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ABSTRACT: 

 

Climate change is regarded as one of the most significant drivers of biodiversity loss and altered forest ecosystems. This study aimed 

to model the current species distribution of two dipterocarp species in Mount Makiling Forest Reserve as well as the future distribution 

under different climate emission scenarios and global climate models. A machine-learning algorithm based on the principle of 

maximum entropy (Maxent) was used to generate the potential distributions of two dipterocarp species – Shorea guiso and Parashorea 

malaanonan. The species occurrence records of these species and sets of bioclimatic and physical variables were used in Maxent to 

predict the current and future distribution of these dipterocarp species. The variables were initially reduced and selected using Principal 

Component Analysis (PCA). Moreover, two global climate models (GCMs) and climate emission scenarios (RCP4.5 and RCP8.5) 

projected to 2050 and 2070 were utilized in the study. The Maxent models predict that suitable areas for P. malaanonan will decline 

by 2050 and 2070 under RCP4.5 and RCP 8.5. On the other hand, S. guiso was found to benefit from future climate with increasing 

suitable areas. The findings of this study will provide initial understanding on how climate change affects the distribution of threatened 

species such as dipterocarps. It can also be used to aid decision-making process to better conserve the potential habitat of these species 

in current and future climate scenarios. 

 

1. INTRODUCTION 

 

Globally, it is estimated that 20-30% of plant and animal species 

will be at higher risk of extinction due to global warming; a 

significant portion of endemic species may become extinct by 

the year 2050 or 2100 consequently as global mean temperatures 

exceed 2-3 °C above pre-industrial levels (Garcia et al., 2013). 

Over the last three decades, the global climate change has 

produced numerous shifts in species distribution and in the near 

future, it is likely to act as a major cause of species extinction—

either directly or collegially with other drivers of extinction (Deb 

et al., 2017). Hence, intensifying endangerment and extinction of 

species that are already vulnerable, particularly those with strict 

habitat requirements and dispersal capabilities (Banag et al., 

2015; Garcia et al., 2013). 

 

The Dipterocarpaceae family includes around 45 species in 6 

genera of which about 46% has been recorded as endemic to the 

country (Fernando, 2009). Dipterocarps play a significant role in 

the global timber market industry of South and Southeast Asian 

countries (Appanah & Turnbull, 1998). The dipterocarps grow 

in evergreen, semi-evergreen, and deciduous forests. This 

characteristic of dipterocarps, when it comes to geographical 

range, flowering phenology, fruiting phenology, and ecological 

characteristic, makes them highly variable (Deb et al., 2017). 

Guijo (Shorea guiso) and Bagtikan (Parashorea malaanonan) 

are part of the dominant dipterocarp trees in (MMFR) and are 

classified as Critically Endangered and Vulnerable in the 

International Union for Conservation of Nature (IUCN) Red List 

(2017), respectively. 

In the recent years, various modeling methods of species 

distribution have been developed for assessing the potential 

impacts of climate change, even for areas that undergo 

incomplete and biased samplings, or for areas where no 

collections have been made (Garcia et al., 2013). Species 

distribution models (SDMs) are based on the assumption that the 

relationship between a given pattern of interest (e.g. species 

abundance or presence/absence)—a set of factors assumed to 

control it—can be quantified (Trisurat et al., 2011). Maxent is 

one of the popular SDMs that is based on presence-only 

modeling method, which involves maximum entropy modeling 

(Philips et al., 2006, Philips & Dudik, 2008, Royle et al., 2012). 

Maxent has been used successfully to predict the distributions of 

different floral and faunal species (Garcia et al., 2013, Elith et 

al., 2006). Likewise, Maxent, and SDM in general, is mostly 

used in conservation-oriented studies (Elith & Leathwick, 2006, 

Elith et al., 2006,). 

 

In the Philippines, there is currently a little emphasis on the 

conservation of individual species. This situation is a 

manifestation of the lack of information about the distribution 

and conservation status of the species. Given that inadequacy in 

information, the number of threatened species in the country is 

just incessantly increasing and various anthropogenic habitat 

alterations, including climate change, intensify it. The SDMs 

may be used to derive spatially explicit predictions of 

environmental suitability for species. According to several 

studies, SDMs potentially have the capability to play crucial 

supportive roles in the decision making that concerns spatial 
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conservation (Margules & Pressey, 2000; Addison et al., 2013). 

With the use of SDMs as a guide in management decisions, it 

can be utilized in managing biological invasions, identifying and 

protecting critical habitats, reserve selections, and translocating 

threatened or captive-bred populations in the country.  

 

The general objective of the study is to model the species 

distribution of Guijo and Bagtikan in Mt. Makiling Forest 

Reserve using Maxent. Specifically, this study aims to identify 

the different variables affecting the habitat distribution of Guijo 

and Bagtikan; generate the potential habitat distributions of 

Guijo and Bagtikan in MMFR using Maxent; model future 

distribution of the species under different climate emission 

scenarios and global climate models; and recommend potential 

conservation strategy for the dipterocarp species. 

 

 

2. METHODOLOGY 

 

2.1 Study Area 

 

Mount Makiling is located at 121°11’ East longitude and 14°08’ 

North latitude in which it reaches the sky at 1, 090 meters above 

sea level. It covers a total 4, 244.37 hectares straddling the 

provinces of Laguna and Batangas in Luzon, Philippines. The 

Mount Makiling Forest Reserve (MMFR) is an ASEAN Heritage 

Park which lies within 65 km of Metro Manila. With jurisdiction 

under the University of the Philippines Los Baños (UPLB), the 

forest reserve is managed by the Makiling Center for Mountain 

Ecosystems (MCME) under the College of Forestry and Natural 

Resources. The mountain has a fair to rough topography 

culminating at the top with three separate peaks. Several kinds 

of plants and animals were found abode at the Mt. Makiling 

Forest Reserve. It houses numerous species of flora with 940 

genera, 2, 038 species, 19 sub-species, 167 varieties, and several 

forms, and cultivars representing 225 families of flowering 

plants and ferns (Lapitan et al., 2013). The forest reserve has four 

sub-watersheds namely Molawin-Dampalit, Cambantoc, Greater 

Sipit, and Tigbi. The four sub-watersheds serve as the basic units 

for the management of the mountain. In which, the species 

occurrences of Shorea guiso (Guijo) and Parashorea 

malaanonan (Bagtikan) will be taken in the forest reserve. 

 

2.2 Collection and Selection of Species Occurrence Data 

 

The occurrence data of P. malaanonan and S. guiso used for this 

study came from a variety of sources including field survey, 

georeferenced database developed by Ramos et al. (2012) 

containing 2, 067 records of 47 threatened forest tree species of 

the Philippines, and literature records. 

 

The Dipterocarpaceae were largely reduced due to massive 

deforestation in the country during the mid-1900s. However, 

some of these species were left and are currently dominating the 

MMFR. The preservation of the species is the aftermath of 

handiwork efforts of MCME under UPLB. These species were 

selected for species distribution modeling since they are 

ecologically, economically, and socio-culturally significant, 

requiring urgent science-based adaptation strategies to protect 

them. Only 56 and 34 occurrences of Bagtikan and Guijo, 

respectively, have been collected, which are still within the 

minimum requirement to predict occurrence of species for SDM 

is (van Proosdij et al., 2016). 

 

 

 

2.3 Environmental Variables 

 

Twenty-six (26) environmental variables were used in the study. 

These included seven biophysical variables and 19 bioclimatic 

variables. All 26 environmental variables in 5m x 5m resolution 

were used as potential predictors of species distribution. All data 

were processed using the same extent, cell size, and projection 

system (WGS84 Longitude-Latitude Projection) in ArcGIS 10.5 

and converted to Environmental Systems Research Institute 

(ESRI), American Standard Code II (ASCII), grid format (.asc). 

The variables were then classified into climatic, topographic, 

vegetation-related, edaphic, and anthropogenic groups. 

 

2.4 Climate Models and Scenarios 

 

Global Circulation Models (GCMs) are regarded as the most 

advanced tools nowadays when the aim is to create a simulation 

of the global climate system’s response to greenhouse gas 

concentrations that are continuously increasing 

(Intergovernmental Panel on Climate Change, 2013). To model 

the future distribution of the species under different climate 

emission scenarios and global climate models, bioclimatic 

variables with a spatial resolution of 30 seconds in the period of 

the year 2041-2060 (2050s) and 2061-2080 (2070s) were 

collected. These were based on the fifth assessment report of the 

Intergovernmental Panel on Climate Change (IPCC) from 

http://www.worldclim.com. Two GCMs were selected to be 

used in this study: Hadley Centre Global Environmental Model, 

version 2, Earth System (HadGEM2-ES) and Model for 

Interdisciplinary Research on Climate, Earth System Model 

(MIROC-ESM). Hereafter, referred to as GCM 1 and GCM 2. 

These two GCMs were based on the global climate models used 

by Department of Science and Technology-Philippine 

Atmospheric, Geophysical and Astronomical Services 

Administration (DOST-PAGASA) in PAGASA Coupled Model 

Intercomparison Project Phase 5 (CMIP5) climate change 

projections in the Philippines (Basconsillo, 2014). For each 

GCM, two IPCC Representative Concentration Pathways (RCP) 

scenarios were used, which represented the future greenhouse 

trajectories: RCP 4.5 and RCP 8.5 for two different time periods 

(2050 and 2070). 

 

2.5 Species Distribution Modeling 

 

The primary and secondary data collected were processed 

through editing for checking of some errors and tabulation of the 

coordinates gathered as an input to the Maxent software and 

ArcGIS (Figure 1). For the modeling changes in species 

distribution, Maximum Entropy Species Distribution Modeling 

(version 3.4.1) software was used in this study (Phillips et al., 

2006). Maxent, based on georeferenced occurrence records and 

environmental, derives the probability of species. It has 

advantages over other SDMs as it requires species presence-only 

data, both continuous and categorical variables can be used in 

Maxent (Deb et al., 2017). During modeling, 75% of the species 

occurrence data were used as training data to generate species 

distribution models, and the remaining 25% were kept as testing 

data to test the accuracy of each model (Deb et al., 2017; Garcia 

et al., 2013). Initial records of species occurrence were filtered 

to avoid the bias of clustered points on a cell, ensuring that there 

was only one record per 5m x 5m pixel (De Alban et al., 2015). 

The maximum number of background points for sampling was 

kept at 10,000. The species distribution modeling was executed 

with the five-cross validated sample model for each run to 

measure the amount of variability in the model and averaged the 

results. A maximum number of iterations was set to 1,000 to 

allow the model to have adequate time for convergence, with 1 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W19, 2019 
PhilGEOS x GeoAdvances 2019, 14–15 November 2019, Manila, Philippines

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W19-441-2019 | © Authors 2019. CC BY 4.0 License.

 
442



x 10-5 set as the convergence threshold (Deb et al., 2017). The 

default auto features were used. These include all features (i.e.  

linear, quadratic, product, threshold, and hinge features; Merow 

et al., 2013). 

Figure 1. The research flow diagram. 

 

A series of variable reduction and selection stages were done 

prior to the final modeling. Similar to the procedure of Torres et 

al. (2016), a series of ‘pre-final modeling stages’ was done.  

 

Pre-Final Modeling I. The relative variable contribution from 

the two species probability models were averaged and ranked 

through the measurement of the jackknife test. 

 

Pre-Final Modeling II. Multi-collinearity test was applied for all 

26 variables that were used in the two models to avoid model 

overfitting. The test was done using the Principal Component 

Analysis (PCA) tool in ArcGIS 10.5, as demonstrated by Garcia 

et al. (2013). Through PCA, the variables that were highly 

correlated (r ≥ ±0.70) were grouped, and only one was retained 

within each group while the others were removed (Garcia et al., 

2013; Torres et al., 2016). The remaining variables were selected 

based on the ranking of the percentage contribution from the 

initial Maxent modeling runs. 

 

Final Modeling. All variables remained from ‘pre-final 

modeling’ stages were used as inputs for the Final Model. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Determining Variables for Pre-Final and Final Modeling 

 

Only 14 environmental variables out of the 26 original variables 

were used in the Final Modeling. Table 1 shows the variables 

used in the Final Model with categorized seven bioclimatic and 

seven biophysical variables. 

 

3.2 Multi-collinearity Test 

 

All 26 variables were subjected to multi-collinearity by 

examining the cross-relations between variables (Pearson 

correlation coefficient, r). Principal Component Analysis (PCA) 

in ArcGIS 10.5 was used in reducing and selecting the variables 

as demonstrated by Garcia et al. (2013) and Torres et al. (2016). 

 

 

Table 1. Variables used in the Final Model. 

 

This was done to avoid harmful collinearity of the variables, as 

a careful analysis is required in the selection of the most 

appropriate for each group of highly correlated variables. Based 

on the result of pre-model runs, only one variable from a set of 

highly correlated variables was included in the Final Model. The 

results of the collinearity test showed that 18 variables were 

highly correlated with other variables.  

 

Of the 18 variables, two variables (Bio 11 and Bio 12) had the 

highest counts (18) of highly correlated variables, followed by 

elevation (17), which was correlated with other 8 variables. 

Elevation had seven climatic variables, which had positive linear 

correlations, and ten climatic variables, which had negative 

linear correlations. One topographic variable (slope), one 

temperature variable and five precipitation variables had positive 

linear correlations (r = 0.7659 to 0.9489) with elevation. This 

datum suggests that in higher elevations, there is a higher chance 

of rainfall (Torres et al., 2016). On the other hand, ten climatic 

variables had negative linear correlations with elevation, 

suggesting that the temperature is higher in lower elevations 

(Torres et al., 2016). The other five environmental variables that 

had no correlation with other variables were used in final 

modeling. 

 

3.3 Analysis of Variable Significance 

 

Only 14 environmental variables (seven biophysical and seven 

bioclimatic variables) were used in the Final Modeling. Based on 

the results, the distributions of the dipterocarp species are largely 

determined by biophysical variables (89%) more than 

bioclimatic variables (11%). However, this does not suggest that 

biophysical variables are more important than bioclimatic 

variables as they are inherently, spatially, and temporally auto-

correlated (Schrag et al., 2007). This only suggests that groups 

of biophysical variables are acting together to influence the 

occurrence of each species. As such, it is difficult to separately 

interpret the importance of each variable from the models based 

on their percent contribution alone.  

 

Moreover, it also suggests that there might be some bioclimatic 

variables that could have provided further explanation for the 

occurrence of threatened forest tree species that were not 

included in the final modeling process. Therefore, it is suggested 

that the quantity and types of variables must be considered in the 

modeling stage. Likewise, limiting the number and selecting 

Variable Groups Variables 

Bioclimatic 

Variables 

Bio2 

Bio3 

Bio4 

Bio12 

Bio15 

Bio16 

Bio19 

Biophysical  

Variables 

Soil type 

Land Cover 

Elevation 

Slope 

Aspect 

Distance to Rivers 

Distance to Roads 
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only the most appropriate ones for a species is crucial to 

maximize the performance of SDMs and the accuracy of the 

predictions (Araújo & Guisan, 2006; Barbet-Massin & Jetz, 

2014; Braunisch et al., 2013). Consequently, having inaccurately 

predicted distribution could impede the success of conservation 

management efforts and decision- making. As such, expert 

opinion and knowledge of the ecological niche of the species 

should be taken into account as much as possible during the 

identification and selection of environmental variables. This also 

suggests that in future studies, knowledge of the edaphic 

requirements of the species should be considered as these may 

have an influence on the dipterocarp community composition at 

the local scale (Sukri et al., 2012). This can be explained by 

identifying the soil classification using soil taxonomy of the 

forest soils, which would integrate climate factors such as 

rainfall and temperature at the soil sub-family level. Moreover, 

the phenological patterns of the two dipterocarp species are also 

important to be considered. Additionally, their relationship with 

climatic seasonality as a change in plant phenology will be one 

of the earliest responses to rapid global climate change and could 

have potentially serious consequences for plants that depend on 

periodically available plant resources (Corlett & Lafrankie, 

1998). 

 

Among the bioclimatic variables, Bio 16 (precipitation of wettest 

quarter) has the highest percent contribution (4.3%) for S. guiso, 

while Bio 19 (precipitation of coldest quarter) has the highest 

percent contribution (5%) for P. malaanonan. This means that 

the occurrence of Guijo and Bagtikan are mainly influenced by 

these two bioclimatic variables: Bio 16 and Bio 19, respectively 

(Figure 2). Precipitation of wettest quarter (Bio 16) is a quarterly 

index, approximating the total precipitation that prevails during 

the wettest quarter, while the precipitation of coldest quarter (Bio 

19) is a quarterly index, approximating the total precipitation that 

prevails during the coldest quarter (O’Donnell & Ignizio, 2012). 

This suggests that the two dipterocarp species favor habitat with 

abundant rainfall all year-round. However, significant seasonal 

variation in temperature and rainfall may also restrict the growth 

of these two dipterocarp species. In Southeast Asia, the 

distributions of dipterocarps are being controlled by climatic 

conditions at different elevation gradient (Appanah et al., 1998 

as cited by Torres et al., 2016). Moreover, its distribution was 

obstructed by the conjunction of altitude and other natural 

barriers, and occupancy of several phytogeographical regions, 

which mainly conform to climatic and ecological factors. 

 

Dipterocarps are usually confined mainly in areas with a mean 

annual rainfall exceeding 1,000 mm and/or dry season of only 

short duration, with the majority of the species occurring in areas 

with 2,000 mm mean annual rainfall (Ashton, 1982). Forests in 

which the dominant trees are species of Dipterocarpaceae, the 

species usually reside on deep clay loam soil. However, 

dipterocarp trees may also occur over different substrates with 

different degrees of water stress and they may not often be the 

dominant species in the area. On the other hand, Bio 2 (Annual 

mean diurnal range) and Bio 4 (temperature seasonality) have the 

least percent contribution (0.1%) to the Maxent models of 

Bagtikan. Bio 3 (Isothermality) and Bio 4 have no percent 

contribution for Guijo.  

 

For biophysical variables, land cover (60.3%) has the highest 

percentage contribution, followed by roads (15.2%), and slope 

(5.9%) for P. malaanonan. For S. guiso, slope (35.5%) has the 

highest percentage contribution, followed by soil classification 

(28.2%) and land cover (16.9%). Hence, land cover and slope 

have more impact on predicting the occurrence of Bagtikan and 

Guijo, respectively (Figure 3). On the other hand, elevation has 

the least impact for both dipterocarp species with 0.6% and 0%, 

respectively. Dipterocarp forests usually occur in the lowlands 

ranging from 0 to 1,200 meters in elevation and they occupy the 

emergent stratum, although they are also found in the understory 

(Ashton, 1988). Dipterocarp trees can occupy mature stages of 

primary forest and they can also colonize secondary forests 

(Appanah & Turnbull, 1998).  

 

Figure 2. Percent contribution of bioclimatic variables derived 

from Maxent models and its influence on the geographic 

distribution of P. malaanonan and S. guiso. 

 

Figure 3. Percent contribution of biophysical variables derived 

from Maxent models and its influence on the geographic 

distribution of P. malaanonan and S. guiso. 

 

Based on the study of Torres et al. (2016), land cover (6.72%) 

significantly contributed to four threatened dipterocarp species 

in Northern Sierra Madre Natural Park (NSMNP). The study also 

found out that distance to roads (27.14%) also significantly 

contributed to the prediction of the distribution of four 

dipterocarp species in NSMNP. In relation to this, the impacts of 

land use change. An example of which is the planned main road 

construction crossing the NSMNP; it will be a major influence 

on species distributions, especially in the creation of access 

points for logging and land transition. Relating to the study, the 

construction and improvement of access roads in MMFR may 

also affect the prediction of the distribution of P. malaanonan 

(15.2%). This suggests that the distribution of P. malaanonan 

may be determined by anthropogenic factors (human activity) 

and not only by topographic and climatic factors. 

 

Among the four topographic variables, slope was the highest 

contributor for both dipterocarp species. Distance to rivers 

contributed with values of 0.2% and 4.1% for Bagtikan and 

Guijo, respectively. Moreover, aspect and elevation contributed 

5.1% and 0.6% for Bagtikan. As for Guijo, aspect contributed 

0.5% while elevation has no contribution in predicting the 

occurrence of Guijo. In the study conducted by Sukri et al., 2012, 

it was shown that environmental variables, particularly 

topography, are associated with dipterocarp community 

compositions at a local scale. Similar results about the significant 

associations of dipterocarps with topography were also reported 
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(Bunyavechewin et al., 2003; Gunatilleke et al., 2006; Suzuki et 

al., 2009). However, topographic factors may also vary from one 

species to another (Torres et al., 2016) since it will affect the 

distribution of soil nutrients in a particular area (John et al., 

2007). In MMFR, Macolod (Lithic Eutrudalfs) and Lipa (Typic 

Eutrudalfs) soil classification dominate the mountain ranging 

from 200 – 800 meters (Khan, 1969). These soil types may have 

different characteristics related to the underlying parent material 

which may contributed greatly to the growth and survival of 

dipterocarps. 

 

3.5 Jackknife Test of Variable Importance 

 

Maxent provides an analysis of the importance and relative 

contributions of the variables to the model using jackknife. This 

test can help the modelers to decide on which variables are 

relevant. According to Phillips et al. (2004), the jackknife is 

designed to predict areas which fulfill the requirements for 

species’ ecological niche where conditions are suitable for the 

survival of species. For P. malaanonan, results of the test 

showed that land cover had the highest gain of 2.2606 when used 

in isolation, which appears to have the most useful information. 

Then, annual precipitation (Bio 12) had the next highest gain 

with 1.7760, followed by slope with 1.7061. The environmental 

variable with the most decrease in gain when it is omitted was 

roads—appearing to have the most information that was absent 

in other variables. The Jackknife test also revealed that distance 

to rivers and distance to roads had the lowest gain of 0.0667 and 

0.1644 when used in isolation, respectively. For S. guiso, the 

Jackknife test results showed that the variable with the highest 

gain, when used in isolation, was slope (2.0157). Slope appears 

to have the most useful information by itself. Then, it was 

followed by soil classification with a gain of 1.7528 and annual 

precipitation (Bio 12) with a gain of 1.5364. On the other hand, 

the environmental variable that decreases the gain the most was 

land cover when it is omitted. It appears to have the most 

information that is absent from other variables. The jackknife test 

also revealed that distance to roads and annual mean diurnal 

range (Bio 2) had the lowest gain of 0.1120 and 0.1488 when 

used in isolation, respectively. This study was able to determine 

the environmental factors that influence and limit the distribution 

of P. malaanonan and S. guiso using Jackknife test in Maxent. 

All of the biophysical (land cover, soil classification, and slope) 

and bioclimatic (Bio 12 and Bio 19) variables played significant 

roles in influencing the presence and distribution of species. 

 

3.6 Shift in geographic distribution of suitable and unsuitable 

areas of dipterocarp species between potential current and 

future distribution 

 

Based on the results of the Maxent modeling, the predicted 

current and future habitat ranges of P. malaanonan and S. guiso 

were likely to be affected positively and negatively by future 

climate. S. guiso was found to benefit from future climate while 

P. malaanonan will experience a decline in its suitable habitat. 

As shown in Figure 4, about 193.40 hectares of land is suitable 

for P. malaanonan. However, the suitable areas will be 

decreased by 7.21% and 3.13% under RCP 4.5 and RCP 8.5 in 

the year 2050; and decreased by 10.11% and 16.44% under RCP 

4.5 and RCP 8.5 in the year 2070, respectively. This suggests 

that the predicted distribution of suitable habitat for P. 

malaanonan will be disturbed by future climate condition. 

Dipterocarp trees are confined to wet climates, with a dry season 

of four months and more abundant in a seasonal than seasonal 

climates (Ashton, 1988). Significant climatic anomalies such as 

increasing temperature seasonality and drought conditions may 

affect the growth of these dipterocarp trees (Deb et al., 2017).  

 

However, S. guiso will benefit from future climate since the 

prediction showed an increase in suitable areas from 86.55 ha to 

105.97 ha, and 140.05 ha under RCP 4.5 and RCP 8.5 in the year 

2050; to 102.56 ha and 101.49 ha under RCP 4.5 and RCP 8.5 in 

the year 2070 (Figure 7). This suggest that different climate 

scenarios could have positive effects on predicting suitable areas 

of Shorea guiso. 

 

Figure 4. Current and future suitable areas of P. malaanonan 

and S. guiso under different climate scenarios. 

 

The current distributions of P. malaanonan and S. guiso in Mt. 

Makiling are shown in Figures 5. Moreover, the projected 

distribution of the dipterocarp species is shown in Figures 6 to 9 

for P. malaanonan and S. guiso.  

 

4. CONCLUSIONS AND RECOMMENDATIONS 

 

Besides deforestation, climate change is becoming another 

serious threat to the world’s biodiversity nowadays because it 

causes drastic impacts on the distribution of species and the 

composition of habitats. In this study, the effect of climate 

change on the geographical distribution of P. malaanonan and S. 

guiso were assessed in Mt. Makiling Forest Reserve. The study 

incorporated the use of global climate models, MIROC-ESM and 

HadGEM2-ES in RCP 4.5 and RCP 8.5 for years 2050 and 2070, 

for the modeling of future distributions of the dipterocarp 

species. The environmental variables with the highest 

contribution were also identified. These are the environmental 

variables which may affect the habitat distribution of P. 

malaanonan and S. guiso. Following this, a machine-learning 

algorithm based on the principle of maximum entropy (Maxent) 

was used to generate the potential distributions of the dipterocarp 

species. 

 

The study revealed that biophysical variables (89%) more than 

bioclimatic variables (11%) largely determined the distributions 

of P. malaanonan and S. guiso. For P. malaanonan, land cover 

(60.3%) had the highest percentage contribution followed by 

roads (15.2%), and slope (5.9%). As for S. guiso, slope (35.5%) 

had the highest percentage contribution, followed by soil 

classification (28.2%), and then land cover (16.9%). Among the 

bioclimatic variables, Bio 16 (precipitation of wettest quarter) 

had the highest percent contribution (4.3%) for S. guiso while 

Bio 19 (precipitation of coldest quarter) had the highest percent 

contribution (5%) for P. malaanonan. However, these do not 

necessarily imply that bioclimatic variables are less important 
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than biophysical variables as they are spatially and temporally 

correlated (Garcia et al., 2013). It could have resulted from the  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Current distribution of Parashorea malaanonan (L) and Shorea guiso (R) in MMFR. 

 

Figure 6. Predicted distribution of Parashorea malaanonan (L) and Shorea guiso (R) for GCM-1 by year 2050  

under RCP 4.5 and RCP 8.5. 

 

Figure 7. Predicted distribution of Parashorea malaanonan (L) and Shorea guiso (R) for GCM-1 by year 2070  

under RCP 4.5 and RCP 8.5. 

 

Figure 8. Predicted distribution of Parashorea malaanonan (L) and Shorea guiso (R) for GCM-2 by year 2050  

under RCP 4.5 and RCP 8.5. 

Figure 9. Predicted distribution of Parashorea malaanonan (L) and Shorea guiso (R) for GCM-2 by year 2070  

under RCP 4.5 and RCP 8.5. 
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reduction of spatially and auto-correlated variables, in which 

there might be some bioclimatic variables that could have further 

explained the occurrence of dipterocarp species. Hence, careful 

consideration is recommended for the quantity and types of 

variables to be included in the modeling especially on the 

selection of climate variables, which should be based on sound 

ecological causality and strict physiological tolerance thresholds 

to climatic conditions (Braunisch et al., 2013). Aside from the 

future effects of climate change, land cover/land use changes 

should also take into account in the modeling, since it is 

considered as one of the main drivers in predicting species' 

potential distribution (Sirami et al., 2016). The high correlation 

of land cover and habitat distribution of P. malaanonan and S. 

guiso suggest that the protection of the forest cover of MMFR 

should be maintained in order to conserve these dipterocarp 

species. 

 

Results also showed that the potential distributions of P. 

malaanonan will likely experience a decline in its suitable 

habitats while S. guiso will benefit under projected climate 

scenarios. However, the study only assessed how P. malaanonan 

and S. guiso responded geographically to climate change using 

Maxent modeling, which is a correlative model that only 

required readily available species occurrence data and 

environmental information. Hence, it is recommended to apply 

other than SDM such as alternative ecological niche modeling 

(ENM), mechanistic model, which determined the fundamental 

niche of species by its physiology. It could build a causal 

relationship between species distribution and environmental 

variables. Incorporating both correlative and mechanistic models 

in future studies could provide a more accurate prediction of 

species’ responses to climate change. 

 

The findings of this study can be tailored to suit conservation 

guidelines for Parashorea malaanonan and Shorea guiso. It will 

also provide initial knowledge and literature on how climate 

change affects the distribution of threatened species of 

dipterocarps. Moreover, it can be used as a guide in decision-

making to better conserve the potential habitat of the species in 

current and future climate scenarios as well as basis in 

developing appropriate science-based conservation strategies, 

policies, and initial measures that could enhance the resilience of 

these particular dipterocarp species.  
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