The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W19, 2019
PhilGEOS x GeoAdvances 2019, 14—15 November 2019, Manila, Philippines

URBAN EFFECTS ON LAND SURFACE TEMPERATURE IN
DAVAO CITY, PHILIPPINES

M. M. Tinoy ™ A. U. Novero 2, K. P. Landicho !, A. B. Baloloy !, A. C. Blanco !

1 Geospatial Assessment and Modelling of Urban Heat Islands in Philippine Cities (Project GUHeat),
Training Center for Applied Geodesy and Photogrammetry, University of the Philippines-Diliman, Quezon City, Philippines 1101
— (mmtinoy, aunovero, kclandichol, achlanco)@up.edu.ph, alvinbbaloloy@gmail.com
2 College of Science and Mathematics, University of the Philippines Mindanao, Davao City, Philippines 8000

Commission IV

KEY WORDS: urban heat island, hot spots, cold spots, multiple regression, quantile regression, modelling

ABSTRACT:

This study produced spatiotemporal hot and cold spot occurrence maps for Davao City for the period 1994-2019 using land surface
temperature (LST) images. Urban heat is theorized to have been affected by some, if not all, of the following impact factors: air
pollutant concentrations/particulate matter (PM10), vegetation “abundance” (using EVI), building “density” (NDBI), albedo,
topography, and population density. A mobile traverse sampling was performed in the morning and afternoon of 15 April 2019 to
measure PM10 in the city’s identified hot spots. The remaining factors were generated from imagery (i.e., Landsat 8, Synthetic
Aperture Radar) and obtained from the Philippine Statistics Authority. These factors were analyzed against the LST which was
obtained through Project GUHeat’s methodology. The relationships between the factors and LST were studied through multiple and
quantile regression models (MRM & QRM). Results showed that variable PM10 does not have any significance in the MRM.
Meanwhile, QRM were fitted to different quantile values, namely: 10™, 25t 50t 75t and 90™. It is only at the 90™" quantile where all
the independent variables are good predictors for the LST. Albedo is the most important predictor for the LST at 101" quantile whereas
Elev for the 25" quantile. However, when LST is at the 50™, 75%, and 90" quantiles NDBI is the most significant variable at predicting
LST. Reliable spatiotemporal assessment and modelling of surface temperature are essential for urban planning and management to

formulate sustainable strategies for the welfare of people and environment.

1. INTRODUCTION

Urban Heat Island (UHI) is an environmental phenomenon
where urban temperature is higher than its surrounding rural
areas (Howard, 1818). The urban areas of developing countries,
especially those with hot-humid climate like the Philippines, are
vulnerable to excess heat. Urban heat is theorized to have been
affected by some, if not all, of the following impact factors: air
pollutant concentrations/particulate matter (PM10), vegetation
“abundance” (quantified using Enhanced Vegetation Index,
EVI), building “density” (measured using Normalized
Difference Building Index, NDBI), surface albedo, and place-
specific geography layers (i.e., topography and population
density).

Various studies have identified the prominent role of
urbanization in Land Surface Temperature (LST) variability.
Due to the availability of advanced technology, the impact of
population growth, land use and land cover (LULC) conversion,
urban pollution, and other effects of global urbanization that
influence LST over time have been investigated by researchers
worldwide through different models. Coops et al. (2007)
predicted the afternoon LST in Canada’s land cover classes
(forest, shrub/grasses, and crops) in linear regression modelling
with  MODerate-resolution  Imaging  Spectroradiometer
(MODIS)-derived morning LST, location and elevation data as
the independent variables. Across all cover types, afternoon and
morning LST values were highly correlated and significantly
different. Results showed that R? were consistently highest for
all the cover classes combined while lowest for crops. A
stepwise correlation analysis was performed by Xiao et al.
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(2008) in Beijing, China to examine the spatial distribution of
Landsat-derived LST and its relationships with biophysical and
demographic parameters. Results showed that LST was
significantly correlated with forest (FO), farmland (FA), water
(WA), low-density built-up, high-density built-up, extremely-
high buildings, low buildings by grid, and population density
while roads, exposed land, and medium-high buildings were not
included in the stepwise regression model. The ratios of FO, FA,
and WA were found to be the most influential variables in
controlling LST variation.

Hart and Sailor (2009) studied the importance of various land-
use and surface parameters on the spatial distribution of the UHI
across Portland metropolitan area through tree-structured
regression models for both weekend and weekday daytime. The
dependent variable in the analysis was mean UHI intensity for
each grid cell covered by temperature traverse while the
independent variables in the models were the surface and land-
use characteristics (canopy cover, ground vegetation cover,
impervious surface, loose surface, land cover, building floor
space, and length of roads). The test of multicollinearity between
the independent variables, one of the assumptions of multiple
regression analysis, showed no problem based on the tolerance
values (greater than 0.2). Results displayed the aerial image of
canopy cover as the most important urban characteristic
separating warmer from cooler regions of the study site,
regardless of day of week.

In India, Pandey et al. (2012) examined MODIS-derived day and
night time surface temperature distribution if it has a relationship
with particulate matter concentration and LULC by performing
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multiple linear regression. Peng et al. (2016) attempted to model
multiple factors (Normalized Difference Moisture Index-NDMI,
Normalized Difference Vegetation Index, elevation, slope, and
aspect) and LST for both sunny and shadow area of Western
Sichuan Plateau, China. Prior to the stepwise regression analysis,
they have performed principle component analysis because of
the presence of multicollinearity among the factors. Their work
revealed that NDMI and elevation have influenced LST the most
for both sunny and shadow areas. The work of Zhou et al. (2014)
employed quantile regression method to have an estimation of
effects of land use and geographic predictor variables on
temperatures during the heat wave in Greater Houston, Texas,
United States in 2011. Results revealed that highly developed
area and distance to the coastline have larger impacts on daily
mean temperatures at higher quantiles, and open water area has
greater effects on daily minimum temperatures at lower
quantiles.

While few researches in the Philippines have explored the
association of LST and abundance of vegetation and built-up
formation through remotely-sensed indices (Estoque et al., 2016;
Lu et al., 2017; Pereira and Lopez, 2004; Tiangco et al., 2008),
these studies have focused only on the northern area of the
country, particularly Metropolitan Manila. This paper aimed to
map the hot spots (HS) and cold spots (CS) of LST in Davao
City for the period 1994-2019, and then perform an analysis of
the relationship between multiple impact factors (MIF) and LST.
Firstly, the spatiotemporal mapping of the occurrence of
statistically significant clusters of HS and CS was investigated.
Secondly, regression models were used in this research to
quantify the MIF that have the greatest influence on LST.
Mapping and statistical analyses of LST wvariation using
appropriate methodologies provide vital information for the
improvement of thermal environment.

2. STUDY AREA

Davao City is a highly-urbanized city located in the southeastern
part (125°13’ to 125°41’ E longitude, 6°58’ to 7°34’ N latitude)
of Island of Mindanao. It is the largest city in the Philippines in
terms of land area with 2,444 square kilometers. It is the third
most populous city in the country after Quezon City and Manila
with population of 1,632,991 (Philippine Statistics Authority,
2018). A large part of Davao is mountainous, characterized by
extensive mountain ranges with uneven distribution of highlands
and lowlands. The city’s Southeast is surrounded by Davao Gulf
spanning approximately 60-km wide. The predominant wind
direction is northward from the gulf. Compared with other parts
of the Philippines in which there are distinct hot and wet seasons,
Davao City experiences mild tropical climate where the days are
always sunny and followed by nights of rain. It is outside the
typhoon belt and lacks major seasonal variations. Its annual
average temperature ranges from 25.0 to 32.8 °C with the hottest
occurring during the month of April, and the coldest occurring
on January based on observations in 2018 (PAG-ASA, 2019).

3. MATERIALS AND METHODS
3.1 Spatiotemporal Mapping

The annual mean LST images for the period 1994-2019 in Davao
City were downloaded freely from Climate Engine Application
(Climate Engine, 2019) while the official boundary of the city
was obtained from the City Planning and Development Office.
A 100m-grid polygon and its centroid points with similar 1D

spanning the extent of the city were generated in QGIS Desktop
version 3.4.5 (QGIS Development Team, 2019). Mean LST
values of each year were then extracted into the point shapefile.
This point dataset was joined to the polygon dataset with ID as
the target field layer. This resulted to a database of mean LST
values per grid cell per year. The polygon shapefile was loaded
in GeoDa version 1.14.0 (Anselin, 2005). Then, the weighted
shapefile served as an input file to the univariate local Moran’s I
function to produce cluster maps and database of yearly HS and
CS with significance level of p=0.001. After consolidating the
yearly database, Shapes to Grid function was performed in
SAGA GIS version 2.3.2 (Conrad et al., 2015) and finally the
spatiotemporal HS and CS occurrence frequency map was
created.

Maps of occurrence of cluster transition were generated. This
means that each 100-m grid cell for the period 1994-2019 was
analyzed. There were three cluster types used, namely: Cold,
Normal, and Hot. A transition was determined from one year to
its succeeding year (yi to yi+1) for each grid and for each type of
transition. A positive result means that a count for that grid for
that type of transition was recorded. The total number of
occurrences were then summed up and divided by the number of
years of observation for each grid. As an example, if the
temperature was Cold for year 1994 and Normal for year 1995
for a certain grid, then it means that an occurrence from Cold to
Normal was observed and a count toward the transition Cold to
Normal was recorded. This was continued for 1995-1996, 1996-
1997, until 2018-2019 for this grid for this type of transition. The
total number of Cold to Normal transitions were then summed
up and divided by the total number of years to determine the
percentage of the Cold to Normal type of transition for the years
in observation. The same methodology was applied for all other
types of transitions for every grid. The type of transition refers
to the different permutations of transitions between the different
types of temperatures. There were nine different transition
combinations, namely: Cold to Normal (CN), Normal to Hot
(NH), Cold to Hot (CH), Normal to Cold (NC), Hot to Normal
(HN), Hot to Cold (HC), Hot to Hot (HH), Normal to Normal
(NN), and Cold to Cold (CC). The last three types of transition
(HH, NN and CC) simply means that there were no changes in
conditions for adjacent years yi to yi+1. The following transitions
were described as change from warmer to colder: NC, HN and
HC, while the following transitions were described as change
from colder to warmer: CN, NH, and CH. The transitions CH
and HC were considered drastic transitions having jumped from
two different temperature types in adjacent years. The years at
which each transition type has occurred over the years 1994-
2019 were also recorded for analysis. The total number of grids
for which a transition type occurred for a particular year for each
grid was then summed up.

3.2 Multiple and Quantile Regression Modelling

Data Source

LST Project GUHeat’s method using Landsat 8 (L8)
NDBI Computed from downloaded bands of L8

EVI Computed from downloaded bands of L8
Albedo Computed from downloaded bands of L8
PM10 Traverse measurement

Pop Dens  Philippine Statistics Authority

Elev Synthetic Aperture Radar (SAR) imagery

Table 1. Data summary for regression modelling.

Multiple regression and quantile regression analyses were
performed to generate an equation (model) that would best
describe the statistical relationships between
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response/dependent variable-LST, and the
predictor/independent variables, namely, Normalized Difference
Building Index (NDBI), Enhanced Vegetation Index (EVI),
Surface Albedo (Albedo), Particulate Matter 10 (PM10),
Population Density (Pop_Dens), and Elevation (Elev). The
summary of these datasets is listed in Table 1.

A mobile traverse sampling was performed in 15 April 2019 on
a steady-state condition to measure PM 10 in the city’s identified
HS from the first part of this study. Prior to the field activity, a
60-km route was created to weave in and out of the HS by means
of a hired vehicle. A low-cost mobile PM sensor was used, which
simultaneously transmits data into an android device through the
CrowdSense application (CrowdSense, 2019). To track vehicle
movement and determine the location of each reading, a
handheld Global Position System device was also utilized. PM10
data, with a measurement unit of pg/Nm?3, were collected at two
runs, namely: 9:15 to 11:35 in the morning and 2:56 to 5:40 in
the afternoon, for the first and second run, respectively (Figure
1). Meanwhile, the values of LST, EVI, NDBI, and Albedo
layers were acquired from Landsat 8 bands. This satellite passed
through the city in 14 April 2019 at 9:54AM, hence a morning
observation only. Moreover, the Elev layer was gathered in 2015
from SAR imagery with a spatial resolution of 10 meters while
Pop_Dens layer was obtained from the population density of
each barangay of the city in the year 2015. All values of LST,
EVI, NDBI, Albedo, Elev, and Pop_Dens layers of each
surveyed PM10 point were extracted and added as fields into the
point shapefile of the mobile traverse sampling. This joined
dataset served as an input file to RStudio (RStudio Team, 2019).
The statistical packages cars, Imtest, alr3, and stats were used to
fit and check the aptness of the model for the Multiple Linear
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Figure 1. Track of Particulate Matter 10 traverse survey.

As shown in the figure, there are points along the route that have
low and high values of PM10. This can be attributed to longer
period of stay in those points due to light to moderate traffic and
the presence of road intersections. The variation of PM10
readings can also be associated to the volume of vehicles at the
time of the data collection since traffic volume differs depending
on the time of the day. The emitted air pollutants from fuel
exhausts of vehicles and establishments, wind speed and
direction, land use or land cover, and various other reasons
should also be valuably considered.
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Figure 2. Spatiotemporal hot spots and cold spots frequency map in Davao City for the period 1994-2019.
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4. RESULTS AND DISCUSSION
4.1 Spatiotemporal Mapping

Figure 2 shows the spatiotemporal HS and CS occurrence
frequency map in Davao City. The maximum occurrence scores
for the HS and CS were 26 and 25, respectively. The recorded
minimum occurrence scores for both spots were 0. Mt. Apo
Natural Park and its adjacent barangays, situated at Southwest of
Davao, were identified as CS. Also with colder temperature are
areas in North and Northwest: Buda, Datu Salumay, Baganihan,
Marilog, Magsaysay, Malamba, Gumitan, Tapak and Mapula.
Moreover, at the Southeast of Davao, HS were dominated by the
main urban center (whole coverage of Districts of Poblacion and

Agdao; and few areas of Districts of Talomo and Buhangin) and
coastal barangays of Bunawan and Toril Districts. Furthermore,
part of neighboring barangays composed of Tugbok, Mintal, Sto.
Nifio, and Bago Oshiro were marked as HS. Lastly, small portion
of Calinan, Cawayan, Wines, Baguio, Cadalian, Tawan-Tawan,
Gumalang, and Riverside geographically located in the city
center had warmer temperatures. This agrees with the
distribution of land cover in these areas which consist of dense
low-rise to lightweight low-rise structures, compact open mid-
rise buildings, few scattered trees, and heavily paved roads.
Meanwhile, shown in Table 2 is the annual count of all 100-m
grids of HS and CS as well as the percentage of the clustered
grids over all grids spanning the extent of Davao City.

Year (C):fo Iljlrjst g}? gnst Perc. of HS Perc. of CS Year g’: E‘nst %?Lglst Perc. of HS  Perc. of CS
1994 25,765 16,523 10.62 6.81 2007 19,133 12,207 7.89 5.03
1995 25,656 8,689 10.58 3.58 2008 27,371 31,196 11.29 12.86
1996 21,749 6,743 8.97 2.78 2009 21,795 30,825 8.99 12.71
1997 28,177 37,531 11.62 15.48 2010 21,888 7,502 9.03 3.09
1998 32,209 0 13.28 0 2011 21,702 15,286 8.95 6.30
1999 33,545 26,069 13.83 10.75 2012 18,511 8,494 7.63 3.50
2000 20,062 11,693 8.27 4.82 2013 17,622 9,907 7.27 4.08
2001 17,312 10,562 7.14 4.36 2014 17,279 8,365 7.12 3.45
2002 19,024 6,479 7.84 2.67 2015 16,710 9,876 6.89 4.07
2003 23,891 19,021 9.85 7.84 2016 21,105 26,648 8.70 10.99
2004 17,119 9,652 7.06 3.98 2017 15,075 4,324 6.22 1.78
2005 17,247 15,693 7.11 6.47 2018 19,544 10,658 8.06 4.39
2006 15,463 7,697 6.38 3.17 2019 23,051 6,586 9.50 2.72

Table 2. Annual count and percentage of grids of HS and CS.

Based on Table 2, the area coverage of HS decreased from
10.62% in 1994 to 9.50% in 2019. Similarly, the percentage of
areas classified as CS decreased by 4.09%, from 6.81% in 1994
to 2.72% in 2019. The highest percentage of HS was observed
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in 1999 followed by its preceding year, 1998 with 13.83% and
13.28%, respectively. For the CS, 15.48% in 1997 was the
highest recorded area coverage. In 1998, there were no observed
CS and the explanation for this is unknown.
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Figure 3. Frequency maps of transitions of cluster types. 1st row L-R: Cold to Hot, Cold to Normal, Cold to Cold, and Hot to Cold;
2nd row L-R: Hot to Normal, Hot to Hot, Normal to Cold, Normal to Hot, and Normal to Normal.
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The maps of nine different transition combinations (CH, CN,
CC, HC, HN, HH, NC, NH, and NN) are shown in Figure 3. The
lowest occurrence was 0% for all transition types while the
highest transition occurrence range from 8%-100%. The
transition combinations were ranked as follows: CH-8%, HC-
16%, HN-36%, CN-40%, NH-40%, NC-44%, CC-92%, HH-
100% and NN-100%. The last two transitions implied no
changes from being Hot and Normal throughout the period were
recorded.

Figure 4 presents the count of grids occurring per year per
transition type. It can be noted that there is a big difference on
the trend of the NN transition with all the other transition types.
NN refers to no transition from temperature type Normal on
succeeding years. It is noticeable that the drastic transition types
(CH and HC) generated the lowest records for almost all of the
years compared to the rest of the one-temperature transition
types (CN, NH, NC, HN). The drastic transition types were only
observed for the years 1996 to 2010. This means that, for Davao
City and years in consideration, it was not likely that there were
two temperature transition types in succeeding years.
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Figure 4. Count of grids for Cold to Normal, Cold to Hot,
Normal to Hot, Normal to Cold, Hot to Cold, Hot to Normal,
Hot to Hot, and Cold to Cold transition types (at first vertical
axis: left) and Normal to Normal transition type (at secondary

vertical axis: right) in Davao City from 1994-2019.

In almost all of the years in consideration, there were more than
5,000 grids (2.06%) that transitioned from a warmer to colder
temperature (NC and HN) except for HC. This count peaked in
1997 when the number of grids reached around 31,000 (12.78%)
for the transition type NC. The transition type HN only reached
a maximum of around 22,000 (9.07%) grids recorded between
1998-2000. There was an obvious alternating increase and
decrease of number of grids every year for the NC transition type
except for the years 2006-2008, 2008-2010 and 2014-2016. This
trend was not generally noticeable in the HN and HC transition
types. And while further assessing the transition type occurrence
in the city, it is alarming to note that the average count of 100-m
grids that transitioned from colder to warmer temperature (CN
and NH) except for CH is around 11,000 grids in all of the years
in consideration. The former and latter peaked at 1998 and 1999
with approximately 36,000 and 27,000 grids, respectively.

4.2 Multiple Regression Modelling

A linear model was fitted to the given point dataset. The response
variable (dependent), LST, was modelled using PM10, EVI,
NDBI, Albedo, Elev, and Pop_Dens as its predictors
(independent variables). As can be observed from Table 3, the

! Exact p-values are lower than 0.001

only t-statistic with a large p-value is the variable PM10. This
means that PM10 can be dropped as it does not have any
significance in the model. The r-square and adjusted r-square of
the model are 0.4457 and 0.4438, respectively. Further from the
results, the full model for the LST is given below:

LST =32.9100 — 906.4000EVI + 6.2350NDBI —
53.6900Albedo — 0.0139Elev — 0.0024Pop_Dens (1)

The regression regular coefficient estimates embody the mean
change in the response variable given a one unit of change in the
predictor variable while holding other predictors in the model
constant. Interpreting the model is as follows: 0.01 unit increase
in EVI decreases LST by 9.064 °C; 0.01 unit increase in NDBI
increases LST by 0.06235 °C, and; 0.01 unit increase in Albedo
decreases LST by 0.5369 °C. As for the Elev and Pop_Dens: the
regular coefficient estimates indicate that for every additional 1
meter in Elev and additional 1 person per hectare in Pop_Dens,
a decrease in LST is expected by an average of 0.0139 °C and
0.0024 °C, respectively.

Standardized

Coefficients - t-statistic p-value
Estimate

Intercept 32.9100 287.827 0.0000*
PM10 0.0039 0.227 0.8203
EVI -0.0594 -3.195 0.0014
NDBI 0.2914 13.217 0.0000*
Albedo -0.4299 -23.498 0.0000*
Elev -0.2640 -12.014 0.0000*
Pop_Dens -0.1292 -6.519 0.0000*

Table 3. Multiple linear regression results.

To determine predictor variable’s importance, the standardized
coefficient estimates were generated as shown in Table 3. These
represent the mean change in the response variable for one
standard deviation change in the predictor variable. Looking at
the standardized estimate, Albedo showed the largest absolute
value among the impact factors, followed by NDBI, Elev,
Pop_Dens, and EVI. This suggests that Albedo is the most
important variable in the MRM.

Model diagnostics were performed to check the aptness of the
given model. Variance Inflation Factor (VIF) was used to
measure the multicollinearity between the independent
variables. A VIF value of 5 or more suggests that a strong
multicollinearity exists in the model. Results showed that VIF of
PM10, EVI, NDBI, Albedo, Elev, and Pop_Dens were 1.02,
1.07,1.51, 1.04, 1.50, and 1.26, respectively. Since there are no
VIF values exceeding 5, the model is safe from strong
multicollinearity.

Shapiro-Wilk Test was employed to check the normality of the
residuals. The test statistic is 0.9297, with a p-value of 0.0000.
This implies that the residuals are not normal. Meanwhile, in
using the Breusch-Pagan Test to check the assumption of
constant variance, the resulting test statistic is 591.94 with a p-
value of less than 0.001. Since both tests for normality and
constancy/homogeneity have failed, this indicates that the
estimate of the parameters in the multiple regression model is
biased.

4.3 Quantile Regression Modelling

Quantile regression models the relation between a set of
predictor variables and specific percentiles (or quantiles) of the
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response variable. It specifies changes in the quantiles of the
response. Quantile regression overcomes the problem of
heterogeneity of variance by fitting linear regressions on
different conditional quantiles of the range of a response variable
(Cade and Noon, 2003; Koenker and Bassett, 1978). Other
advantages of the Quantile Regression over the Ordinary Least
Squares Regression is that it is robust to non-normal errors and
to outliers.

Models were fitted to different quantile values. These values are
0.1 (10™), 0.25 (25, 0.50 (50™), 0.75 (75™), and 0.90 (90™),
dividing the LST into 5 levels, namely: very low (18.30 °C —
27.32 °C), low (27.33 °C — 29.13 °C), moderate (29.14 °C —
30.61 °C), high (30.62 °C — 31.86 °C), and very high (31.87 °C
—33.42 °C).

Models at the 10t 25", and 50" Quantiles. From Table 4-6,
the p-values for the PM10 and EVI are greater than 0.05. This
implies that at the 10™, 25%, and 50" quantiles of the data, PM10
and EVI are not good predictors for the LST. Furthermore, the
p-value for Pop_Dens may still be considered significant at the
10™ and 25" quantiles, however, caution should be exercised
when including this variable in the model when considering the
10t and 25" quantiles of the data. The models at the 10, 25,
and 50" quantiles could be written as:

LSTMO = 31.3239 + 4.8620NDBI —
91.7007Albedo — 0.0127Elev — 0.0033Pop_Dens (2)

LST!?® = 31.6792 + 5.5209NDBI —
25.7099Albedo — 0.0189Elev — 0.0025Pop_Dens (3)

LSTM0 = 32.1851 + 6.8533NDBI — 9.8706Albedo —
0.0177Elev — 0.0022Pop_Dens (@)

Standardized

Models at the 75" and 90" Quantiles. Albedo may still be
considered significant with a p-value of 0.0556 (Table 7).
Meanwhile, all the variables at 90" quantile (Table 8) are good
predictors for the LST since all were included in the model. The
models at the 75" and 90™ quantiles could be written as:

LSTL®! = 32,6970 + 0.0026PM10 — 881.803EVI + 7.0760NDBI
—4.0043Albedo — 0.0160Elev — 0.0010Pop_Dens (5)

LSTE0 = 33,0096 + 0.0029PM10 — 1030.40EVI + 6.4796NDBI
+ 3.9496Albedo — 0.0128Elev — 0.0010Pop_Dens (6)

Standardized

Coefficients h t-statistic p-value
Estimate
Intercept 32.6970 409.6543 0.0000*
PM10 0.2630 5.4551 0.0000*
EVI -0.1733 -3.0307 0.0025
NDBI 1.7037 19.9719 0.0000*
Albedo -0.1760 -1.9159 0.0556
Elev -1.3927 -16.6647 0.0001
Pop_Dens -0.4296 -3.3537 0.0008
Table 7. 75" quantile regression results.
Coefficients Standar_dlzed t-statistic p-value
Estimate
Intercept 33.0096 390.3824 0.0000*
PM10 0.4770 45111 0.0000*
EVI -0.1744 -2.4206 0.0156
NDBI 1.2128 14.1869 0.0000*
Albedo 0.1868 2.1605 0.0309
Elev -0.9643 -8.1089 0.0001
Pop_Dens -0.3700 -3.6968 0.0002

Coefficients Esti t-statistic p-value
stimate
Intercept 31.3239 113.4306 0.0000*
PM10 -0.0214 -0.3171 0.7512
EVI 0.0064 0.2414 0.8092
NDBI 0.2412 5.0924 0.0000*
Albedo -1.0403 -12.5137 0.0000*
Elev -0.2848 -4.00004 0.0001
Pop_Dens -0.1023 -1.8951 0.0583
Table 4. 101" quantile regression results.
Coefficients Standar_dlzed t-statistic p-value
Estimate
Intercept 31.6792 375.8977 0.0000*
PM10 0.0098 0.1445 0.8852
EVI -0.1840 -1.0316 0.3024
NDBI 0.9105 16.4334 0.0000*
Albedo -0.6383 -6.6337 0.0000*
Elev -1.4782 -26.1608 0.0001
Pop_Dens -0.3738 -15.8466 0.0583
Table 5. 25" quantile regression results.
Coefficients Standar_d|zed t-statistic p-value
Estimate
Intercept 32.1851 307.4929 0.0000
PM10 0.0810 0.8014 0.4230
EVI -0.1519 -1.3038 0.1925
NDBI 1.6196 16.2320 0.0000*
Albedo -0.3040 -4.9394 0.0000*
Elev -1.5806 -15.9620 0.0001
Pop_Dens -0.7045 -4.5410 0.0000*

Table 6. 501" quantile regression results.

Table 8. 901" quantile regression results.

Based on the QRM results, NDBI and Elev are statistically
significant variables at all five quantiles having consistent p-
values of 0.0000* and 0.0001, respectively. Thus, these two are
consistently good predictors for the surface temperature at 18.30
°C —33.42 °C. In the same manner, Albedo is a good predictor
at all quantiles except that caution should be made when
including this variable at the 75™ quantile. Meanwhile, PM10
and EVI are only good predictors for the LST at 75™ quantile and
90t quantile. It is at the 50t quantile where Pop_Dens started to
become a good predictor for the LST and this continued at the
751 and 90™" quantiles. Furthermore, it is only at the 90" quantile
where all the independent variables are statistically significant.
This implies that PM10, EVI, NDBI, Albedo, Elev, and
Pop_Dens are all good predictors for the LST when the
temperature is at 31.87 °C — 33.42 °C. Focusing on the 90%
quantile results, if PM10 increases by 1 pg/Nm?, it is projected
that the surface temperature will get warmer by 0.0029 °C
because coefficient for PM10 is positive. This means that when
areas in the city will have high readings of PM10 coming from
various sources (e.g. vehicle exhausts), there will also be a
significant increase in LST. However, if the vegetation
“abundance” (using EVI) grows by 0.01, the temperature will
reduce by 10.304 °C because EVI is a negative coefficient;
conversely, if values of building “density” (using NDBI) and
surface albedo rise by 0.01, then LST will increase by 0.064796
°C and 0.039496 °C, respectively since both are positive
coefficients. On the other hand, if Elev increases by 1 meter and
Pop_Dens increases by 1 person per hectare, it is estimated that
LST becomes less warm by 0.0128 °C and 0.0010 °C,
respectively since both are negative coefficients.

Studying the trend of various regular coefficient estimates at
different quantiles, it was observed that at median quantile (50™)
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and higher quantiles (75" and 90%") PM10 values increased,
whereas of EVI values increased throughout the five quantiles.
For NDBI coefficient, its values increased as well but only from
first up to the fourth quantile levels. In the case of Albedo, values
decreased while the LST quantile levels increased. Elev values
decreased from 25M to 90" quantiles. Similarly, Pop_Dens
values decreased but from 10 to 75™ quantiles and the same
value was noticed at the 75" and 90" quantiles. Likewise, the
signs of each regular coefficient were checked. PM10 coefficient
was only negative at the 10" quantile. In contrast, EVI was a
positive coefficient at the 101" quantile and became negative at
the succeeding quantiles. NDBI was positive at all quantiles.
Albedo turned positive at the 90™ quantile from being negative
at the preceding four quantiles. Finally, Elev and Pop_Dens were
both negative coefficients at all quantiles.

It should be noted that the regular regression estimates and p-
values cannot determine as to which variable/s is/are the most
important predictor/s or have influenced LST the most. As
discussed in MRM, it is the standardized regression estimates
that determine the variable importance wherein larger absolute
estimates values represent better or best predictor variables. In
summary, Albedo is the most important predictor for the LST at
10t quantile (very low: 18.30 °C — 27.32 °C) followed by Elev.
Then at the 25 quantile (low: 27.33 °C — 29.13 °C) is the Elev
variable whereas NDBI is the next most important. However,
when LST is at the 50" quantile (moderate: 29.14 °C —30.61 °C),
751 quantile (high: 30.62 °C — 31.86 °C) and 90™ quantile, NDBI
showed the largest standardized coefficient estimate among
other predictors with 1.6196, 1.7037, and 1.2128, respectively.
Thus, NDBI is the most significant variable at predicting LST at
median and higher quantiles. It is also interesting to note that as
the LST quantile increases the standardized estimate value of
NDBI also increases.

Residuals Vs Fitted. The graph of residuals vs fitted values
could tell if the model violates the assumptions such as constant
variance, independent error terms, and linearity of the model in
a regression. Erratic or not having any patterns in the graph is a
good indication that no major violations in the assumptions
mentioned above are violated.

Figure 5 displays the plot between the residuals and the fitted
values. Most of the residuals were noted to fluctuate around zero
when the values of x is around 28-34. However, for small and
large values of x (lower than around 28 and greater than 34), the
residuals are largely negative. A systematic pattern may exist in
the graph. It is suggested to use formal statistical tests to check
whether or not violations in the model exists.

Residuals

T
24 26 28 30 32 34 36 38
Fitted Values

Figure 5. Residuals vs Fitted Values.

Normal Quantile-Quantile Plot. It can be observed from
Figure 6 that serious deviations from the diagonal line is
obvious. This indicates that the residuals are assumed to be not
normal and that the assumption of normality is violated. This
result is also evident when Shapiro-Wilk Test was employed to
test formally the normality of the residuals.
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Figure 6. Normal Quantile-Quantile Plot.

5. CONCLUSIONS AND RECOMMENDATIONS

This study investigated the spatiotemporal distribution of LST
and its quantitative relationships with  atmospheric,
demographic, and remote sensing-derived parameters in Davao
City. The results revealed that occupants of the main urban
center (Districts of Poblacion, Talomo, Agdao, and Buhangin)
and residents from coastal barangays of Bunawan and Toril
Districts experienced the warmest temperatures in Davao City
for the period 1994-2019. Multiple regression analysis showed
that the air pollutant variable (PM10) exhibited no significance,
hence was dropped in the model. Albedo has greater impact in
the MRM followed by NDBI, Elev, Pop_Dens, and EVI.
Quantile regression analysis further revealed that at the 90%
quantile (31.87 °C — 33.42 °C) where all impact factors are good
predictors, the presence of buildings in the city (NDBI) showed
the biggest impact for the LST. The result of these two regression
methods indicated that the models are reliable enough to express
LST of Davao City, but also suggested that other impact factors
are more significant in order to effectively understand the
variations of LST. This study recommends that higher spatial
and temporal resolution of satellite imageries should be
employed to continuously improve the HS and CS analyses.
Moreover, further research should be done by replacing other
impact factors in the model and try to include surface moisture,
distance to water, solar insolation, and sky view factor. Lastly,
to evaluate and compare the urban expansion of other developed
areas in Mindanao such as Digos City, Panabo City, and Tagum
City performing the same procedure of this study is suggested.
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