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ABSTRACT: 
 
This paper aims to provide a qualitative assessment of different image transformation parameters as applied on images 
taken by the spaceborne multispectral imager (SMI) sensor installed in Diwata-1, the Philippines’ first Earth 
observation microsatellite, with the aim of determining the order of transformation that is sufficient for 
operationalization purposes. Images of the Palawan area were subjected to different image transformations by manual 
georeferencing using QGIS 3, and cloud masks generated and applied to remove the effects of clouds. The resulting 
images were then subjected to structural similarity (SSIM) tests using resampled and cloud masked Landsat 8 images 
of the same area to generate SSIM indices, which are then used as a quantitative means to assess the best performing 
transformation. The results of this study point to all transformed images having good SSIM ratings with their Landsat 
8 counterparts, indicating that features shown in a Diwata-1 SMI image are structurally similar to the same features 
in a resampled Landsat 8 data. This implies that for Diwata-1 data processing operationalization purposes, higher 
order transformations, with the necessary effort to implement them, offer little advantage to lower order counterparts. 
 

1. INTRODUCTION 
Whenever a spaceborne imaging system gathers data, 
it is subjected to several factors leading to geometric 
distortion such as the Earth’s curvature, mismatch in 
projection, relief displacement, and others. The 
presence of these geometric distortions cause changes 
in a satellite image’s scale, angular relationships, 
feature positions, etc., which are needed to be 
corrected for such an image to become usable for 
mapping purposes (Dave, Joshi & Srivastava, 2015). 
As the number of non-systematic distortions present in 
a satellite image increases, the complexity of the 
needed corrections via georeferencing also increases. 
However, there is also the issue of overfitting - the 
development of an overly complex correction model 
relative to the amount of data available (Bilger & 
Manning, 2013) to fit every single detail of the data to 
the reference. Applying an overfit model will cast 
doubt in the integrity of the estimates and any new data 
will cause the model’s performance to deteriorate 
(Bilger & Manning, 2013) - and in the case of satellite 
images, an overfit georeferencing parameter will have 

a detrimental effect on the integrity of pixel values 
once the data is used in applications such as 
monitoring the health of vegetation. 
This paper explores the implementation of different 
image georeferencing techniques to correct images 
coming from Diwata-1, the Philippines’ first Earth 
observation microsatellite, with the aim of 
determining the most practical transformation 
algorithm that can be used to minimize cases of 
oversampling and overfitting of data. In particular, the 
authors attempt to compare the transformed images 
with standard data from another satellite. 

2. DATA PROCESSING AND ANALYSIS METHODS 
2.1. Image transformation 
There are several image transformation algorithms 
that have been developed, but the ones listed in this 
paper are the techniques present in QGIS 3, being the 
software used to georeference and transform the 
Diwata-1 SMI images. 
 
2.1.1. Affine/Helmert: An affine transformation 
(equivalent to the “Helmert transformation” in QGIS, 
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which is a subset of the affine transformations) is a 
type of transformation that preserves points, straight 
lines and planes as long as the data are preserved in 
affine space (i.e. changes can be defined by simple 
translations or displacement vectors) (Fisher, Perkins, 
Walker & Wolfart, 2003). Thus, affine transformation 
modifies the data primarily via translation and rotation 
(Euclidean), scaling (similarity) and uniform planar 
shearing (affine) (Fisher, Perkins, Walker & Wolfart, 
2003), and ultimately performs the least amount of 
warping on an image. Consequently, affine 
transformation does not consider distortions due to the 
Earth’s curvature and the terrain of the imaged area 
and is thus most suitable for images where the effects 
are minimal, such as images of flat surfaces with small 
area coverage. 
 
2.1.2. Polynomial: When the effects of rough 
terrain or of the Earth’s curvature are no longer 
negligible, affine transformation is not going to be 
suitable to obtain a proper matching of features with 
the reference basemap. Thus, it is going to be 
necessary to warp the image in a manner akin to 
“rubber sheeting”, and polynomial transforms are 
going to be needed. 
A polynomial transformation is a non-linear 
transformation and relates two 2D Cartesian 
coordinate systems through a translation, a rotation 
and a variable scale change (Knippers, 2009) - this 
last item is what differentiates polynomial 
transformations from its affine counterpart. The 
transformation function can have an infinite number of 
terms, but QGIS 3 can perform up to the third degree. 
 
2.1.3. Projective: A transformation that maps lines 
to lines - but not necessarily preserve parallelism - is 
called a projective transformation (Levy, 1995). 
This type of transformation considers the projection of 
a feature from one plane of view into another plane of 
view, similar to how a single object can have different 
shapes when a camera takes an image from different 
angles. 
 
2.1.4. Thin Plate Spline: The thin plate spline 
(TPS) algorithm is a georeferencing method based on 
a spline interpolation - “a piecewise polynomial that 
maintains continuity and smoothness between 
adjacent polynomials” (Ha, et al., 2018). Because of 
its ability to generate a smooth function that 

interconnects separate piecewise polynomial 
functions, spline-based transforms allow a much 
greater range of image warping options than higher 
order polynomial functions, resulting in a very high 
goodness of fit with reference data. There are two 
downsides on the use of TPS, however: the need to 
generate a much larger number of GCPs than 
polynomial functions, and the increased risk of 
overfitting the data due to the number of 
interconnected polynomial functions. 

 
2.1.5. Remarks: In Diwata-1 operations, when 
manual georeferencing is performed in QGIS the 
minimum number of GCPs needed to generate reliable 
residual calculations increases with the order of 
transformation. When GCPs are evenly distributed 
across the image being worked on, a Helmert 
transformation needs at least three points, polynomial 
transformations at least seven, projective 
transformation also at least seven, and TPS at least 
twenty. The number of GCPs will increase further 
depending on residual calculations because some 
initially located points must be removed and replaced 
by more properly located points to improve the 
residual score and thus ensuring the image’s goodness 
of fit when overlaid on a basemap. As a georeferencing 
task on a single image takes ten to fifteen minutes to 
complete with the minimum needed transformation, 
the same task using a higher transformation will take 
even longer with possible minimal gain in accuracy. 
This study will therefore consider not only the visual 
accuracy of the transformed image but also the 
potential time expended on a georeferencing task, in 
order to determine the optimal transformation that can 
be used that will also help save time for operations 
purposes. 
 
2.2. Cloud Masking 
The presence of clouds and cloud shadows in a 
satellite image reduces its usability for purposes of 
thematic mapping, but there may still be useful 
information that can be derived from non-cloud areas. 
When clouds are present in an image intended for data 
analysis, a mask is created to minimize, if not remove, 
the effects of clouds by setting their values to a 
constant value, normally to zero. 
Using a cloud mask also helps in data comparison 
activities, as the implementation of an image’s cloud 
mask on the item it is going to compared with 
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eliminates the otherwise positive bias that will occur 
in favor of the otherwise cloud-free image. 
 
Several cloud mask generation techniques were 
researched to find the most applicable one for Diwata-
1 data, including the Otsu process (Ramos et al., 2016) 
and the use of reflectance-based thresholds via 
adaptive average brightness (Roomi, Bhargavi & 
Banu, 2012). For the purpose of this paper, the 
threshold technique is used. 
 
2.3. Structural Similarity 
The structural similarity index (SSIM) is a full 
reference metric that gives a numerical rating on the 
perceived similarity of a test image with a reference 
image (Wang, Bovik, Sheikh & Simoncelli, 2004). In 
contrast with other quality metrics such as peak signal-
to-noise ratio, that give ratings based on the entire 
scene, SSIM assesses the scene in terms of structural 
information, giving ratings based on the closeness of 
features to the reference. As SSIM measures the 
perceptual difference between two images (Wang, 
Bovik, Sheikh & Simoncelli, 2004), it does not 
determine which of the two images is better. This 
implies the need for a suitable reference image when 
assessing the test image via SSIM, and thus this study 

made use of Landsat 8 as reference data, given the 
Landsat Program’s long history of operations. 
Two SSIM implementations have been tested for this 
study, with the goal of obtaining the most reasonable 
SSIM index output. One is an implementation as a 
function in the Python-based scikit-image processing 
library (link), and the other is a standalone Python 
code made by Oliviera (link). From the said tests, the 
Oliviera code was deemed better than the scikit-image 
function because the resulting SSIM indices for the 
former fall within the zero to one range of values, 
whereas the latter was giving values exceeding one. 
 

3. IMPLEMENTATION ON DIWATA-1 DATA 
3.1. Preparation of Diwata-1 data 
QGIS 3.6 was used to perform image-to-image 
registration on Diwata-1 images of Sofronio, Palawan 
with the aid of Landsat 8 data, ensuring that the 
maximum calculated residual value for a ground 
control point (GCP) was below one-pixel unit. New 
images were then generated by transforming the test 
images via Helmert, Polynomials 1, 2 and 3, Projective 
and Thin Plate Spline transformations. 
After transformation, the images’ DN values were 
converted into their reflectance equivalents. To ensure 
uniformity when SSIM is implemented at the end, the 

Figure 1. Flowchart of this study’s methodology 
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SMI data were resampled to 60m spatial resolution. 
Cloud masks were then generated from the resampled 
data using the threshold technique as programmed in 
the Python language. These masks were then in turn 
applied on the SMI images using QGIS 3.6 and the 
Python-based Geospatial Data Abstraction Library 
(GDAL). 
Vector boundaries of the georeferenced images were 
also generated for clipping scenes from the reference 
Landsat 8 data, discussed in the next section. 
 
Table 1: Number of manually obtained ground control points 
(GCPs) used for each transformation type of Diwata-1 SMI 
data, with the guideline that the obtained residual value is 
below one-pixel unit. This was obtained by reprocessing the 
GCPs used for the TPS transformation to become usable by 
the lower order transformations. 

 
 
3.2. Preparation of Landsat 8 data 
Landsat 8 images matching the season and central 
wavelength of the Sofronio data were downloaded via 
the USGS EarthExplorer website (link) to be used as 
reference data for SSIM. To match the reflectance 
measures in Diwata-1 SMI images, the downloaded 
data’s pixel values were converted from DN to 
reflectance with the aid of the preprocessing tools 
made available by the Semi-automatic Classification 
Plugin module for QGIS 3.6 (link). The reflectance-
converted Landsat 8 images were in turn subjected to 
clipping using the generated boundaries from 
georeferenced Diwata-1 SMI data, and then resampled 
to 60m so that their spatial resolution will match their 
Diwata-1 SMI equivalents. 
 
Table 2: The value of central wavelengths of Diwata-1 SMI 
images used in the study, and their Landsat 8 counterparts. 

 

Cloud masks were then applied on the extracted 
Landsat 8 images in QGIS and GDAL to match the 
cloud presence of their respective Diwata-1 SMI 
counterparts. And if the obtained Landsat 8 data also 
has clouds present, a mask is generated from these 
cloud data and then applied to their corresponding 
Diwata-1 SMI counterparts (in the case of this study, 
the obtained Landsat 8 data of the study area were 
cloud free, and this step was unnecessary). 
 
3.3 Testing via SSIM 
Once the respective pairs of Diwata-1 SMI and 
Landsat 8 images had been prepared, they were 
subjected into SSIM analysis via the sourced Oliviera 
code. The resulting SSIM scores for each pair were 
then tabulated. 
 

 
Figure 2. Screenshot of the output of the prepared code for 
SSIM implementation on Diwata-1 SMI V550 image of 
Sofronio, Palawan, warped via Helmert transformation 

Transformation Type V490 V550 V670 V690
Helmert 78 43 41 53

Polynomial 1 78 63 60 53
Polynomial 2 78 63 60 53
Polynomial 3 78 63 60 53

Projective 85 63 60 52
Thin Plate Spline 85 63 60 52

Diwata-1 SMI Landsat 8
V490 Band 2
V550 Band 3
V670 Band 4
V690 Band 4
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Fig.3.Screenshot of the output of the prepared code for 
SSIM implementation on Diwata-1 SMI V550 image of 
Sofronio, Palawan, warped via projective transformation 

 

4. OBSERVATIONS 
4.1. Analysis of results 
One of the most notable issues regarding the sample 
Diwata-1 SMI data from Sofronio, Palawan is the 
presence of glare on water bodies, being very bright 
areas instead of the expected darker pixels. This, in 
turn, results in the generated threshold-based cloud 
mask to accidentally include these water areas as 
“cloudy”, besides actual clouds over land and water. 
This situation proved fortunate, as water features were 
also removed for both Diwata-1 and Landsat 8 data 
after application of the cloud mask, virtually leaving 
land features to be the areas assessed by SSIM. 

 
Fig.4. A georeferenced Diwata-1 image of the Sofronio area 
in Palawan, taken in 06 July 2017 at 12:01 PM (GMT+8), 
overlaid on a single band Landsat 8 image. Note the very 
bright water areas. 

 
Table 3 presents the generated SSIM indices for the 
respective pairs of Diwata-1 SMI and Landsat 8 
imagery, with its corresponding bar chart in Fig.5. 

 
Fig.5. A bar chart representation of the values in Table 3. 

Table 3: Recorded SSIM indices for each pair of transformed Diwata-1 image and Landsat 8 counterpart. 
Transformation Type V490 (mask = 0.15) V550 (mask = 0.30) V670 (mask = 0.30) V690 (mask = 0.30)
Helmert 0.889791 0.859104 0.885785 0.894472
Polynomial 1 0.811503 0.855832 0.889657 0.893728
Polynomial 2 0.878789 0.859595 0.889803 0.886411
Polynomial 3 0.817725 0.85945 0.887075 0.889536
Projective 0.874502 0.859432 0.890642 0.887871
Thin Plate Spline 0.877647 0.858703 0.886737 0.887964
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Except for the V490 pair, all calculated SSIM indices 
range between 0.85 to 0.9, denoting that a Diwata-1 
SMI image may be structurally similar to that of a 
resampled Landsat 8 data. In other words, the 
depiction of features in a Diwata-1 SMI image may be 
comparable to how a resampled Landsat 8 image 
presents them. This result deviated from the authors’ 
expectations of observing lower SSIM indices for 
lower order transformations. 

To determine if the deviations observed in the bar 
chart for the V490 pair is significant, a reference SSIM 
index-based rating system is needed. This study 
attempted to find researches that present an itemized 
interpretation of SSIM indices to determine the most 
acceptable index value but was unsuccessful in this 
task. The researchers thus resorted to an indirect 
method by compiling several studies attempting to 
relate SSIM with subjective human visual perception 
(Lee & Lim, 2016; Wang, Wang, Liao & Lim, 2008; 
Lu, Bi & Wang, 2010; Yu & Liu, 2011) and obtaining 
the indices calculated from images with salt-and-
pepper noise, as this item is given low degradation 
mean opinion scores (DMOS) by human observers 
(Minamoto & Ohmura, 2014). From these studies, it 
was inferred that an SSIM rating of 0.8 can be 
considered as an acceptable similarity measure so that 
noisy images will fall below it. 

Table 4: Compiled SSIM indices for salt-and-pepper noise 
from different studies 

 
 

With all recorded SSIM ratings in this study being 
above 0.8, it can be inferred that the resampled 
Diwata-1 SMI data, regardless of the degree of 
transformation, are comparable with their resampled 
Landsat 8 counterparts. For operationalization 
purposes, this observation is important, as it implies 
there is minimal advantage to using higher order 
transformations to generate an output, considering the 
effort needed to implement them. 
 
4.2. Issues in the Analyses 
Perhaps the most pressing issue in the observed results 
is that the conclusion on georeferencing outputs being 
structurally similar with the reference data is made on 
top of an assumed means of interpreting the SSIM 
scores. Further research is going to be needed to 
reinforce this assumption. 
Another potential issue is the question of the SSIM 
index being an appropriate measure for the analysis 
made in this research. To test this angle, the SSIM 
code was run to compare a raw pair of Diwata-1 SMI 
and Landsat 8 images without applying the cloud 
mask. The resulting SSIM index was valued at 

Study SSIM Rating
Lee & Lim, 2016 (Lena) 0.297
Lee & Lim, 2016 (Einstein) 0.781
Wang, Wang, Liao & Lim, 2008 0.6085
Lu, Bi & Wang, 2010 (White Noise) 0.7062
Yu & Liu, 2011 (Goldhill, i =2 ) 0.72

Fig.6. An example of an application of a cloud mask. Item (A) is a processed Diwata-1 image of the Sofronio area, transformed 
using thin plate spline. Item (B) is its corresponding cloud mask, where the white areas are valued as ‘1’ and the transparent areas 
(denoting the cloudy areas and the bright water areas) are valued as ‘0’. Item (C) is the resulting output using Raster Calculator in 

QGIS 3.6. 
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0.135243, denoting very low similarity between the 
two images, and is the expected outcome. 
To further check on the validity of the SSIM code, the 
application was run by using a Helmert transformation 
of a Diwata-1 SMI image as reference and a TPS 
transformation of the same image as test. And to push 
the testing further, a reference image is compared with 
itself. The former test scored a high SSIM index at 
0.877084, and the latter with a perfect 1.0, both results 
being expected. And as a final check, a raw Diwata-1 
SMI image was tested against the same image with its 
cloud mask applied, and the resulting SSIM index is 
low at 0.242294, which is once again expected. The 
results of the additional tests established the 
robustness of the SSIM code used in the study and 
reinforces the validity of the outputs of Table 3. 
And another potential issue is that SSIM may be 
misinterpreted as a measure of accuracy of a 
georeferenced image. It is important to emphasize that 
SSIM can only assess the similarity of features 
presented between a reference and a test image. The 
indices do not determine, in any way, the correctness 
of image registration against a base map, and thus it is 
still up to a quality control checker to ensure that the 
image is correctly registered when overlaid on a base 
map. This issue is particularly relevant for the 
otherwise high ratings obtained by the Helmert-
transformed Diwata-1 SMI data. 
 

5. CONCLUSIONS 
This study was aimed to determine the most practical 
georeferencing transformation method that can be 
used for Diwata-1 SMI images by comparing the 
different transformation algorithms with an equivalent 
Landsat 8 image. The structural similarity (SSIM) 
index was used to generate a quantitative rating for 
each transformed image with which the 
abovementioned goal can be achieved. 
Because the SSIM indices of the test pairs were above 
the 0.8 threshold, it can be concluded that the 
georeferenced Diwata-1 SMI outputs using different 
transformation parameters are structurally similar to 
the reference resampled Landsat 8 data. And because 
it takes longer to manually generate a transformed 
image with higher order algorithms, based on the 
SSIM conclusions, it can be declared that warping an 
image up to the second polynomial will suffice for 
operationalization of georeferencing activities. 

As stated in the previous section, further tests are 
needed to reinforce the validity of the outputs of the 
research. This study did, on the other hand, provide a 
working methodology that allows practical usage of 
SSIM in determining the comparability of a sample 
satellite image with an established reference, which in 
the latter’s case is with Landsat 8 imagery. This study 
therefore recommends testing the methodology with 
other datasets using different test data (such as from 
Diwata-2) or using a different reference (such as from 
Sentinel-2). 
The authors of the study would also like to note that to 
improve the reliability of the methodology, the test 
data may need further refining before being subjected 
to SSIM analysis. This can be achieved by applying 
relief displacement corrections on the test image using 
a digital elevation model (DEM), and by considering 
the application of spectral band adjustment to match 
the central wavelength of the test image with the ones 
used in the reference image. 
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