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ABSTRACT: 

 

This study produced spatiotemporal hot and cold spot occurrence maps for Davao City for the period 1994-2019 using land surface 

temperature (LST) images. Urban heat is theorized to have been affected by some, if not all, of the following impact factors: air 

pollutant concentrations/particulate matter (PM10), vegetation “abundance” (using EVI), building “density” (NDBI), albedo, 

topography, and population density. A mobile traverse sampling was performed in the morning and afternoon of 15 April 2019 to 

measure PM10 in the city’s identified hot spots. The remaining factors were generated from imagery (i.e., Landsat 8, Synthetic 

Aperture Radar) and obtained from the Philippine Statistics Authority. These factors were analyzed against the LST which was 

obtained through Project GUHeat’s methodology. The relationships between the factors and LST were studied through multiple and 

quantile regression models (MRM & QRM). Results showed that variable PM10 does not have any significance in the MRM. 

Meanwhile, QRM were fitted to different quantile values, namely: 10th, 25th, 50th, 75th, and 90th. It is only at the 90th quantile where all 

the independent variables are good predictors for the LST. Albedo is the most important predictor for the LST at 10th quantile whereas 

Elev for the 25th quantile. However, when LST is at the 50th, 75th, and 90th quantiles NDBI is the most significant variable at predicting 

LST.  Reliable spatiotemporal assessment and modelling of surface temperature are essential for urban planning and management to 

formulate sustainable strategies for the welfare of people and environment. 

 

 

1. INTRODUCTION 

 

Urban Heat Island (UHI) is an environmental phenomenon 

where urban temperature is higher than its surrounding rural 

areas (Howard, 1818). The urban areas of developing countries, 

especially those with hot-humid climate like the Philippines, are 

vulnerable to excess heat. Urban heat is theorized to have been 

affected by some, if not all, of the following impact factors: air 

pollutant concentrations/particulate matter (PM10), vegetation 

“abundance” (quantified using Enhanced Vegetation Index, 

EVI), building “density” (measured using Normalized 

Difference Building Index, NDBI), surface albedo, and place-

specific geography layers (i.e., topography and population 

density).  

  

Various studies have identified the prominent role of 

urbanization in Land Surface Temperature (LST) variability. 

Due to the availability of advanced technology, the impact of 

population growth, land use and land cover (LULC) conversion, 

urban pollution, and other effects of global urbanization that 

influence LST over time have been investigated by researchers 

worldwide through different models. Coops et al. (2007) 

predicted the afternoon LST in Canada’s land cover classes 

(forest, shrub/grasses, and crops) in linear regression modelling 

with MODerate-resolution Imaging Spectroradiometer 

(MODIS)-derived morning LST, location and elevation data as 

the independent variables. Across all cover types, afternoon and 

morning LST values were highly correlated and significantly 

different. Results showed that R2 were consistently highest for 

all the cover classes combined while lowest for crops. A 

stepwise correlation analysis was performed by Xiao et al. 
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(2008) in Beijing, China to examine the spatial distribution of 

Landsat-derived LST and its relationships with biophysical and 

demographic parameters. Results showed that LST was 

significantly correlated with forest (FO), farmland (FA), water 

(WA), low-density built-up, high-density built-up, extremely-

high buildings, low buildings by grid, and population density 

while roads, exposed land, and medium-high buildings were not 

included in the stepwise regression model. The ratios of FO, FA, 

and WA were found to be the most influential variables in 

controlling LST variation.  

 

Hart and Sailor (2009) studied the importance of various land-

use and surface parameters on the spatial distribution of the UHI 

across Portland metropolitan area through tree-structured 

regression models for both weekend and weekday daytime. The 

dependent variable in the analysis was mean UHI intensity for 

each grid cell covered by temperature traverse while the 

independent variables in the models were the surface and land-

use characteristics (canopy cover, ground vegetation cover, 

impervious surface, loose surface, land cover, building floor 

space, and length of roads). The test of multicollinearity between 

the independent variables, one of the assumptions of multiple 

regression analysis, showed no problem based on the tolerance 

values (greater than 0.2). Results displayed the aerial image of 

canopy cover as the most important urban characteristic 

separating warmer from cooler regions of the study site, 

regardless of day of week. 

 

In India, Pandey et al. (2012) examined MODIS-derived day and 

night time surface temperature distribution if it has a relationship 

with particulate matter concentration and LULC by performing 
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multiple linear regression. Peng et al. (2016) attempted to model 

multiple factors (Normalized Difference Moisture Index-NDMI, 

Normalized Difference Vegetation Index, elevation, slope, and 

aspect) and LST for both sunny and shadow area of Western 

Sichuan Plateau, China. Prior to the stepwise regression analysis, 

they have performed principle component analysis because of 

the presence of multicollinearity among the factors. Their work 

revealed that NDMI and elevation have influenced LST the most 

for both sunny and shadow areas. The work of Zhou et al. (2014) 

employed quantile regression method to have an estimation of 

effects of land use and geographic predictor variables on 

temperatures during the heat wave in Greater Houston, Texas, 

United States in 2011. Results revealed that highly developed 

area and distance to the coastline have larger impacts on daily 

mean temperatures at higher quantiles, and open water area has 

greater effects on daily minimum temperatures at lower 

quantiles.  

 

While few researches in the Philippines have explored the 

association of LST and abundance of vegetation and built-up 

formation through remotely-sensed indices (Estoque et al., 2016; 

Lu et al., 2017; Pereira and Lopez, 2004; Tiangco et al., 2008), 

these studies have focused only on the northern area of the 

country, particularly Metropolitan Manila. This paper aimed to 

map the hot spots (HS) and cold spots (CS) of LST in Davao 

City for the period 1994-2019, and then perform an analysis of 

the relationship between multiple impact factors (MIF) and LST. 

Firstly, the spatiotemporal mapping of the occurrence of 

statistically significant clusters of HS and CS was investigated. 

Secondly, regression models were used in this research to 

quantify the MIF that have the greatest influence on LST. 

Mapping and statistical analyses of LST variation using 

appropriate methodologies provide vital information for the 

improvement of thermal environment. 

 

 

2. STUDY AREA 

 

Davao City is a highly-urbanized city located in the southeastern 

part (125°13’ to 125°41’ E longitude, 6°58’ to 7°34’ N latitude) 

of Island of Mindanao. It is the largest city in the Philippines in 

terms of land area with 2,444 square kilometers. It is the third 

most populous city in the country after Quezon City and Manila 

with population of 1,632,991 (Philippine Statistics Authority, 

2018). A large part of Davao is mountainous, characterized by 

extensive mountain ranges with uneven distribution of highlands 

and lowlands. The city’s Southeast is surrounded by Davao Gulf 

spanning approximately 60-km wide. The predominant wind 

direction is northward from the gulf. Compared with other parts 

of the Philippines in which there are distinct hot and wet seasons, 

Davao City experiences mild tropical climate where the days are 

always sunny and followed by nights of rain. It is outside the 

typhoon belt and lacks major seasonal variations. Its annual 

average temperature ranges from 25.0 to 32.8 °C with the hottest 

occurring during the month of April, and the coldest occurring 

on January based on observations in 2018 (PAG-ASA, 2019). 

 

 

3. MATERIALS AND METHODS 

 

3.1 Spatiotemporal Mapping 

 

The annual mean LST images for the period 1994-2019 in Davao 

City were downloaded freely from Climate Engine Application 

(Climate Engine, 2019) while the official boundary of the city 

was obtained from the City Planning and Development Office. 

A 100m-grid polygon and its centroid points with similar ID 

spanning the extent of the city were generated in QGIS Desktop 

version 3.4.5 (QGIS Development Team, 2019). Mean LST 

values of each year were then extracted into the point shapefile. 

This point dataset was joined to the polygon dataset with ID as 

the target field layer. This resulted to a database of mean LST 

values per grid cell per year. The polygon shapefile was loaded 

in GeoDa version 1.14.0 (Anselin, 2005). Then, the weighted 

shapefile served as an input file to the univariate local Moran’s I 

function to produce cluster maps and database of yearly HS and 

CS with significance level of p=0.001. After consolidating the 

yearly database, Shapes to Grid function was performed in 

SAGA GIS version 2.3.2 (Conrad et al., 2015) and finally the 

spatiotemporal HS and CS occurrence frequency map was 

created. 

 

Maps of occurrence of cluster transition were generated. This 

means that each 100-m grid cell for the period 1994-2019 was 

analyzed. There were three cluster types used, namely: Cold, 

Normal, and Hot. A transition was determined from one year to 

its succeeding year (yi to yi+1) for each grid and for each type of 

transition. A positive result means that a count for that grid for 

that type of transition was recorded. The total number of 

occurrences were then summed up and divided by the number of 

years of observation for each grid. As an example, if the 

temperature was Cold for year 1994 and Normal for year 1995 

for a certain grid, then it means that an occurrence from Cold to 

Normal was observed and a count toward the transition Cold to 

Normal was recorded. This was continued for 1995-1996, 1996-

1997, until 2018-2019 for this grid for this type of transition. The 

total number of Cold to Normal transitions were then summed 

up and divided by the total number of years to determine the 

percentage of the Cold to Normal type of transition for the years 

in observation. The same methodology was applied for all other 

types of transitions for every grid. The type of transition refers 

to the different permutations of transitions between the different 

types of temperatures. There were nine different transition 

combinations, namely: Cold to Normal (CN), Normal to Hot 

(NH), Cold to Hot (CH), Normal to Cold (NC), Hot to Normal 

(HN), Hot to Cold (HC), Hot to Hot (HH), Normal to Normal 

(NN), and Cold to Cold (CC). The last three types of transition 

(HH, NN and CC) simply means that there were no changes in 

conditions for adjacent years yi to yi+1. The following transitions 

were described as change from warmer to colder: NC, HN and 

HC, while the following transitions were described as change 

from colder to warmer: CN, NH, and CH. The transitions CH 

and HC were considered drastic transitions having jumped from 

two different temperature types in adjacent years. The years at 

which each transition type has occurred over the years 1994-

2019 were also recorded for analysis. The total number of grids 

for which a transition type occurred for a particular year for each 

grid was then summed up. 

 

3.2 Multiple and Quantile Regression Modelling 

 

Data Source 

LST Project GUHeat’s method using Landsat 8 (L8) 

NDBI Computed from downloaded bands of L8 

EVI Computed from downloaded bands of L8 

Albedo Computed from downloaded bands of L8 

PM10 Traverse measurement 

Pop Dens Philippine Statistics Authority 

Elev Synthetic Aperture Radar (SAR) imagery 

Table 1. Data summary for regression modelling. 

 

Multiple regression and quantile regression analyses were 

performed to generate an equation (model) that would best 

describe the statistical relationships between 
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response/dependent variable-LST, and the 

predictor/independent variables, namely, Normalized Difference 

Building Index (NDBI), Enhanced Vegetation Index (EVI), 

Surface Albedo (Albedo), Particulate Matter 10 (PM10), 

Population Density (Pop_Dens), and Elevation (Elev). The 

summary of these datasets is listed in Table 1.  

 

A mobile traverse sampling was performed in 15 April 2019 on 

a steady-state condition to measure PM10 in the city’s identified 

HS from the first part of this study. Prior to the field activity, a 

60-km route was created to weave in and out of the HS by means 

of a hired vehicle. A low-cost mobile PM sensor was used, which 

simultaneously transmits data into an android device through the 

CrowdSense application (CrowdSense, 2019). To track vehicle 

movement and determine the location of each reading, a 

handheld Global Position System device was also utilized. PM10 

data, with a measurement unit of μg/Nm3, were collected at two 

runs, namely: 9:15 to 11:35 in the morning and 2:56 to 5:40 in 

the afternoon, for the first and second run, respectively (Figure 

1). Meanwhile, the values of LST, EVI, NDBI, and Albedo 

layers were acquired from Landsat 8 bands. This satellite passed 

through the city in 14 April 2019 at 9:54AM, hence a morning 

observation only. Moreover, the Elev layer was gathered in 2015 

from SAR imagery with a spatial resolution of 10 meters while 

Pop_Dens layer was obtained from the population density of 

each barangay of the city in the year 2015. All values of LST, 

EVI, NDBI, Albedo, Elev, and Pop_Dens layers of each 

surveyed PM10 point were extracted and added as fields into the 

point shapefile of the mobile traverse sampling. This joined 

dataset served as an input file to RStudio (RStudio Team, 2019). 

The statistical packages cars, lmtest, alr3, and stats were used to 

fit and check the aptness of the model for the Multiple Linear 

Regression and quantreg to fit a model using the Quantile 

Regression method. 

 
Figure 1. Track of Particulate Matter 10 traverse survey. 

 

As shown in the figure, there are points along the route that have 

low and high values of PM10. This can be attributed to longer 

period of stay in those points due to light to moderate traffic and 

the presence of road intersections. The variation of PM10 

readings can also be associated to the volume of vehicles at the 

time of the data collection since traffic volume differs depending 

on the time of the day. The emitted air pollutants from fuel 

exhausts of vehicles and establishments, wind speed and 

direction, land use or land cover, and various other reasons 

should also be valuably considered. 

 

 
Figure 2. Spatiotemporal hot spots and cold spots frequency map in Davao City for the period 1994-2019.
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4. RESULTS AND DISCUSSION 

 

4.1 Spatiotemporal Mapping 

 

Figure 2 shows the spatiotemporal HS and CS occurrence 

frequency map in Davao City. The maximum occurrence scores 

for the HS and CS were 26 and 25, respectively. The recorded 

minimum occurrence scores for both spots were 0. Mt. Apo 

Natural Park and its adjacent barangays, situated at Southwest of 

Davao, were identified as CS. Also with colder temperature are 

areas in North and Northwest: Buda, Datu Salumay, Baganihan, 

Marilog, Magsaysay, Malamba, Gumitan, Tapak and Mapula. 

Moreover, at the Southeast of Davao, HS were dominated by the 

main urban center (whole coverage of Districts of Poblacion and 

Agdao; and few areas of Districts of Talomo and Buhangin) and 

coastal barangays of Bunawan and Toril Districts. Furthermore, 

part of neighboring barangays composed of Tugbok, Mintal, Sto. 

Niño, and Bago Oshiro were marked as HS. Lastly, small portion 

of Calinan, Cawayan, Wines, Baguio, Cadalian, Tawan-Tawan, 

Gumalang, and Riverside geographically located in the city 

center had warmer temperatures. This agrees with the 

distribution of land cover in these areas which consist of dense 

low-rise to lightweight low-rise structures, compact open mid-

rise buildings, few scattered trees, and heavily paved roads. 

Meanwhile, shown in Table 2 is the annual count of all 100-m 

grids of HS and CS as well as the percentage of the clustered 

grids over all grids spanning the extent of Davao City. 

Year 
Count 

of HS 

Count 

of CS 
Perc. of HS Perc. of CS 

 
Year 

Count 

of HS 

Count 

of CS 
Perc. of HS Perc. of CS 

1994 25,765 16,523 10.62 6.81 2007 19,133 12,207 7.89 5.03 

1995 25,656 8,689 10.58 3.58  2008 27,371 31,196 11.29 12.86 

1996 21,749 6,743 8.97 2.78  2009 21,795 30,825 8.99 12.71 

1997 28,177 37,531 11.62 15.48  2010 21,888 7,502 9.03 3.09 

1998 32,209 0 13.28 0  2011 21,702 15,286 8.95 6.30 

1999 33,545 26,069 13.83 10.75  2012 18,511 8,494 7.63 3.50 

2000 20,062 11,693 8.27 4.82  2013 17,622 9,907 7.27 4.08 

2001 17,312 10,562 7.14 4.36  2014 17,279 8,365 7.12 3.45 

2002 19,024 6,479 7.84 2.67  2015 16,710 9,876 6.89 4.07 

2003 23,891 19,021 9.85 7.84  2016 21,105 26,648 8.70 10.99 

2004 17,119 9,652 7.06 3.98  2017 15,075 4,324 6.22 1.78 

2005 17,247 15,693 7.11 6.47  2018 19,544 10,658 8.06 4.39 

2006 15,463 7,697 6.38 3.17  2019 23,051 6,586 9.50 2.72 

Table 2. Annual count and percentage of grids of HS and CS. 

 

Based on Table 2, the area coverage of HS decreased from 

10.62% in 1994 to 9.50% in 2019. Similarly, the percentage of 

areas classified as CS decreased by 4.09%, from 6.81% in 1994 

to 2.72% in 2019. The highest percentage of HS was observed 

in 1999 followed by its preceding year, 1998 with 13.83% and 

13.28%, respectively. For the CS, 15.48% in 1997 was the 

highest recorded area coverage. In 1998, there were no observed 

CS and the explanation for this is unknown.

 

 

    
Figure 3. Frequency maps of transitions of cluster types. 1st row L-R: Cold to Hot, Cold to Normal, Cold to Cold, and Hot to Cold; 

2nd row L-R: Hot to Normal, Hot to Hot, Normal to Cold, Normal to Hot, and Normal to Normal. 
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The maps of nine different transition combinations (CH, CN, 

CC, HC, HN, HH, NC, NH, and NN) are shown in Figure 3. The 

lowest occurrence was 0% for all transition types while the 

highest transition occurrence range from 8%-100%. The 

transition combinations were ranked as follows: CH–8%, HC-

16%, HN-36%, CN-40%, NH-40%, NC-44%, CC-92%, HH-

100% and NN-100%. The last two transitions implied no 

changes from being Hot and Normal throughout the period were 

recorded. 

 

Figure 4 presents the count of grids occurring per year per 

transition type. It can be noted that there is a big difference on 

the trend of the NN transition with all the other transition types. 

NN refers to no transition from temperature type Normal on 

succeeding years. It is noticeable that the drastic transition types 

(CH and HC) generated the lowest records for almost all of the 

years compared to the rest of the one-temperature transition 

types (CN, NH, NC, HN). The drastic transition types were only 

observed for the years 1996 to 2010. This means that, for Davao 

City and years in consideration, it was not likely that there were 

two temperature transition types in succeeding years. 

 

 
Figure 4. Count of grids for Cold to Normal, Cold to Hot, 

Normal to Hot, Normal to Cold, Hot to Cold, Hot to Normal, 

Hot to Hot, and Cold to Cold transition types (at first vertical 

axis: left) and Normal to Normal transition type (at secondary 

vertical axis: right) in Davao City from 1994-2019. 

 

In almost all of the years in consideration, there were more than 

5,000 grids (2.06%) that transitioned from a warmer to colder 

temperature (NC and HN) except for HC. This count peaked in 

1997 when the number of grids reached around 31,000 (12.78%) 

for the transition type NC. The transition type HN only reached 

a maximum of around 22,000 (9.07%) grids recorded between 

1998-2000. There was an obvious alternating increase and 

decrease of number of grids every year for the NC transition type 

except for the years 2006-2008, 2008-2010 and 2014-2016. This 

trend was not generally noticeable in the HN and HC transition 

types. And while further assessing the transition type occurrence 

in the city, it is alarming to note that the average count of 100-m 

grids that transitioned from colder to warmer temperature (CN 

and NH) except for CH is around 11,000 grids in all of the years 

in consideration. The former and latter peaked at 1998 and 1999 

with approximately 36,000 and 27,000 grids, respectively. 

 

4.2 Multiple Regression Modelling 

 

A linear model was fitted to the given point dataset. The response 

variable (dependent), LST, was modelled using PM10, EVI, 

NDBI, Albedo, Elev, and Pop_Dens as its predictors 

(independent variables). As can be observed from Table 3, the 

 
1 Exact p-values are lower than 0.001 

only t-statistic with a large p-value is the variable PM10. This 

means that PM10 can be dropped as it does not have any 

significance in the model. The r-square and adjusted r-square of 

the model are 0.4457 and 0.4438, respectively. Further from the 

results, the full model for the LST is given below: 

 

LST = 32.9100 – 906.4000EVI + 6.2350NDBI –  

53.6900Albedo – 0.0139Elev – 0.0024Pop_Dens (1) 

 

The regression regular coefficient estimates embody the mean 

change in the response variable given a one unit of change in the 

predictor variable while holding other predictors in the model 

constant. Interpreting the model is as follows: 0.01 unit increase 

in EVI decreases LST by 9.064 °C; 0.01 unit increase in NDBI 

increases LST by 0.06235 °C, and; 0.01 unit increase in Albedo 

decreases LST by 0.5369 °C. As for the Elev and Pop_Dens: the 

regular coefficient estimates indicate that for every additional 1 

meter in Elev and additional 1 person per hectare in Pop_Dens, 

a decrease in LST is expected by an average of 0.0139 °C and 

0.0024 °C, respectively. 

 

Coefficients 
Standardized 

Estimate 
t-statistic p-value 

Intercept 32.9100 287.827 0.00001 

PM10 0.0039 0.227 0.8203 

EVI -0.0594 -3.195 0.0014 

NDBI 0.2914 13.217 0.00001 

Albedo -0.4299 -23.498 0.00001 

Elev -0.2640 -12.014 0.00001 

Pop_Dens -0.1292 -6.519 0.00001 

Table 3. Multiple linear regression results. 

 

To determine predictor variable’s importance, the standardized 

coefficient estimates were generated as shown in Table 3. These 

represent the mean change in the response variable for one 

standard deviation change in the predictor variable. Looking at 

the standardized estimate, Albedo showed the largest absolute 

value among the impact factors, followed by NDBI, Elev, 

Pop_Dens, and EVI. This suggests that Albedo is the most 

important variable in the MRM. 

 

Model diagnostics were performed to check the aptness of the 

given model. Variance Inflation Factor (VIF) was used to 

measure the multicollinearity between the independent 

variables. A VIF value of 5 or more suggests that a strong 

multicollinearity exists in the model. Results showed that VIF of 

PM10, EVI, NDBI, Albedo, Elev, and Pop_Dens were 1.02, 

1.07, 1.51, 1.04, 1.50, and 1.26, respectively. Since there are no 

VIF values exceeding 5, the model is safe from strong 

multicollinearity. 

 

Shapiro-Wilk Test was employed to check the normality of the 

residuals. The test statistic is 0.9297, with a p-value of 0.00001. 

This implies that the residuals are not normal. Meanwhile, in 

using the Breusch-Pagan Test to check the assumption of 

constant variance, the resulting test statistic is 591.94 with a p-

value of less than 0.001. Since both tests for normality and 

constancy/homogeneity have failed, this indicates that the 

estimate of the parameters in the multiple regression model is 

biased. 

 

4.3 Quantile Regression Modelling 

 

Quantile regression models the relation between a set of 

predictor variables and specific percentiles (or quantiles) of the 
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response variable. It specifies changes in the quantiles of the 

response. Quantile regression overcomes the problem of 

heterogeneity of variance by fitting linear regressions on 

different conditional quantiles of the range of a response variable 

(Cade and Noon, 2003; Koenker and Bassett, 1978). Other 

advantages of the Quantile Regression over the Ordinary Least 

Squares Regression is that it is robust to non-normal errors and 

to outliers. 

 

Models were fitted to different quantile values. These values are 

0.1 (10th), 0.25 (25th), 0.50 (50th), 0.75 (75th), and 0.90 (90th), 

dividing the LST into 5 levels, namely: very low (18.30 °C – 

27.32 °C), low (27.33 °C –  29.13 °C), moderate (29.14 °C –

30.61 °C), high (30.62 °C – 31.86 °C), and very high (31.87 °C 

– 33.42 °C). 

 

Models at the 10th, 25th, and 50th Quantiles. From Table 4-6, 

the p-values for the PM10 and EVI are greater than 0.05. This 

implies that at the 10th, 25th, and 50th quantiles of the data, PM10 

and EVI are not good predictors for the LST. Furthermore, the 

p-value for Pop_Dens may still be considered significant at the 

10th and 25th quantiles, however, caution should be exercised 

when including this variable in the model when considering the 

10th and 25th quantiles of the data. The models at the 10th, 25th, 

and 50th quantiles could be written as: 

 

LST[10] = 31.3239 + 4.8620NDBI –  

91.7007Albedo – 0.0127Elev – 0.0033Pop_Dens (2) 

 

LST[25] = 31.6792 + 5.5209NDBI –  

25.7099Albedo – 0.0189Elev – 0.0025Pop_Dens (3) 

 

LST[50] = 32.1851 + 6.8533NDBI – 9.8706Albedo –  

0.0177Elev – 0.0022Pop_Dens  (4) 

 

Coefficients 
Standardized 

Estimate 
t-statistic p-value 

Intercept 31.3239 113.4306 0.00001 

PM10 -0.0214 -0.3171 0.7512 

EVI 0.0064 0.2414 0.8092 

NDBI 0.2412 5.0924 0.00001 

Albedo -1.0403 -12.5137 0.00001 

Elev -0.2848 -4.00004 0.0001 

Pop_Dens -0.1023 -1.8951 0.0583 

Table 4. 10th quantile regression results. 

 

Coefficients 
Standardized 

Estimate 
t-statistic p-value 

Intercept 31.6792 375.8977 0.00001 

PM10 0.0098 0.1445 0.8852 

EVI -0.1840 -1.0316 0.3024 

NDBI 0.9105 16.4334 0.00001 

Albedo -0.6383 -6.6337 0.00001 

Elev -1.4782 -26.1608 0.0001 

Pop_Dens -0.3738 -15.8466 0.0583 

Table 5. 25th quantile regression results. 

 

Coefficients 
Standardized 

Estimate 
t-statistic p-value 

Intercept 32.1851 307.4929 0.0000 

PM10 0.0810 0.8014 0.4230 

EVI -0.1519 -1.3038 0.1925 

NDBI 1.6196 16.2320 0.00001 

Albedo -0.3040 -4.9394 0.00001 

Elev -1.5806 -15.9620 0.0001 

Pop_Dens -0.7045 -4.5410 0.00001 

Table 6. 50th quantile regression results. 

Models at the 75th and 90th Quantiles. Albedo may still be 

considered significant with a p-value of 0.0556 (Table 7). 

Meanwhile, all the variables at 90th quantile (Table 8) are good 

predictors for the LST since all were included in the model. The 

models at the 75th and 90th quantiles could be written as: 

 

LST[75] = 32.6970 + 0.0026PM10 – 881.803EVI + 7.0760NDBI  

– 4.0043Albedo – 0.0160Elev – 0.0010Pop_Dens (5) 

 

LST[90] = 33.0096 + 0.0029PM10 – 1030.40EVI + 6.4796NDBI  

+ 3.9496Albedo – 0.0128Elev – 0.0010Pop_Dens (6) 

 

Coefficients 
Standardized 

Estimate 
t-statistic p-value 

Intercept 32.6970 409.6543 0.00001 

PM10 0.2630 5.4551 0.00001 

EVI -0.1733 -3.0307 0.0025 

NDBI 1.7037 19.9719 0.00001 

Albedo -0.1760 -1.9159 0.0556 

Elev -1.3927 -16.6647 0.0001 

Pop_Dens -0.4296 -3.3537 0.0008 

Table 7. 75th quantile regression results. 

 

Coefficients 
Standardized 

Estimate 
t-statistic p-value 

Intercept 33.0096 390.3824 0.00001 

PM10 0.4770 4.5111 0.00001 

EVI -0.1744 -2.4206 0.0156 

NDBI 1.2128 14.1869 0.00001 

Albedo 0.1868 2.1605 0.0309 

Elev -0.9643 -8.1089 0.0001 

Pop_Dens -0.3700 -3.6968 0.0002 

Table 8. 90th quantile regression results. 

 

Based on the QRM results, NDBI and Elev are statistically 

significant variables at all five quantiles having consistent p-

values of 0.00001 and 0.0001, respectively. Thus, these two are 

consistently good predictors for the surface temperature at 18.30 

°C – 33.42 °C. In the same manner, Albedo is a good predictor 

at all quantiles except that caution should be made when 

including this variable at the 75th quantile. Meanwhile, PM10 

and EVI are only good predictors for the LST at 75th quantile and 

90th quantile. It is at the 50th quantile where Pop_Dens started to 

become a good predictor for the LST and this continued at the 

75th and 90th quantiles. Furthermore, it is only at the 90th quantile 

where all the independent variables are statistically significant. 

This implies that PM10, EVI, NDBI, Albedo, Elev, and 

Pop_Dens are all good predictors for the LST when the 

temperature is at 31.87 °C – 33.42 °C. Focusing on the 90th 

quantile results, if PM10 increases by 1 μg/Nm3, it is projected 

that the surface temperature will get warmer by 0.0029 °C 

because coefficient for PM10 is positive. This means that when 

areas in the city will have high readings of PM10 coming from 

various sources (e.g. vehicle exhausts), there will also be a 

significant increase in LST. However, if the vegetation 

“abundance” (using EVI) grows by 0.01, the temperature will 

reduce by 10.304 °C because EVI is a negative coefficient; 

conversely, if values of building “density” (using NDBI) and 

surface albedo rise by 0.01, then LST will increase by 0.064796 

°C and 0.039496 °C, respectively since both are positive 

coefficients. On the other hand, if Elev increases by 1 meter and 

Pop_Dens increases by 1 person per hectare, it is estimated that 

LST becomes less warm by 0.0128 °C and 0.0010 °C, 

respectively since both are negative coefficients. 

 

Studying the trend of various regular coefficient estimates at 

different quantiles, it was observed that at median quantile (50th) 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W19, 2019 
PhilGEOS x GeoAdvances 2019, 14–15 November 2019, Manila, Philippines

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W19-433-2019 | © Authors 2019. CC BY 4.0 License.

 
438



and higher quantiles (75th and 90th) PM10 values increased, 

whereas of EVI values increased throughout the five quantiles. 

For NDBI coefficient, its values increased as well but only from 

first up to the fourth quantile levels. In the case of Albedo, values 

decreased while the LST quantile levels increased. Elev values 

decreased from 25th to 90th quantiles. Similarly, Pop_Dens 

values decreased but from 10th to 75th quantiles and the same 

value was noticed at the 75th and 90th quantiles. Likewise, the 

signs of each regular coefficient were checked. PM10 coefficient 

was only negative at the 10th quantile. In contrast, EVI was a 

positive coefficient at the 10th quantile and became negative at 

the succeeding quantiles. NDBI was positive at all quantiles. 

Albedo turned positive at the 90th quantile from being negative 

at the preceding four quantiles. Finally, Elev and Pop_Dens were 

both negative coefficients at all quantiles. 

 

It should be noted that the regular regression estimates and p-

values cannot determine as to which variable/s is/are the most 

important predictor/s or have influenced LST the most. As 

discussed in MRM, it is the standardized regression estimates 

that determine the variable importance wherein larger absolute 

estimates values represent better or best predictor variables. In 

summary, Albedo is the most important predictor for the LST at 

10th quantile (very low: 18.30 °C – 27.32 °C) followed by Elev. 

Then at the 25th quantile (low: 27.33 °C – 29.13 °C) is the Elev 

variable whereas NDBI is the next most important. However, 

when LST is at the 50th quantile (moderate: 29.14 °C –30.61 °C), 

75th quantile (high: 30.62 °C – 31.86 °C) and 90th quantile, NDBI 

showed the largest standardized coefficient estimate among 

other predictors with 1.6196, 1.7037, and 1.2128, respectively. 

Thus, NDBI is the most significant variable at predicting LST at 

median and higher quantiles. It is also interesting to note that as 

the LST quantile increases the standardized estimate value of 

NDBI also increases. 

 

Residuals Vs Fitted. The graph of residuals vs fitted values 

could tell if the model violates the assumptions such as constant 

variance, independent error terms, and linearity of the model in 

a regression. Erratic or not having any patterns in the graph is a 

good indication that no major violations in the assumptions 

mentioned above are violated. 

 

Figure 5 displays the plot between the residuals and the fitted 

values. Most of the residuals were noted to fluctuate around zero 

when the values of x is around 28-34. However, for small and 

large values of x (lower than around 28 and greater than 34), the 

residuals are largely negative. A systematic pattern may exist in 

the graph. It is suggested to use formal statistical tests to check 

whether or not violations in the model exists. 

 

 
Figure 5. Residuals vs Fitted Values. 

 

Normal Quantile-Quantile Plot. It can be observed from 

Figure 6 that serious deviations from the diagonal line is 

obvious. This indicates that the residuals are assumed to be not 

normal and that the assumption of normality is violated. This 

result is also evident when Shapiro-Wilk Test was employed to 

test formally the normality of the residuals.  

 

 
Figure 6. Normal Quantile-Quantile Plot. 

 

 

5. CONCLUSIONS AND RECOMMENDATIONS 

 

This study investigated the spatiotemporal distribution of LST 

and its quantitative relationships with atmospheric, 

demographic, and remote sensing-derived parameters in Davao 

City. The results revealed that occupants of the main urban 

center (Districts of Poblacion, Talomo, Agdao, and Buhangin) 

and residents from coastal barangays of Bunawan and Toril 

Districts experienced the warmest temperatures in Davao City 

for the period 1994-2019.  Multiple regression analysis showed 

that the air pollutant variable (PM10) exhibited no significance, 

hence was dropped in the model. Albedo has greater impact in 

the MRM followed by NDBI, Elev, Pop_Dens, and EVI. 

Quantile regression analysis further revealed that at the 90th 

quantile (31.87 °C – 33.42 °C) where all impact factors are good 

predictors, the presence of buildings in the city (NDBI) showed 

the biggest impact for the LST. The result of these two regression 

methods indicated that the models are reliable enough to express 

LST of Davao City, but also suggested that other impact factors 

are more significant in order to effectively understand the 

variations of LST. This study recommends that higher spatial 

and temporal resolution of satellite imageries should be 

employed to continuously improve the HS and CS analyses. 

Moreover, further research should be done by replacing other 

impact factors in the model and try to include surface moisture, 

distance to water, solar insolation, and sky view factor. Lastly, 

to evaluate and compare the urban expansion of other developed 

areas in Mindanao such as Digos City, Panabo City, and Tagum 

City performing the same procedure of this study is suggested. 
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