in the model. 

Instead, it can be perceived that there are areas inside the actual 
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fire boundary that did not ignite. One contributor to this is the 

fact that the data used were post-fire information. It is possible 

that the reconstructed establishments were designed to be less 

ignitable compared to the pre-fire buildings. This leads to a 

lower rate of fire spread than the actual disaster. Another 

important factor that may possibly explain the deviation is the 

spotting effect. Although it rarely happens in urban fires, 

spotting effect could possibly ignite a new fire in the leeward 

side of the wind. This phenomenon could actually extend the 

real fire boundary a little further. Additionally, it is assumed 

that in an actual fire, the faster the ignition time of the fire load, 

the faster it can cause fire spreading. As mentioned earlier, the 

fire load weights in this study were considered equal which 

could also be the reason for the low rate of spread. 

In practice, the simulation of the fire’s spreading pattern could 

not really exactly match with the actual fire behavior since not 

all fire records can meet the necessary demands (Huang et al., 

2016). An example would be the wind velocity data which were 

generally observed at sparse monitoring sites. This means that 

the accurate wind velocity data on the place of fire cannot be 

obtained. This small inaccuracy could already lead to the 

dissimilarity of the predicted and actual fire spreading. In 

addition to that, the proposed model was constructed using a 

cellular automaton system which is limited by the pre-defined 

cell states, transition rules, and the shape of the cell. This study 

chose to work on a traditional square-lattice instead of using an 

irregular cellular automaton to represent the buildings. This 

implies that the proposed model is just an approximation of the 

actual physical system which also means that the simulation 

results could certainly vary. Furthermore, not all states of fire 

were represented in the model. According to Josh (2010), there 

are generally four stages of fire: incipient, growth, fully 

developed, and decay. In this study, the growth stage was not 

included since it was considered as the shortest phase of the fire 

development process. Thus, this constraint could also contribute 

to the dissimilarity of the simulation results and actual fire. 

6.4 Conclusions and Recommendations 

Urban fire is an expensive disaster not just in the Philippines but 

all over the world. In this study, a new urban fire spread model 

was proposed by modifying an existing cellular automaton 

model and integrating ELM to calculate the ignition probability 

of each cell. The analysis was conducted in four distinct study 

areas located in Basak, Lapu-Lapu City. Results suggest that the 

proposed method can effectively describe the spreading of fire, 

and the model accuracy is quite good (i.e., the Burned Actual - 

Burned Predicted relationship ranges from 78% to 83%). 

Therefore, this study demonstrated the possibility of using a 

data-driven approach in creating a simple cellular automaton 

fire spread model for urban areas. 

Furthermore, the dataset used in this study was considered 

small-sized due to some constraints. Thus, it is highly 

recommended to add more data in order to improve the model 

and make it more suitable for simulating communities with 

different profiles. With more data, a better model can be trained. 

In addition, it is recommended to test the model in more recent 

fires, i.e. fires after enumeration, to confirm the contribution of 

construction materials as a primary factor in the probability of a 

house or any urban establishment to catch fire. Lastly, it is 

highly recommended to implement a fire fighting sub-model to 

realistically simulate the spreading of fire. 
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