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ABSTRACT: 

 

Mapping of air quality are often based on ground measurements using gravimetric and air portable sensors, remote sensing methods 

and atmospheric dispersion models. In this study, Geographic Information Systems (GIS) and geostatistical techniques are employed 

to evaluate coarse particulate matter (PM10) concentrations observed in the Central Business District of Baguio City, Philippines. 

Baguio City has been reported as one of the most polluted cities in the country and several studies have already been conducted in 

monitoring its air quality. The datasets utilized in this study are based on hourly simulations from a Gaussian-based atmospheric 

dispersion model that considers the impacts of vehicular emissions. Dispersion modeling results, i.e., PM10 concentrations at 20-

meter interval, show that high values range from 135 to 422 µg/m3. The pollutant concentrations are evident within 40 meters from 

the roads. Spatial variations and PM10 estimates at unsampled locations are determined using Ordinary Kriging. Geostatistical 

modeling estimates are evaluated based on recommended values for mean error (ME), root mean square error (RMSE) and 

standardized errors. Optimal predictors for pollutant concentrations at 5-meter interval include 2 to 5 search neighbors and variable 

smoothing factor for night-time datasets while 2 to 10 search neighbors and smoothing factors 0.3 to 0.5 were used for daytime 

datasets. Results from several interpolation tests indicate small ME (0.0003 to 0.0008 µg/m3) and average standardized errors (4.24 

to 8.67 µg/m3). RMSE ranged from 2.95 to 5.43 µg/m3, which are approximately 2 to 3% of the maximum pollutant concentrations 

in the area. The methodology presented in this paper may be integrated with atmospheric dispersion models in refining estimates of 

pollutant concentrations, in generating surface representations, and in understanding the spatial variations of the outputs from the 

model simulations. 

 

 

1. INTRODUCTION 

1.1 Background of the Study 

Air quality monitoring activities in the Philippines has been 

undertaken by several agencies to generate significant 

information in formulating air pollution management and 

control programs. The Environmental Management Bureau 

(EMB) under the Department of Environment and Natural 

Resources (DENR) with other institutions such as the Manila 

Observatory, Philippine Nuclear Research Institute (PNRI) and 

the University of the Philippines Institute of Environmental 

Science and Meteorology (UP IESM) have been actively 

engaging in projects related to air quality monitoring with 

extensive resources and established monitoring stations in the 

country, most of which are located in the Metro Manila area.  

There are numerous efforts in monitoring air quality in Metro 

Manila by these agencies but only a few have been planned and 

implemented in other urban cities. Other urban cities that were 

mentioned by DENR EMB as priority areas for air quality 

monitoring are Baguio City, Cebu City, and Davao City. 

According to several news articles since 2014 (Comanda, 2018) 

(Peña, 2018)(Guieb, 2015)(Locsin, 2014), citing reports from 

the World Health Organization (WHO), Baguio City is one of 

the most polluted cities in the country. The Central Business 

District (CBD) of Baguio City has been identified as one with 

the highest air pollution concentration among the urban cities, 

even higher than cities in Metro Manila (Guieb, 2015). Despite 

the increase of the air quality monitoring stations in the country 

operated by EMB, the number of stations located in the 

Cordillera Administrative Region (CAR), in which Baguio City 

is included, is still limited to one. The continuous air quality 

monitoring station within the said region is located at Burnham 

Park in Baguio City. The CAR airshed covers Baguio City and 

the municipalities of La Trinidad, Itogon, Sablan, Tublay and 

Tuba (BLISTT).  The Philippine Clean Air Act of 1999 or 

Republic Act 8749 indicates the designated airsheds, defined as 

areas with common weather or meteorological conditions and 

sources of air pollution that affect the interchange and diffusion 

of pollution, to facilitate the monitoring of air quality (EMB, 

2004).  

 

The City Environment and Parks Management Office (CEPMO) 

of the Local Government Unit (LGU) of Baguio City is in-

charge of monitoring ambient and roadside air quality. Air 

quality measurements recorded by CEPMO, however, is limited 

only to particulate matter (PM) concentrations. The PM 

measurements recorded by the continuous air quality 

monitoring station located at Burnham Park is used to describe 

the general trends of ambient air quality in Baguio City. These 

records do not specify portions of the city that are heavily 

polluted which may have significant impacts on the health of 

pedestrians and commuters. The unit has identified that 

transportation and air quality control measures are necessary to 

conform to the air quality guideline values for PM. The LGU-

Baguio made interventions through the implementation of 

number coding for vehicles plying in the city, anti-smoke 

belching units and roadside inspection and testing monitoring 

team (RITMT). Given these initiatives by the LGU, it is better 

to provide detailed information on the location of pollution 

concentrations to determine if the traffic schemes are helpful in 

improving air quality conditions in the CBD area.  The LGU 

may use these types of information to assist in their planning for 

better transport management.   
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1.2 Research Objectives 

This study aims to determine the locations and distributions of 

the PM concentrations within CBD-Baguio City. The spatial 

and temporal variations of these pollutant concentrations are to 

be characterized using Geographic Information Systems (GIS)-

based geostatistical modeling.  

 

1.3 Scope and Limitations 

In Baguio City, the possible sources of PM identified in the 

CBD are soil sources, soil-road dust resuspension, and vehicular 

emissions (Hagad, 2018). This study will focus on quantifying 

vehicular emissions in CBD-Baguio City (refere to Figure 1) 

and will highlight how these emission sources vary spatially 

through different temporal scenarios, i.e. daytime and night-

time hours. The traffic and meteorological datasets utilized in 

this study were obtained on 2014. The simulation period is 

limited to 24-hours, from 12:00 midnight to 11:00 PM of 

February 8, 2014. 

 

 
 Figure 1. Total vehicular emissions on 2014 based on traffic 

projections and annual average daily traffic (AADT) in 2016 

 

The PM measurements recorded at the Burnham Park station 

are for fine particulates (PM2.5) and coarse particulates (PM10). 

These particulates mainly differ on the size or diameter and 

their residence time in the atmosphere. PM10 tends to stay longer 

near the surface and contributes to build-up of pollutants in the 

ground. The dispersion models were designed for PM10 only, 

with the assumption that estimated concentrations resulting 

from vehicle exhaust emissions can be valid up to an altitude of 

5 meters. In-situ measurements requested from UP IESM were 

obtained at 5-meter altitude. Parameterization of the dispersion 

model shall not be discussed in this paper. Validation of the 

emissions and dispersion modeling results is beyond the scope 

of this study. The accuracy of the geostatistical models is based 

on the assessment of prediction errors discussed in section 

2.2.4. 

1.4 Review of Related Literature 

Transport and dispersion of air pollutants in urban areas vary 

depending on their source. Cities are generally the most affected 

areas with a critical concentration of airborne PM (Pospisil, 

Jicha, 2010). The concentration of PM in urban areas is the 

result of combinations of concentrations from different factors 

in the area such as regional background, urban and traffic 

(Shahraiyni, Sodoudi, 2016).  

 

Monitoring of airborne PM and other air pollutants in urban 

areas is categorized into field measurements, laboratory 

experiments such as wind tunnel set-ups, empirical models and 

Computational Fluid Dynamics (CFD) techniques (Tominaga, 

Stathopoulos, 2016). Field measurements include data 

collection using gravimetric-based sensors, which are typically 

mobile and acquires samples in short time intervals, and wind 

tunnel experiments for large-scale and localized regions (Xia et 

al., 2014). Portable air quality sensors are used to collect 

samples of PM through filters that are harvested and weighed 

after a 24-hr sampling period. In-situ measurements may also be 

collected through fixed monitoring stations (Gulliver, Briggs, 

2011) (Wu, Kuo, 2013) such as the regional monitoring stations 

maintained by the DENR-EMB in the Philippines.  

 

Atmospheric dispersion models use mathematical equations that 

describe the dispersion, chemical, and physical processes within 

the plume to calculate the concentrations at various locations 

(Holmes, Morawska, 2006). Dispersion models for predicting 

PM concentrations in urban areas include deterministic and 

statistical models.  Deterministic or mechanistic models involve 

numerically solving a set of differential equations to predict the 

spatio-temporal variations of a pollutant while statistical models 

are utilized in describing the complex site-specific relationship 

between air pollutants and explanatory variables (Shahraiyni, 

Sodoudi, 2016). These two approaches generally differ on the 

following: (1) data requirements, (2) information on the source 

of pollutant and (3) modeling period. Deterministic models 

often tend to have longer modeling period in terms of 

computational or processing time compared to statistical 

models. Since combinations of deterministic models can be 

utilized to estimate PM10 concentrations, it would take long 

hours of simulation than a single statistical model that can be 

developed easier and faster. 

 

Deterministic models often possess an inaccurate description of 

the dispersion processes and may lead to significant bias and 

error in predicting pollutant concentrations variables 

(Shahraiyni, Sodoudi, 2016). With these limitations, GIS-based 

and geostatistical methods can improve the model estimates in 

terms of its spatial resolution and makes prediction less time-

consuming. Geostatistics is often used for wide areas with 

numerous air quality monitoring stations that can provide 

enough measurements for spatial and temporal analysis of 

pollutant concentrations. In the case of a sparse number of 

measurements, geostatistical techniques introduce its usefulness 

in up-scaling from the data that have been collected at limited 

points to provide complete areal coverage where the accuracy of 

the prediction is known (Sertel et al., 2006). Geostatistics 

provides an advanced methodology to quantify the spatial 

features of the target variables and enables spatial interpolation 

(Nas, 2009). Geostatistical models for uncertainty assessments 

have been developed and applied to environmental sciences 

particularly for characterizing polluted sites (Paper et al., 2000). 

Halimi et.al. (2016) investigated the spatial distribution of 

carbon monoxide (CO), nitrogen dioxide and PM10 using 

different geostatistical interpolation methods applied on 
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measurements from 21 air quality monitoring stations in 

Tehran, Iran. Moral García et al. (2010) carried out sampling 

campaigns in an urban area in Badajoz City, Spain to measure 

ambient ozone concentrations using an automatic portable 

analyzer. This study made use of geostatistical methods to 

analyze the distribution of ozone concentrations within the city. 

Enkhtur (2013) conducted modeling of PM10 concentrations 

within five northwestern European countries using geostatistical 

space-time approach integrating secondary information from 

different data sources. Prediction and probability maps were 

created in the same study based on Universal Kriging models.  

 

Geostatistical methods using GIS are employed in this study to 

create detailed estimates of PM10 concentrations, which are 

generated from a 20x20 meter grid in the dispersion modeling 

process, through spatial interpolation. The main goal of spatial 

interpolation is to discern the spatial patterns of atmospheric 

pollution concentrations by estimating values at unsampled 

locations based on measurements at sample points (Moral 

García et al., 2010). Uncertainties of the estimates can also be 

assessed within the geostatistical modeling process. 

 

Air pollution studies have employed distance-weighted 

techniques, but Kriging methods have been widely used in 

incorporating the spatial correlation into its estimation 

algorithm (Moral García et al., 2010). Kriging method is 

described as the best linear unbiased estimator and its estimates 

are based on the variogram model and measurements from 

sample points (Halimi et al., 2016). An advantage of the method 

is that it gives unbiased prediction with minimum variance and 

considers the spatial correlation between measurements at 

different locations (Moral García et al., 2010). The geostatistical 

techniques quantify the spatial autocorrelation among measured 

points and account for the spatial configuration of the sample 

points around the prediction location (Nas, 2009). 

 

2. METHODOLOGY 

2.1 Datasets and Materials 

Geostatistical modeling is conducted to refine estimates of 

hourly PM10 concentrations resulting from Gaussian-based line 

source dispersion model simulations. The simulation results 

comprise of two (2) 20x20 gridded point locations of receptors 

with PM10 concentration values (refer to Figure 2). In order to 

check spatial variations of these pollutant concentrations within 

the roads, there is a need to calculate or estimate the PM10 

concentrations at a smaller grid size. Mapping PM10 

concentrations at a finer scale provide better representations of 

the values within and near the roads. The grid size for the 

geostatistical process is based on the smallest road width 

present in the model domain, which is 6 meters.  

  

 
   Figure 2. Receptor locations defined on corners (gray points) 

of two 20x20 meter grids (black and red grids) 

2.2 Geostatistical Modeling 

The geostatistical modeling process involves several steps in 

order to obtain detailed estimates of PM10 concentrations, 

particularly at 5x5 meter spatial resolution. The process is 

employed through the available Geostatistical Analyst toolbox 

in ArcGIS. The specific steps undertaken in this geostatistical 

modeling of PM10 concentrations are illustrated in Figure 3. 

Several interpolation tests are undertaken, and prediction errors 

are evaluated in each step to select the most appropriate 

parameters for the geostatistical model.  

 

 
Figure 3. Geostatistical modeling workflow 

 

2.2.1 Exploratory Data Analysis 

 

Various plots such as histograms and normal quantile-quantile 

plots are generated to inspect and interpret the variations of 

PM10 concentrations generated by the dispersion model. 

Histograms illustrate the frequency distribution of the PM10 

concentrations based on the defined number of classes and 

calculate summary statistics such as mean, median, maximum, 

and skewness. Normal QQ plots indicate univariate normality of 

the PM10 concentrations. If the errors of the predictions from 

their true values are normally distributed, the points should lie 

roughly along with the reference or normal line (Esri, 2003). In 

addition to inspecting these plots for visualizing the distribution 

of the PM10 concentrations, different data transformation 

methods are tested and assessed based on the prediction errors.   
 
2.2.2 Variogram Modeling 

 

Variograms are the primary geostatistical tool for analyzing the 

spatial continuity of a given attribute and can provide 

visualization and quantification of the dispersion and patterns of 

continuity or anisotropic behaviour (Paper et al., 2000). The 

variogram reflects some of our understanding of the geometry 

and continuity of the variable and can have a very important 

impact on predictions from numerical models (Gringarten, 

Deutsch, 2001). The variogram is expressed mathematically as 

the expected squared difference between two data values 

separated by a distance vector called lag or h (Tominaga, 

Stathopoulos, 2016).  The variogram is represented by Equation 

1:  

 

                                 (1) 

where γ is the variogram, h is the lag distance and Z(x) is the 

data increment (Nas, 2009).  

 

The point locations of PM10 concentrations are fitted in a 

theoretical semivariogram. The semivariogram is a plot of 
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points, which is due to spatial autocorrelation, tend to increase 

in semivariance (y-axis) with increasing distance or lag 

(Webster, Oliver, 2001). The theoretical semivariogram is a 

means to explore the spatial relationship in the dataset. Based 

on the concept of spatial autocorrelation and the first law of 

geography which states that nearby things are more closely 

related than farther things, pairs that are close in distance should 

have a smaller difference than those farther away from one 

another. The extent to which this assumption is true can be 

examined in the empirical semivariogram. The variogram and 

modeling estimates provide a basis for interpreting the causes of 

spatial variation. The shape of the points in the experimental 

variogram can reveal much at this stage about the way that 

properties change with distance and the adequacy of sampling 

(Webster, Oliver, 2001). In this study, distance and directions 

are assumed to affect the variations in the data. With this 

assumption, the variability of the PM10 concentrations is 

influenced by wind directions. This is accounted for by defining 

the model as anisotropic. The influence of both spatial distance 

and directions on the dataset is investigated by enabling the 

Anisotropy setting in the Geostatistical Analyst tool. The values 

of sill, nugget and range in the semivariogram models are 

checked whether they change along all search directions. 

Directional semivariogram models are obtained to show the 

variations of PM10 concentrations in different distances and 

directions. Optimum parameters for the sill, range, and angle of 

direction are accounted in the results to describe the directional 

influence in the datasets. 

 

In this study, all variogram model types are tested initially and it 

was observed that five (5) model types are closely related to the 

datasets and showed small prediction errors. These variogram 

model types are Circular, Gaussian, Exponential, Spherical and 

Stable. Lag size of the model is set to 15 meters, which 

corresponds to the grid interval of the dispersion model results. 

Several numbers of lags were tested with a range of values from 

5 to 20 meters. The buffer from the road centerlines is set to 300 

meters, thus, is set to be the maximum for the lag distance. The 

lag size refers to the distance of the points at which 

measurements of variances are taken into consideration for the 

semivariogram modeling. The recommended value for the lag 

size is usually set to a value equivalent to the interval of points 

in the dataset for geostatistical mapping (Hengl, 2009). 

 
2.2.3 Spatial Interpolation 

 

The interpolation process is implemented using the Kriging 

method, which is regarded as an optimal spatial interpolation 

method is a type of weighted moving average function defined 

by Equation 2: 

 

        

                  (2) 

where Z(Xi) is the measured value at location i, λi is an 

unknown weight for the measured value at the location I, n is 

the number of measured values and Xo is the prediction location 

(Nas, 2009). The two basic implementations of Kriging 

interpolation are Simple Kriging (SK) and Ordinary Kriging 

(OK). They primarily differ in the assumption of stationarity, 

which accepts that the mean, variance, and autocorrelation 

structure remain the same across the map extent. The SK 

method fully relies on this assumption, while OK assumes a 

constant unknown mean only over a search neighbourhood 

(Miller, 2017).  

 

The spatial interpolation involves search neighbourhood 

parameterization, assessment of prediction errors and 

comparison of geostatistical models. Assigning search 

neighbourhood parameters in the dataset is primarily done to 

limit the number of points used to interpolate the values at 

unsampled locations. This step is based on the assumption that 

at a certain distance the points will no longer have a correlation 

with the prediction point location and it is possible that they 

may even be located in a different area (Esri, 2003). The 

advantage of assigning these search neighbourhood parameters 

is for computational speed, i.e. the smaller the search 

neighborhood, the faster the predicted values can be generated. 

The search mode is represented by a circle or an ellipse that can 

be divided into sectors (refer to Figure 4) from which an equal 

number of points are selected to avoid bias in a particular 

direction (Gringarten, Deutsch, 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4. standard (left) and smoothing (right) search ellipses 

 

2.2.4 Assessment of Prediction Errors 

 

Prediction errors from the geostatistical models are evaluated to 

determine the most appropriate geostatistical model in the 

hourly dispersion modeling results. The optimal predictors are 

found to conform to these criteria: (1) mean error is close to 0, 

(2) smallest value for RMSE, average standard error and mean 

standardized error and (3) RMS standardized error close to 1 

(Nas, 2009). The RMSE, which indicates how closely the model 

predicts the measured values, and the mean error (ME), which is 

the average difference between the measured and predicted 

values, are determined by Equations 3 and 4: 

 

  

     (3)

                              
                       (4) (1) (2) 

where N is the number of predicted values Yo (Enkhtur, 2013). 

The average standard error is equivalent to the average of the 

prediction standard errors while the mean standardized error 

pertains to the average of the standardized errors (Esri, 2003). 

The interpolated surface generated by the optimal predictor is 

also assessed if it is a good estimate or otherwise by comparing 

the RMSE and average standard errors. It is a good estimate if 

these errors are equal, an overestimate if RMSE is less than the 

average standard error and underestimate if RMSE is greater 

than the average standard error. These errors are shown with the 

cross-validation results.  
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3. RESULTS AND DISCUSSION 

3.1 Exploratory Data Analysis 

Histograms and Normal QQ plots of hourly 

simulation results from the dispersion modeling show the 

spatial distribution of the pollutant concentrations. Sample 

histograms linked with the spatial data are illustrated in Figure 

5. The histograms show that PM10 concentrations are not evenly 

distributed within the extent of the model. The histograms for 

all the simulations show that values are skewed to the left, 

which indicates that most of the measurements are within or 

below the mean concentration. 
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     (b) 

 

Figure 5. Histograms linked with the spatial data showing least 

(a) and high (b) PM10 concentrations 

The Normal QQPlots, a sample of which is given in Figure 6 for 

daytime hour 6AM-7AM, show that the pollutant 

concentrations do not follow a normal curve and are consistent 

with the information presented by the histograms. The trend of 

the line shown in the Normal QQ plot is similar to exponential 

curves. This observation is validated by checking appropriate 

variogram models for the datasets. 

 

 
 

Figure 6. Normal QQPlot for daytime hour (6AM-7AM) 

 

3.2 Variogram Models 

Preliminary tests involve using different variogram model types 

with varying lag sizes (ranging from 5 to 20) and a varying 

number of lags (10 to 50). Results from these tests show that at 

a constant lag size equal to 15 and at a constant number of lags 

equal to 20, prediction errors are at a minimum. Prediction 

errors are assessed in each test and sample results using one 

dataset (night-time hour 12MN-1AM) are provided in Table 1. 

Highlighted in red are the values conforming to the criteria in 

assessing the prediction errors as discussed in section 2.2.4.  

 

 

Table 1. Preliminary test results in selecting a variogram model 

 

The results show that the exponential variogram model 

produces the least errors for RMSE and average standardized 

error, and the highest value (closest to 1) for RMS standardized 

error. The model conforming to these recommended values are 

checked in all preliminary tests and results indicate that the 

most appropriate model for fitting the variograms is the 

exponential model. 

 

3.3 Spatial Interpolation 

Hourly dispersion modeling results of PM10 point 

concentrations spaced at 20-meter interval show that high 

values range from 135 to 422 µg/m3. The dispersion modeling 

results show general patterns of spatial variations of the 

pollutant concentrations for daytime (6AM to 6PM) and 

nighttime (6PM to 6AM) hours. The pollutant concentrations 

are evident within 40 meters from the roads and are shown in a 

sample dataset in Figure 6.  

Model # 1 2 3 4 5 

Variogram Circular Spherical Exponential Gaussian Stable 

Mean 0.00032 0.00024 -0.00028 -0.00039 -0.00038 

RMSE 6.84535 6.52962 5.31532 8.11014 6.92237 

Mean Std 0.00001 0.000003 -0.00003 -0.00005 -0.00007 

RMS Stdz 0.67410 0.69031 0.75948 0.73452 0.73013 

Ave SE 10.16158 9.46694 7.01837 11.04454 9.48797 
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(a) 

 

    (b) 

 

Figure 6. Dispersion modeling results for (a) daytime 

hour 6AM-7AM and (b) nighttime hour 6PM-7PM 

 

Geostatistical modeling is incorporated in this study to generate 

finer estimates of PM10 concentrations at 5x5 meter interval. 

The geostatistical layers were converted to surfaces to provide 

continuous data on the pollutant concentration unlike the results 

of the dispersion model that only provide concentrations at 

discrete points specified in the dispersion modeling simulations. 

Optimal predictors for pollutant concentrations at 5-meter 

interval include 2 to 5 search neighbors and variable smoothing 

factor for night-time datasets while 2 to 10 search neighbors and 

smoothing factors 0.3 to 0.5 for daytime datasets. From the 

geostatistical modeling results (refer to Figure 7), spatial 

variability of PM10 concentrations is more evident on some 

portions of the CBD such as the surrounding areas in the north 

and northeast side containing road segments Bokawkan Road, 

Magsaysay Ave., Session Road, Gen. Luna Avenue and 

Harrison Road. Figure 7 shows the equivalent geostatistical 

layers of the dispersion model layers illustrated in Figure 6. The 

geostatistical layers show that trends in hourly simulations are 

highly dependent on the emission sources and prevailing wind 

conditions. Low wind conditions occur in the area, thus, there is 

a build-up of PM10 near the roads and disperse according to the 

hourly average wind conditions. 
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Figure 7. Geostatistical modeling results for (a) 

daytime hour 6AM-7AM and (b) nighttime hour 

6PM-7PM 

 

3.4 Assessment of Prediction Errors 

Geostatistical modeling estimates are evaluated based on 

recommended values for mean prediction error (MPE), root 

mean square error (RMSE) and standardized errors. Results 

from several interpolation tests indicate small MPE ranging 

from 0.0003 to 0.0008 µg/m3 and average standardized errors 

4.24 to 8.67 µg/m3. RMSE ranges from 2.95 to 5.43 µg/m3, 

which are approximately 2 to 3% of the maximum pollutant 

concentrations in the area. These small errors indicate that 

geostatistical methods can improve estimates of the pollutant 

concentrations resulting from the dispersion modeling process. 

Atmospheric dispersion models with modeling periods shorter 

than 24 hours usually yield inaccurate results with expected 

uncertainty of 40% when compared with in-situ data (Almazan 

et al., 2017) 

 

 

4. CONCLUSION  

The methodology presented in this study may be integrated with 

atmospheric dispersion models in refining estimates of pollutant 
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concentrations, in generating surface representations and in 

understanding the spatial variations of the outputs from the air 

dispersion model simulations. The spatial and temporal 

variations of airborne PM10 concentrations in the CBD- Baguio 

City are assessed in this study by integrating geostatistics with 

dispersion modeling results. From the dispersion results, general 

trends can be observed on the spatial distribution of PM10 

concentrations. High concentrations are evident on roads with 

high vehicular emissions. This observation can be seen in the 

hourly simulation results. However, the description of the 

variations is generalized because the pollutant concentrations 

are given at 15x15 meter spatial resolution. Pollutant 

concentrations may vary along the roads with widths smaller 

than 15 meters. Hence, geostatistical modeling is incorporated 

in this study to generate finer estimates of PM10 concentrations 

at 5x5 meter interval. Spatial variations are observed on roads 

with high vehicular emissions and in their surrounding areas, 

which are mostly located on the north and northeastern part of 

the study area. Temporal variations indicate that, in general, 

higher maximum concentrations and direction of dispersion is 

more evident during nighttime hours from 6 PM to 6 AM.  
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