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ABSTRACT: 

 

Dengue is the most rapidly spreading disease in the world with more than 30% of the world’s population at risk of contracting dengue. 

In 2016, more than 375,000 suspected cases of dengue were reported from the Western Pacific Region, and more than half of these 

were reported by the Philippines. Dengue virus inflicts significant health and economic burden to the Philippines. Thus, it is important 

to improve the country’s current schemes for dengue surveillance and response thru better understanding and knowledge on the 

development of dengue. In this research, geospatial and clustering analyses of dengue cases in Quezon City through GIS and self-

organizing maps (SOM) were performed. Two clusters were generated for each clustering method. After clustering the barangays, the 

coefficient of determination increased for most scenarios compared to the OLS regression of the ungrouped data. The R2 values for the 

regression of whole Quezon City dataset ranged from 0.364 to 0.671, while it ranged from 0.468 to 0.839 for the SOM-clustered 

dataset. On the other hand, for the k-means-clustered dataset, R2 values ranged from 0.395 to 0.945. Moreover, GWR models’ adjusted 

R2 values ranged from 0.675 to 0.876. Common predictors among the different regression models are the informal settlements and 

very low residential areas. Based on the significant predictors identified and the trend of the dengue cases, SOM produced more logical 

classification than the GIS Grouping Analysis. Although SOM takes a longer time compared to the GIS Grouping Analysis, SOM is 

easier and simpler to implement. 
 

 

1. INTRODUCTION 

1.1 Dengue Disease 

Dengue is one of the major problems of tropical and sub-tropical 

regions of the world, including the Philippines. It is rapidly 

spreading with a dramatic increase in its incidence of almost 30 

times. The US Centers for Disease Control reported that the 

estimated dengue cases worldwide each year is 50 to 100 million 

with more than 2.5 billion people in 100 countries living under 

the threat of dengue infection (Centers for Disease Control, 

2019). Despite the alarming statistics and trends of the disease, it 

has been considered as one of the neglected tropical diseases with 

few joint and coordinated efforts from the national and 

international scene (World Health Organization, 2012). Dengue 

not only inflicts a significant health burden to the Philippines but 

it is also affecting and burdening the country’s economy (Edillo, 

2015). 

 

Dengue, an infection caused by a virus (DENV), is the most 

common arthropod-borne viral (arboviral) illness in humans 

(Smith, 2019). DENV is carried by infected mosquitoes, 

specifically the Aedes aegypti and the female Aedes albopictus. 

The feeding time of these mosquitoes is usually during the 

daytime. Mosquitoes breed in stagnant, standing fresh water like 

puddles, oil tires, and water containers, thus, a neighborhood 

without consistent garbage collection has a greater chance of 

having more mosquitoes. Dengue has no specific antiviral 

treatment; however, it can be managed early and be prevented by 

eliminating places where mosquitoes can breed (Unilab, 2018).   

 

Based on the combined reports available from the Philippines’ 

Department of Health website, the National Capital Region 

(NCR) has one of the highest reported dengue cases (28,040) in 

2018. Within NCR, Quezon City reported 9,114 dengue cases 

according to Metro Manila Center for Health Development. The 

existing integrated vector management initiatives of the city were 

implemented rigorously over the past years helped in mitigating 

the cases of dengue. Despite the local government’s increasing 

efforts, unpredictable trends of dengue cases are happening. The 

success of dengue prevention and mitigation programs is 

determined by the proper understanding of the evolution and 

trend of dengue.     

 

1.2 Spatial and Clustering Analysis in Epidemiology 

Clustering analyses are performed to analyze a phenomenon at a 

more precise level. Spatial-temporal clustering is a method of 

grouping objects based on their spatial and temporal likeness. It 

is widely used in identifying disease distribution patterns, 

locating areas with active disease transmission, and evaluating 

the relationship between disease incidence and different factors 

(Xu et al., 2012). Spatial-temporal analysis of infectious diseases 

is widely used in understanding their development, transmission, 

spread, and dynamics for disease control and prevention 

strategies. One of the spatial analysis tools commonly used is hot 

spot analysis that is used to identify geographic clusters of 

disease and predict areas with a high risk of disease transmission 

(Sun et al., 2017). Therefore, spatial hotspot analysis and spatial-

temporal clustering analysis are important tools in disease 

surveillance and spatial-temporal epidemiology. 

 

This research discusses the use of geospatial and clustering 

analysis in understanding the incidence of dengue in Quezon City 

by determining significant predictors of dengue incidences in 

Quezon City among the candidate explanatory variables: 

demographic, land use and environmental. Moreover, the self-

organizing map is introduced as a tool in the clustering analysis 

of dengue incidences in Quezon City.  
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2. SELF-ORGANIZING MAP 

The Self-Organizing Map (SOM) was introduced by Kohonen 

(1982) in a theoretical study of self-organization of a low-

dimensional output space induced by high-dimensional input 

space. The SOM is an effective tool for dimensionality reduction 

while preserving the important topological characteristics of the 

input space. Similar vectors in the input space appear to be 

neighbors when mapped into the output feature map, using 

certain distance metrics such as the Euclidean distance or the dot 

product. It is a neural network mimicking the brain, where a 

stimulus is assigned to a specific region for processing. The 

neural network has fully connected neurons that are not 

connected by weight vectors, but by adjacency. 

 

The basic algorithm is initialization, competition, and 

adjustment. In the initialization step, a lattice of certain size m x 

n is created with each node containing a weight vector equal in 

length as to that of the input vector. Initially, the weight vectors 

are just random values. The lattice can be arranged in different 

ways, with the rectangular and hexagonal ones being very 

common. The difference with these configurations is the number 

of neighbors of each node. In a rectangular arrangement, there 

are four (4) neighbors; while there are six (6) in the hexagonal 

pattern. The second step randomly selects an input vector and 

compares it to every node of the map using a certain distance 

metric. The distance metric can be a dot product or more 

commonly, the Euclidean distance. The algorithm selects the 

nearest node or most similar node to the input vector and assigns 

that node as the best matching unit (BMU), i.e., the winning node. 

In the process of adjustment, that node and its neighbors within a 

pre-set radius will be adjusted using an equation that makes their 

weights even closer to the input vector. 

 

Different clustering techniques are available for different kinds 

of data. Common research on spatial epidemiology uses the self-

organizing maps in conjunction with GIS for their analysis 

(Mutheneni et al., 2018; Zhang, J., Shi, H. & Zhang, Y., 2009; 

Basara & Yuan, 2008). Basara & Yuan’s (2008) research results 

indicated that the variability between community clusters was 

significant with respect to the spatial distribution of disease 

occurrence. Moreover, clustering the SOM performed better than 

direct clustering of input data using k-means and partitive 

clustering (Alhoniemi, E. & Vesanto, J., 2000). 

 

3. MATERIALS AND METHODS 

 
 

Figure 1. General workflow of methodology 

 

The general workflow of this research is shown in Figure 1. Data 

Collection is the first procedure that involves gathering all the 

necessary data for the study. Table 1 shows all the data used in 

this study. The next procedure, Data Preparation, is done to 

increase the accuracy and consistency of data, which consists of 

data cleansing, feature selection, and data representation. Data 

cleansing consists of finding and removing incomplete, incorrect, 

and inconsistent data. Feature selection is done to improve the 

accuracy of model creation by removing factors that are not 

correlated with the dependent variable. Data representation is 

transforming data into a different form to enable applications to 

access and analyze data more accurately and effectively. 

Analyzing Patterns and Correlations consists of determining the 

relationship of each factor to the reported dengue cases and 

identifying which of the factors demonstrate a spatial pattern with 

respect to the spatial distribution of the reported dengue cases. 

The optimal number of groups is then evaluated using the 

Grouping Analysis tool of ArcMap 10.3.  

 

The next phase of methodology will identify clusters of 

barangays. The Grouping Analysis tool and SOM are utilized to 

generate clusters of barangays based on the reported dengue 

cases per month. SOM was implemented on the Python 

programming language using the Numpy, Matplotlib, and Pandas 

as the main libraries. Significant variables that affect dengue 

incidence were identified using the Exploratory Regression tool 

and Random Forest Regression. The Random Forest algorithm 

was executed using Scikit-Learn’s implementation on Python. 

Ordinary Least Squares (OLS) regression was then used to 

generate a model and determine its statistical strength. If non-

stationarity exists, Geographically Weighted Regression (GWR) 

is carried out. The Spatial Autocorrelation tool was used to 

determine if the residuals' pattern is random. 

 

Data Source 

Quezon City Land 

use Map 

Quezon City Planning and 

Development Office 

Quezon City 

Demographics 
Philippine Statistics Authority 

Rainfall 
DOST - ASTI 

DOST – PAGASA 

Land surface 

temperature 

MODIS - Moderate Resolution 

Imaging Spectroradiometer 

Monthly dengue 

incidence report 

Quezon City Health Department 

(QCHD) 

Table 1. List of all data gathered and their sources. 

 

4. RESULTS 

4.1 Pattern and Correlation Analysis  

 
Figure 2. Quezon City’s average monthly reported dengue cases 

and amount of rainfall from 2010 to 2015 
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The total number of reported dengue cases per year were mapped 

and their spatial distribution were compared with that of dengue 

hotspots per year. Figure 3 shows the dengue hotspots per year 

for the period 2010 - 2015. It can be observed that the northern 

part of Quezon City is the usual location of the dengue hotspots 

while cold spots are located in the southern part of the city. 

 

A large area of Quezon City is medium density residential and 

low-density residential areas. Since it can be found in almost all 

parts of Quezon City, both land use classes could have low 

significance as to the characteristic spatial distribution of dengue 

incidences. Many informal settlements, on the other hand, were 

found to be concentrated at the northeast part of Quezon City 

where dengue hotspots are located. However, small areas of 

informal settlements can also be found in neutral and cold spot 

areas. 
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Figure 3. Dengue hotspots in Quezon City: (a) 2010, (b) 2011, 

(c) 2012, (d) 2013, (e) 2014, (f) 2015 

 

Figure 4.a. shows the spatial trend of the average annual rainfall 

for the period 2010 - 2015. The rainfall and dengue hotspots 

shown in Figure 3 have a similar trend wherein the areas that 

experience heavier rainfall have the highest incidence of dengue 

compared to the areas that experience a smaller amount of 

rainfall. This conforms to the prior findings that rainfall amount 

is directly related to the incidence of dengue in Quezon City. 

 

On the other hand, it can be observed in Figure 4.b that the land 

surface temperature (LST) exhibits a negative correlation with 

the incidence of dengue. Areas with a high incidence of dengue 

has lower LST while those with low incidence of dengue has a 

relatively higher LST. The hotspots and cold spots identified by 

the Optimized Hotspot Analysis tool also supported this 

observation. 

   

As shown in Figure 4c, areas with higher elevations are found on 

the northeast side of Quezon City. An increase in altitude will 

result in a decrease in air temperature, thus, these areas were 

found to be not just experiencing a high amount of rainfall but 

also lower temperature. As shown in Figure 3, there are dengue 

hotspots in these areas. 

 

(a) 

 
(b) 

 
(c) 

 
Figure 4. a) Six-year average rainfall and (b) six-year average 

land surface temperature (c) elevation of Quezon City from 

2010 to 2015. 

 

Population distribution and population density distribution of 

Quezon City from 2010 to 2015 was also observed. Comparing 

the spatial distribution of dengue, the population density shows a 

random distribution. On the other hand, barangays that are 

identified as dengue hotspots have high population and cold spots 

have low population. However, the barangays on the northwest 

part of Quezon City do not follow this trend. This could be 

because of the higher temperature experiencing by the areas in 
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this location, thus, mosquitoes' growth is much slower and lower 

than areas located at the northeast.  

 

4.2 Grouping Analysis with ArcMap 

Using the monthly reported dengue cases, Quezon City was 

divided into two groups using the Grouping Analysis tool of 

ArcMap 10.3. As shown in Figure 5, Cluster 1 is displayed as the 

blue clusters while Cluster 2 as the red clusters. Cluster 2 has 16 

to 23 barangays while Cluster 1 has 118 to 126 barangays. Cluster 

2 can be observed to include barangays identified as dengue 

hotspots as shown in Figure 3. There are several barangays in 

Cluster 2 that can be found in the southwest portion of the 

Quezon City. 

 

The number of monthly reported dengue cases of each barangay 

in each cluster were then plotted separately as shown in Figure 6. 

A low number of reported dengue cases in Cluster 1 can be 

observed ranging 0 – 20 reported dengue cases per month. On the 

other hand, Cluster 2 cases ranged from 2 to 56 reported dengue 

cases per month. Cluster 2 shows that the number of reported 

dengue cases mostly peaked in August. The incidence of dengue 

also peaked in August in some of the barangays in Cluster 1.  
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Figure 5. Clusters identified using ArcMap Grouping Analysis. 

(a) 2010 (b) 2011 (c) 2012 (d) 2013 (e) 2014 (f) 2015 (g) 2010 -

2015 

(a) 

 
(b) 

 
Figure 6. Monthly average reported dengue cases of each 

barangays in a) Cluster 1 b) Cluster 2 

 

Exploratory data analysis was performed using the ArcMap 

Exploratory Regression tool to identify the variables with high 

significance to the incidence of dengue. The identified variables 

were then used in the OLS regression model. Table 2 shows the 

significant variables identified. 

  

The amount of rainfall, land surface temperature, informal 

settlements, open spaces, and very low-density residential are the 

variables that appear the most in the analysis conducted 

considering entire city and Cluster A only. One possible cause 

may be due to the poor management of these spaces. Open spaces 

and very low-density residential may have open areas that are not 

managed properly; water can remain stagnant for days, making it 

more vulnerable to a rapid increase in the mosquito population. 

Due to their mobility, these mosquitoes may be able to transmit 

the virus to neighbouring high-density residential areas. The high 

correlation of informal settlement with dengue incidence is 

related to poor living conditions, improper waste disposal, 

inadequate drainage system, and poor water storage management 

which creates more suitable breeding places for mosquitoes. 

 

Cluster 2 has varying significant predictors and are observed to 

be far different from the significant predictors identified on 

Cluster 1 and the whole Quezon City. The most common 

predictors identified on these clusters are Transport and Service 

Facilities and Informal Settlements. Transport and Service 

Facilities is an area designed for transport and service facilities 

where bus terminals. 

 

Year Quezon City Cluster 1 Cluster 2 

2010 Informal 

Settlements 

Open spaces 

Average LST 

Open spaces 

Average LST 

Informal 

Settlements 

Education 

Institution 

Total Rainfall  

2011 Open spaces 

Informal 

Settlements 

Very Low DR 

Total Rainfall 

Transport and 

Service 

Facilities 

Total Rainfall 

Population 

Density 

Informal 

Settlements 
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2012 Informal 

Settlements 

Open spaces 

Elevation 

Very Low DR 

Very Low DR 

Informal 

Settlements  

Open spaces 

Religious and 

Cemetery 

Transport and 

Service Facilities  

2013 Informal 

Settlements 

Total Rainfall 

Average LST 

Open spaces 

Elevation 

Informal 

Settlements 

Open spaces 

Health & 

Welfare 

Total Rainfall 

Average LST 

Very Low DR 

Medium DR 

Transport and 

Service Facilities 

2014 Informal 

Settlements 

Total Rainfall  

Open spaces 

Informal 

Settlements 

Open spaces 

Total Rainfall 

Medium DR 

High DR 

Transport and 

Service Facilities  

2015 Informal 

Settlements 

Open spaces 

Very Low DR 

Total Rainfall 

Very Low DR 

Total Rainfall 

Open spaces 

Informal 

Settlements 

Informal 

Settlements 

Elevation 

Total Rainfall 

2010 

-

2015 

Total Rainfall 

Informal 

Settlements 

Open spaces 

Average LST 

Open spaces 

Very Low DR 

Average LST 

Informal 

Settlements 

Elevation 

Religious and 

Cemetery 

Informal 

Settlements 

Table 2. Significant Variables of the Quezon City, Cluster 1 and 

Cluster 2 in each year and whole period identified by the 

Exploratory Regression tool, (*DR – Density Residential) 

 

Each significant predictor identified was then used as explanatory 

variables for each OLS regression. Variables with high variance 

inflation factor (VIF > 7.5) were removed from the model to 

address the problem of multicollinearity. The total rainfall and 

average LST are the variables that exhibit multicollinearity and 

thus, OLS regression was performed multiple times to determine 

which variable is more fit to be used. Moreover, an increase in 

the coefficient of determination (R2) can be observed in the OLS 

regression applied to clusters compared to the OLS regression of 

the whole dataset (see Table 3).   

 

Year 
Coefficient of Determination 

All Cluster 1 Cluster 2 

2010 .670 .656 .941 

2011 .573 .606 .854 

2012 .685 .395 .337 

2013 .612 .739 .817 

2014 .606 .615 .779 

2015 .744 .662 .942 

2010-2015 .601 .701 .945 

Table 3. Coefficient of determination for the whole Quezon 

City, Cluster 1 and Cluster 2 in each year and whole period  

 

Year Variables 
R2 

Cluster 1 Cluster 2 

2010 

Informal Settlements 

Open spaces 

Average LST 

.656 .935 

2011 

Open spaces 

Informal Settlements 

Very Low Density Residential 

Total Rainfall  

.590 .899 

2012 

Informal Settlements 

Open spaces 

Elevation 

Very Low Density Residential 

.565 .932 

2013 Informal Settlements .701 .944 

Average LST 

Open spaces 

Elevation 

2014 

Informal Settlements 

Total Rainfall  

Open spaces 

.615 .899 

2015 

Informal Settlements 

Open spaces  

Very Low Density Residential 

Total Rainfall 

.662 .947 

2010 

to 

2015 

Informal Settlements 

Open spaces 

Average LST 

.627 .951 

Table 4. Coefficient of Determination of Cluster 1 and Cluster 2 

for each year and whole period using the significant predictors 

of the whole dataset of same year 

 

Year Coefficient of Determination 

All Cluster 1 Cluster 2 

2010 .670 .656 .935 

2011 .570 .569 .887 

2012 .671 .574 .945 

2013 .677 .677 .944 

2014 .608 .608 .901 

2015 .703 0.590 .945 

Table 5. Coefficient of Determination of Cluster 1 and Cluster 2 

for each year and whole period using the significant predictors 

of 2010 – 2015 whole dataset 

 

Significant predictors of the whole dataset in each year were then 

used as the explanatory variables in each cluster of the same year. 

Table 4 shows that the R2 values for Cluster 1 are not much 

different from the R2 for the whole dataset. However, a 

significant increase in the R2 in Cluster 2 could be seen. OLS 

regressions were then performed using the significant predictors 

identified as explanatory variables for the whole period of 2010-

2015, namely, informal settlements, open space, and average land 

surface temperature. The R2 for the whole Quezon City and 

Cluster 1 ranges from 0.569 to 0.703 while Cluster 2 showed 

higher R2 ranging from 0.887 to 0.945 which indicates a strong 

correlation between the model and the data in Cluster 2, however, 

this does not mean that the model is already valid. The 

explanatory variables should be tested for significance. 

 

GWR Explanatory Variables Adjusted R2 

2010 Informal Settlements, Open spaces 0.648 

2011 Informal Settlements, Open spaces 0.623 

2012 Informal Settlements, Open spaces 0.781 

2013 Informal Settlements, Open spaces 0.659 

2014 Informal Settlements, Open spaces 0.658 

2015 Informal Settlements, Open spaces 0.868 

Table 6. Explanatories used for the GWR model of each year 

and their respective overall adjusted R2 values. 

 

Geographically Weighted Regression (GWR) was performed for 

each year on the dengue cases as the dependent variable and the 

predictors determined by the Exploratory Regression tool and 

used in the OLS regression for the whole data as independent 

variables. However, when the GWR can’t proceed due to local 

multicollinearity some variables were removed from the model. 

Table 6 shows the overall adjusted R2 for each GWR model. 

 

A map of the coefficients of each model was produced for the 

variables informal settlements and open spaces. As seen in the 

Figure 7, presence of informal settlements shows a negative 

relationship with the incidence of dengue on some barangays in 

the northwest and south of Quezon City from 2010 to 2015. 
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However, most barangays showed positive association of 

informal settlements with the number of dengue incidences. 

Open spaces, on the other hand, as shown in Figure 8, has a more 

varying relationship with dengue incidence. Models of years 

2011, 2012, and 2013 show that many barangays, which are 

mostly located at the west side of the Quezon City, are showing 

negative relationship with the incidence of dengue. But still most 

of the barangays showed positive association between informal 

settlements and the number of dengue incidences. 

 

  

  

  
Figure 7. Map of the coefficients of informal settlements as 

predictor for each GWR model from 2010 to 2015. 

 

  

  

  
Figure 8. Map of the coefficients of open spaces as predictor for 

each GWR model from 2010 to 2015. 
 

 

4.3 Clustering Analysis with Self-Organizing Map 

The dot-product SOM was used to cluster the 142 barangays in 

Quezon City. The dengue incidence data from 2010 to 2015 were 

used to produce seven (7) SOMs, one for each year and another 

for the combined dataset 2010-2015. Figure 9 shows the u-matrix 

and cluster map for the combined dataset. 

 

 

 
Figure 9. U-Matrix and cluster map for SOM 2010-2015. 

 

The clusters were then mapped to the geographic space. Figure 

10 shows the clusters in Quezon City. Using the combined data 

from 2010 to 2015 appeared to have divided Quezon City into 

two clusters, the north and south areas. The north area (red 

polygon) has barangays with a relatively higher number of 

dengue cases. On the other side, the south area (blue polygon) 

has barangays with a relatively lower number of dengue cases. 

The comparison between the dengue cases between the two 

clusters can be seen in the time-series plot in Figure 11. 
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Figure 10. Geographic map of the clusters identified using 

SOM. Cluster 1 is red; Cluster 2 is blue. 

 

It can be seen that the first cluster (red) has higher dengue cases 

compared to the second cluster (blue) (see Figure 11). Although 

there are more barangays in the second cluster, these barangays 

are commonly the small ones. This may contribute to the fact that 

these barangays have relatively lower dengue cases. 

 

 
  

 
 

Figure 11. Time-series plot of dengue cases per cluster from the 

SOM 2010-2015. 

 

Prior to ordinary least squares regression, random forest 

regression was performed in Python using the Scikit-Learn 

library primarily to get the variables with high importance in 

predicting dengue cases. These variables, shown in Table 7, were 

then used in the OLS regression model. The variance inflation 

factors were also calculated in Python using the Statsmodels 

library. Variables with VIF greater than 7.5 were removed 

further. Another set of OLS regression models were also 

generated for each cluster using the variables that are found to be 

significant for the whole dataset using random forest regression. 

Table 8 shows the results of the OLS regression for the whole 

dataset and each cluster. In most cases, it can be seen that the R2 

increased when the OLS regression was applied to clusters, 

compared to the OLS regression of the whole dataset. 

 

Year Quezon City Cluster 1 Cluster 2 

2010 Informal 

Settlements 

Very Low DR 

Open spaces 

Informal 

Settlements 

Open spaces 

Informal 

Settlements 

Very Low DR 

2011 Informal 

Settlements 

Very Low DR 

Informal 

Settlements 

Elevation 

Total Rainfall  

Informal 

Settlements 

  

2012 Informal 

Settlements 

Very Low DR 

 

Very Low DR 

Informal 

Settlements  

Water Related 

 Informal 

Settlements 

Elevation 

Very Low DR 

2013 Informal 

Settlements 

Average LST 

Commercial 

Informal 

Settlements 

Average LST  

Informal 

Settlements 

Average LST 

Very Low DR 

2014 Informal 

Settlements 

Very Low DR 

Informal 

Settlements 

Very Low DR  

Informal 

Settlements 

Average LST 

2015 Informal 

Settlements 

Very Low DR 

Elevation 

Informal 

Settlements 

Elevation 

Commercial 

Informal 

Settlements 

Very Low DR 

Total Rainfall 

2010 

-

2015 

Informal 

Settlements 

Open spaces 

Very Low DR 

Informal 

Settlements 

Open spaces 

Total Rainfall 

Informal 

Settlements 

Commercial 

Table 7. Significant Variables of the Quezon City, Cluster 1 and 

Cluster 2 in each year and whole period, (*DR – Density 

Residential) 

 

Year 
Coefficient of Determination 

Quezon City Cluster 1 Cluster 2 

2010 0.369 0.468 0.588 

2011 0.435 0.728 0.695 

2012 0.432 0.290 0.839 

2013 0.544 0.510 0.695 

2014 0.364 0.501 0.560 

2015 0.651 0.746 0.776 

2010-2015 0.671 0.765 0.583 

Table 8. Coefficient of determination from OLS regression for 

the whole Quezon City, Cluster 1 and Cluster 2 in each year and 

whole period  

 

Among the significant predictors are informal settlements and 

very low residential areas, as can be observed in Table 9. One 

possible cause may be due to the poor management of these 

spaces. Last of all, OLS regressions were performed using the 

significant predictors identified as explanatory variables for the 

whole period of 2010-2015 which are informal settlements, very 

low density residential, and average land surface temperature. 

The R2 for the whole Quezon ranges from 0.57 to 0.75 and 

Cluster 1 ranges from 0.417 to 0.73, while Cluster 2 showed a 

higher R2, ranging from 0.58 to 0.90. Both methods yielded 

strong correlation between the models produced and the data in 

Cluster 2. 

  

Year Coefficient of Determination 

All Cluster 1 Cluster 2 

2010 0.634 0.659 0.741 

2011 0.632 0.417 0.825 

2012 0.635 0.550 0.891 

2013 0.574 0.532 0.666 

2014 0.593 0.611 0.579 

2015 0.748 0.727 0.770 

Table 9. Coefficient of Determination from OLS regression of 

Cluster 1 and Cluster 2 for each year and whole period using the 

significant predictors of 2010 – 2015 whole dataset 

 

N
o

. 
o

f 
d

en
g

u
e 

ca
se

s 
N

o
. 

o
f 

d
en

g
u

e 
ca

se
s 

Months (January 2010 – December 2016) 

Months (January 2010 – December 2016) 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W19, 2019 
PhilGEOS x GeoAdvances 2019, 14–15 November 2019, Manila, Philippines

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W19-455-2019 | © Authors 2019. CC BY 4.0 License.

 
461



 

5. CONCLUSIONS 

The reported monthly dengue incidences data allowed us to 

divide Quezon City into two clusters. Thru GIS and SOM 

clustering analysis, the two clusters produced can be 

characterized by the difference in their number of reported 

dengue cases. SOM was able to take into consideration all the 

monthly reported dengue cases from 2010 to 2015, and on 

another hand, because of its limitations, GIS grouping analysis of 

ArcMap 10.3 was only able to use the average monthly dengue 

cases from 2010 to 2015. Thus, the barangays within clusters 

produced using SOM showed more similarity in their trend of 

dengue incidence than the barangays within clusters produced 

using GIS grouping analysis. 

 

The common predictors of dengue cases for both methods are the 

presence of informal settlements and very low-density 

residential. The SOM clustering algorithm produced more logical 

classification than the GIS Grouping Analysis. The barangays 

clustered using SOM showed more reasonable significant 

predictors than the clusters generated using GIS. 

 

The OLS regressions performed in this study show that clustering 

analysis is an important process in finding data patterns for the 

epidemiological data. The coefficient of determination in each 

cluster is higher than the results of the whole dataset which 

indicates a strong correlation between the model and the data. 

Thus, it could be said that clustering data would be a better 

process to see relationships between the attributes. 

 

Lastly, in the clustering analyses done, SOM is found to be very 

simple to implement. The superiority of Kohonen's SOM 

algorithm in preserving the topology of data can be observed in 

the resulted clusters in this research. While SOM is easy to 

implement, training takes a longer time as compared to k-means 

clustering used in the grouping analysis performed in the 

ArcMap. 

 

To further improve the results of this study, it is recommended to 

use other regression models such as the Poisson, Negative 

Binomial Poisson, and Zero-Inflated Poisson regression models 

which are more applicable to count data (e.g., number of votes, 

death incidence, disease incidence, etc.). Moreover, actual 

environmental data (rainfall and air temperature) of the 

barangays are also recommended to be used for a more precise 

and accurate correlation of the incidence of dengue to the 

environmental factors. It is also recommended to have a more 

accurate dengue case recording for the surveillance unit of the 

Department of Health - Epidemiology Bureau. 
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