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ABSTRACT: 

 
Forest lands play crucial roles in nutrient recycling and climate regulation. The change of closed canopy forests to open canopy forests 

may indicate disturbance within the closed canopy forest. Within the local context of the Philippines, few studies have been conducted 

to monitor changes in closed canopy forest lands. Efforts to do so are limited by the spatial extent, remoteness and ruggedness of closed 

canopy forests. Satellite imagery can cover the spatial extent of forest lands as well as provide constant revisit periods for monitoring. 

However, while multispectral imaging can detect changes in land cover, it has limitations when detecting the subtler change from 

closed canopy to open canopy forest cover. This study aims to provide baseline spectral characterization of a closed canopy forest in 

the Philippines. For this study, a hyperspectral sensor (EO1-Hyperion) with 198 band channels ranging from 426.82nm to 2395.50nm 

and a pixel size of 30m was used to characterize the spectral variations of closed canopy forest, open canopy forest, shrubs and cropland 

in Northern Sierra Madre, Philippines. Multiple endmember spectral mixture analysis (MESMA) was employed to sort the image into 

classes as well as to characterize intra-spectral variations among the identified classes. Spectral library endmembers were assembled, 

optimized and used to classify the image. The spectral libraries were optimized by using Endmember Average Root Mean Square Error 

(EAR) , Minimum Average Spectral Angle (MASA) and Iterative Endmember Selection (IES). Results overall agreement is 0.56 for 

EAR and IES and kappa coefficient is at 0.4. 

 

 

1. INTRODUCTION 

Philippines is located in a biodiversity hotspot with two-thirds of 

the earth’s biodiversity (Convention on Biological Diversity, 

n.d.). As a result of several decades of deforestation, conversion 

of forest into agricultural lands and expansion of urban 

communities, forest coverage in the Philippines is drastically 

reduced from 12 million hectares in 1960  to 7 million hectares 

in 2015 (Food and Agricultural Organization, 2015).  Efforts to 

conserve and protect forest lands were crafted into policies 

(Presidential Decree No. 389). Ensuring that these policies are 

taking effect on forest conservation require regular monitoring of 

forested lands. Monitoring the impact of these policies on the 

forest cover require mobilization of resources on the ground 

level. To solve this issue, remote sensing is employed to 

adequately monitor forest resource over space and time.  

 

Remote sensing is able to provide an alternative to monitor the 

extent of forest cover due to its wide areal coverage and regular 

data acquisition. Multispectral imagery are the most common 

satellite image products derived from earth observation. Most 

earth observation sensors are open access and with data 

collection that had started since the 1970s. Time series imageries 

are useful tools in detecting and quantifying the changes on the 

earth’s surface over time. This allows the large scale monitoring 

of forest cover as well as identifying deforested and degraded 

areas (Bullock, et.al., 2018).  

 

The Philippines currently has an estimate of 2.028 million 

hectares of closed canopy forest (Forest Management Bureau, 

2019). Ensuring that the remaining closed forests in the country 

remain intact requires not just monitoring the forest for 

deforestation but also for forest degradation. Forest degradation 

refers to ‘changes within the forest, whether natural or human-

induced that negatively affect the structure or function of the 

stand or site and thereby lower the capacity of the resulting 

degraded forest to supply products and/or services’ (Food and 

Agricultural Organization, 2006). Often, degradation is not 

detected through the decrease of forested area but through 

biomass reduction and changes in species composition.  

 

The changes required to detect forest degradation are subtler than 

that of deforestation, also changes indicating degradation are 

more specific. Main approaches used to detect degradation is 

through change detection in proxies and quantification of change 

in above ground biomass. Proxies of forest degradation include 

forest canopy gaps, small clearings and logging roads (Mitchell, 

et. al., 2017). Classification methods between closed (intact) 

forests and degraded forests rely on the varying spectral response 

of the two forests. In insular Southeast Asia, all forest types have 

generally closed canopy in their undisturbed state. This enables 

detection of canopy clearings through analysis of its spectral 

composition. (Miettinen, et. al., 2014). 

 

The use of spectral mixture analysis was applied in mapping of 

degradation in the Amazon (Souza, 2003). The same could be 

applied for the forests in the Philippines despite of different 

drivers of forest degradation between Southeast Asia and South 

America (Deutsche Gesellschaft für Internationale 

Zusammenarbeit, 2012). This purpose of this study is to establish 

a baseline classification between a closed canopy forest and open 

canopy forest in Northern Sierra Madre in terms of their spectral 

characteristics. The approach used in this study is multiple 

endmember spectral mixture analysis which is a variant of 

spectral mixture analysis. 

 

2. MATERIALS AND METHODS 

To characterize the spectral endmembers of primary land covers, 

hyperspectral image from EO-1 Hyperion was used. In order to 
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classify the image, a spectral library is required. This was 

generated by selecting the purest pixels from regions of interest 

where reference data is available. The computing efficiency of 

MESMA decreases with larger spectral library population. It is 

therefore necessary that a spectral library is optimized that it 

contains sufficient spectra that represents ground spectral 

variation while also maintaining computing efficiency.  

 

2.1 Study Area and Data Sets 

The study area is part of the Northern Sierra Madre Natural Park 

(NSMNP). The NSMNP was established under the Presidential 

Proclamation Number 978 declaring the area as a Natural Park 

and thus the conservations of its ecological status. The park is 

noted for a high species index of flora and fauna with 1079 

species of trees and 638 species of animals (Biodiversity 

Management Bureau, 2015). 

 

The region of interest is located in Palanan, Isabela (midpoint = 

17°59.0’N, 122°22.08’E). The climate in the study area is 

classified as tropical rainforest climate based on Köppen climate 

classification. Rainfall is observed at all months of the year with 

majority of it received on October – December. Average annual 

rainfall for the study area is 2610mm.  

 

The hyperspectral image used in the study was acquired on 

February 19, 2016 by the Hyperion Sensor of EO-1 satellite. The 

sensor is equipped with 224 channels from 357 – 2576 nm with 

spectral resolution of 10 nm. 70 channels are in the Visible Near 

Infrared Region and 154 channels are in the Short Wave Infrared 

Region. The spatial resolution of the sensor is 30m. Hyperion 

imagery has a standard scene of 7.7km X 98.7 km. A land cover 

map produced by the National Mapping and Resource 

Information Agency (NAMRIA) in 2015 was used as a reference 

for land cover elements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Pre-processing of the hyperspectral image 

 

 

 

 

 

 

Pre-processing of the image involves selection of bands to 

maximize spectral separability, destriping, application of 

atmospheric correction and noise removal. Table 1 provides the 

bands used in image processing. Fast Line-of-sight Atmospheric 

Analysis of Hypercubes (FLAASH) radiative transfer model was 

used to correct for atmospheric interferences before the image 

was normalized to a scale factor of 1. A noise reduction algorithm 

was applied into the image using Minimum Noise Fraction 

(MNF) transformation.  

 

Table 1. Bands of Hyperion used in image processing 

 

MNF transformation is a two-step process, the initial step 

calculates the noise statistics based on per-pixel variance. The 

second step performs a principal component analysis that ranks 

the noise equivalent radiance of the image components (van der 

Meer, 1999). Manual inspection shows that the first 19 

components can be correlated with ground features while the rest 

simply show increasing noise levels. MNF bands showing spatial 

coherence were projected back into the image space.  

 

Finally water pixels and pixels dominated by shade were masked. 

Because the image was taken in a mountainous area and acquired 

when sun elevation is not at its highest, shadows were cast in the 

image. Water pixels and shadow pixels were identified using the 

spectra from training pixels and subsequently masked from 

further image processing.  

 

2.2  Endmember extraction 

Spectral mixture analysis (SMA) methods rely on endmember 

libraries to classify an image which  makes the selection of 

possible image endmembers crucial in the process of spectral 

mixture analysis (Tompkins, et. al., 1997; Somers, et. al., 2011). 

Several algorithms have been created to select possible 

endmembers in a given image, one of these is the pixel purity 

index (PPI). Given an image composed of pure and mixed pixels, 

it is assumed that the spectra of mixed pixels is the result of the 

combination of the spectra from the pure pixels. This assumption 

follows that all spectra in the image are derivatives of the spectra 

of the purest pixels and endmembers can be represented by the 

spectra of purest pixels. 

 

PPI works by plotting the radiance of pixels onto a random unit 

vector. Extreme pixels are determined every time it is projected 

onto a random unit vector, the PPI is determined by the number 

of time the pixel was projected. Pixels with the highest PPI are 

determined as the purest and represents the spectra of the 

endmembers of the image. This can be visualized through an n-

dimensional data cloud with the most extreme pixels plotted at 

the outermost edges of the cloud. The pixels defining the corners 

of the cloud represent the endmembers of the image (Plaza, et. 

al., 2004).   

 

Bands Wavelength (nm) 

8-57 426.8 - 925.4 

79-119 1195.0 - 1336.2 

133-164 1477.4 – 1790.2 

183-184 1981.9 - 1992.0 

188-220 2032.4 – 2355.2 

Figure 1. (Inset) Location map of the study area in 

Palanan, Isabela. True color composite of Hyperion 

image (Band 24, Band 14, Band 5) 
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The spectral library was obtained by applying PPI on the MNF-

transformed image. The classes of endmembers were derived 

from the NAMRIA land cover map. The hyperspectral image was 

clipped based on the land cover class. The PPI algorithm was 

applied on the clipped image to obtain the probable endmembers. 

This was repeated for all the land cover classes in the map. This 

method yielded four endmember classes with 178 endmember 

spectra. 

 

2.3 Optimization of the spectral library 

Spectral Mixture Analysis (SMA) relies on the underlying 

assumption that the observed pixel spectra is dependent upon the 

abundance of image endmembers. This relationship is 

represented by the equation:  

 

 Ri = ∑ 𝑓𝑗  𝑅𝑒𝑖𝑗 + 𝑖

𝑁

𝑗=1
  (1) 

 

Where Ri is the observed spectral reflectance in a pixel location i 

in an image with n endmembers, fj is the fractional abundance of 

an endmember constrained under the value of 1, Reij is the 

spectral reflectance of the endmember and i is a residual.  

 

SMA operates by assigning a single spectra to represent an 

endmember. Each pixel is unmixed using the spectra of extracted 

endmembers. A significant limitation of this method is that a land 

cover class can be only represented by a single endmember 

spectra which provides little spectral variation to the possible 

classification of a pixel. This can be resolved by increasing the 

number of possible endmembers that represent the surface 

material in the spectral library, however, too many endmembers 

used in SMA will increase the sensitivity of the method towards 

instrumental noise and atmospheric interference (Dennison & 

Roberts, 2003). 

 

MESMA differs from SMA by being more flexible in its 

classification by allowing within class-spectral variability 

(Roberts, et al., 1994). MESMA creates a spectral mixture model 

for each pixel using pre-set number of endmembers and retains 

the model with best for each pixel. This approach allows the 

possibility of multiple endmembers representing a land cover 

class and allowing more spectral variation in the classification of 

a pixel.  

 

Following the development of a spectral library is the 

optimization of the number of its endmembers and which 

endmembers should represent a land cover class. To assess 

whether an endmember spectra should be used in the unmixing 

of the image, its Root Mean Square Error from modelling all 

other endmember spectra is derived using the formula: 

 

 RMSE = √
∑ (𝜀𝜆)2𝑀

𝜆=1

𝑀
                             (2)       

 

Where M is the number of bands. Linear models using different 

endmembers are iteratively computed as well as their RMSE. To 

represent the RMSE of the endmember spectra used to model all 

other RMSEs, a square array is created. The square array is an 

image composed of n by n pixels where n is the number of 

endmember spectra in the library. In the square array image, the 

rows correspond to the endmember spectra that was used to 

model all the other spectra in the column. This method of 

representation is used to prune the spectral library and select the 

optimal endmembers that can classify the image.  

 

Several methods have been developed to prune the spectral 

library. One of these is Endmember Average RMSE (EAR) 

developed by Dennison and Roberts (2003). EAR is derived for 

each endmember spectra by averaging the RMSE of all the 

models by a single endmember belonging to the same land cover 

class. The EAR of an endmember spectra modelling all the other 

spectra of a land cover class is:  

 EARi,k = ∑
𝑅𝑀𝑆𝐸𝑖,𝑘

𝑛−1

𝑛

𝑗=1
  (3) 

 

Where i is a land cover class, k is the endmember spectra of the 

land cover class modelling all other spectra and n is the number 

of endmembers in the land cover class.  

 

Minimum Average Spectral Angle (MASA) is another method to 

optimize the spectral library. MASA relies on spectral angle 

mapper (SAM) which determines the similarity between two 

spectra by considering each spectrum as a vector (Kruse et al., 

1993). Vectors are plotted in space with a dimensionality equal 

to the number of bands present. The spectral similarity between 

two spectra is determined by calculating the angle between the 

two vectors where smaller angles represent higher similarity. 

MASA is computed as: 

  MASAi = ∑
𝜃𝑖𝑗

𝑛−1

𝑁

𝑗=1
                         (4) 

 
Where i is the endmember, j is the endmember that was modelled, 

N is the number of endmembers in a landcover class, n is the 

number of modelled spectra. 𝜃 is calculated as: 

 

 𝜃 = 𝑐𝑜𝑠−1 (
∑ 𝜌𝜆𝜌𝜆

′
𝑀

𝜆=1

𝐿𝜌𝐿𝜌′
)                    (5) 

 

Where 𝜌𝜆 is the reflectance of an endmember, 𝜌𝜆
′  is the 

reflectance of the modelled spectrum, 𝐿𝜌 is the length of an 

endmember vector and 𝐿𝜌′ is the length of the endmember vector 

of the modelled spectrum.  

 

The final method used to optimize the spectral library is the 

Iterative Endmember Selection (IES) method. IES is a semi-

automatic approach that identifies a subset within a spectral 

library that gives the best class separability (Roth et al., 2015). 

The method adapted here is a step-wise procedure where IES 

adds or subtracts endmember spectra from the library and tests 

whether adding or removing an endmember improves the kappa 

coefficient. It iteratively goes through this process until the kappa 

coefficient no longer improves. 

 

3. RESULTS  

3.1 Endmember Spectral library 

The results of PPI generated a spectral library grouped according 

to surface cover classes: closed forest, open forest, cropland, 

shrub and water. As seen in Figure 2, the spectra of endmembers 

in a cover class is variable. Spectral variability in a land cover 

class is of particular interest specially because land cover is rarely 

homogenous and its overall spectra is the product of mixing 

between its homogenous components. Closed forest, open forest, 

cropland and shrub all show vegetation endmembers, also 

incorporated are likely the spectra of non-photosynthetic 

vegetation, litter, and bare soil.  
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The square array was created to help in the optimization of the 

number of endmembers in the spectral library while also 

preserving spectral variability. A square array containing 5 bands 

representing RMSE, spectral angle, endmember fraction, shadow 

fraction, and constraints provides an indication how well 

endmembers model the spectra of other endmembers. The 

modelling of the endmember fractions was constrained between 

0 and 1, when endmember fractions do not satisfy the threshold 

criteria, they default to the closer threshold value. 0 value is 

represented by dark pixels while value of 1 is represented by 

bright pixels.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 shows the square array bands of RMSE and spectral 

angle. The clear diagonal line cutting from the upper left towards 

the lower right corners of the images are marked 0 to indicate that 

an endmember can’t model itself. The top row represents 

endmember spectra while columns underneath represent the 

resulting RMSE and Spectral Angle when it modelled another 

endmember spectra. Spectral angle values are between 0 and 

100% and the model was partially constrained to fit within the 

RMSE. Numbers in the boxes represent a specific land cover as 

shown by the image legend.  

 

The square array indicates some endmember spectra model other 

endmember spectra better than others. Endmember spectra from 

crop land cover class show higher spectral angle values when 

they model the spectra of other land cover classes. This can be 

attributed to the abundance of bare soil spectra present in crop 

land cover class. A particular endmember from open forest class 

shows high RMSE and spectral angle value, even when 

modelling its own class. Spectra such as these is likely to come 

from an anomalous pixel that was not filtered during masking of 

the image.  

 

3.2 Optimization of the Spectral Library 

Cover class EAR MASA IES 

Closed forest 34 33 15 

Crop 33 30 23 

Open forest 34 38 15 

Shrub 33 30 13 

TOTAL 134 131 66 

Table 2. Number of endmembers in a cover class for each 

spectral library 

 

 Mean Stdev 

Land cover 

class 
EAR MASA EAR MASA 

Closed 

forest 
0.056 0.286 0.027 0.096 

Crop 0.067 0.358 0.017 0.060 

Open forest 7.2E-05 0.295 2.5E-05 0.100 

Shrub 0.066 0.288 0.014 0.045 

Table 3. Mean and standard deviation values in a cover class per 

EAR and MASA 

 

Table 2 shows the number of endmembers for each particular 

cover class that was optimized using EAR, MASA and IES while 

Table 3 shows the mean and standard deviation of EAR and 

MASA for each land cover class.  

 

Optimization using supervised method 

 

Optimization with a supervised method where the endmember 

spectra belonging to a land cover class was assessed based on its 

EAR and MASA values. Low EAR and MASA values generally 

indicates a good fit of spectral similarity with other endmember 

spectra of the same class while higher values indicate higher 

spectral difference. The endmembers were chosen by setting a 

threshold where values that fall out of one standard deviation 

from the mean were excluded from the spectral library. The 

endmember spectra retained in the library were the likeliest 

endmembers to represent spectral variability but also retain a 

certain degree of class similarity. The EAR spectral library has a 

1 

 

2 3 4 

Figure 3. (Top)RMSE band of square array image; 

(Bottom) spectral angle band of square array image 

 

1-Closed forest  3-Open forest  

2-Crop  4 -Shrub 

Wavelength (nm) 

1 2 

3 4 

Figure 2. Results of PPI per land cover class showing the 

endmembers of (1) Closed forest, (2) Crop, (3) Open forest, 

and (4) Shrub 
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total of 134 endmembers while the MASA spectral library has a 

total of 131 endmembers.  

 

Mean EAR in closed forest, crop and shrub cover classes have 

slight difference in their mean values at 0.010 whereas the open 

forest mean EAR has a very small value and does not fall within 

the range of the other land cover classes. Mean values of MASA 

for all land cover classes show less diversity in its range of values. 

The standard deviation of EAR values among land classes show 

that there is highest deviation from the mean in closed forest land 

cover while open forest shows highest deviation of MASA 

values.  

 

Optimization using semi-automatic method 

 

Another spectral library was generated by a semi-automatic 

method. Optimization using IES has generated a spectral library 

with 66 endmembers that were identified to represent the best 

class separability. The kappa coefficient of the final confusion 

matrix after an iterated procedure of adding and subtracting 

endmembers to improve the accuracy coefficient is 0.87. 

 

3.3 Multiple Endmember Spectral Mixture Analysis 

Using the EAR, MASA and IES library, MESMA was applied 

on the hyperspectral image. EAR and IES spectral libraries were 

able to classify 96% and 92 % respectively of the hyperspectral 

image into land cover classes while the MASA library was able 

to classify 7% of the image. 

 

Closed forest 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results of MESMA unmixing of closed forests using EAR 

and IES spectral libraries are shown in Figure 4. Black values are 

the masked shadow and water pixels. Pixels with low fractional 

abundance of closed forests are in lighter green color while pixels 

with high fractional abundance of closed forests are in dark green 

color. For EAR, 39% of the pixels in the image is classified as 

closed forest while for IES, 30% can be classified as closed 

forest.  

 

Open forest 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The distribution of pixels classified as open forests is presented 

in Figure 5. Based on the EAR library, 16% of the image is 

identified as open forest while the IES library identifies 38% of 

the image as open forest.  

 

Shrub 
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 Figure 4. Fractional cover of closed forest based on MESMA 

unmixing using EAR and IES spectral libraries 
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High : 1

Low : 0

mask
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 Figure 5. Fractional cover of open forest based on MESMA 

unmixing using EAR and IES spectral libraries 
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Low : 0

mask

IES 
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 Figure 6. Fractional cover of shrubs based on 

MESMA unmixing using EAR and IES libraries 
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Pixels classified as shrubs are shown in Figure 6. The EAR 

library identifies 35% of the image as shrubs while the IES 

library identifies 26%.  

 

Crop land cover consists of agricultural vegetation and bare 

surfaces under fallow. Based on classification using EAR, they 

cover 7% of the image while IES classified 9% of the image as 

crop.  

 

4. DISCUSSION 

EAR and IES generally provides a reasonable result of image 

classification of a highly vegetated area. MASA however was 

unable to classify  the majority of the image. A comparison of 

EAR and MASA metrics by Dennison, et. al. in 2004 concluded 

that for models with low albedo variability, EAR and MASA 

should produce equivalent results. Shadows are cast in the image 

specially where there are west-dipping slopes, producing 

significant albedo difference in the image output and affecting 

the performance of MASA library in the classification of the 

image.  

 

A confusion matrix in Table 5 was generated to compare the 

classification of EAR and IES and to measure their agreement 

with each other. Overall accuracy of the classification is 0.56, the 

expected accuracy is 0.27 while its kappa coefficient is 0.4. In the 

IES classified image, 88% of the pixels identified as crop agree 

with the classification of EAR. In the EAR classified image, 65% 

of pixels identified as crop agree with IES while 29% of the crop-

identified pixels by EAR were classified as shrub by IES.  

 

In the IES classified image, 66% of closed forest pixels are also 

identified likewise by EAR. For EAR classified image, 50% of 

closed forest pixels share the same classification with IES and 

46% of closed forest pixels of EAR are identified by IES as open 

forest. Agreement with open forest shows that for IES, 27% of 

the class agree with EAR while in the EAR classified image, 65% 

agrees with IES classification. IES also identified more open 

forest pixels than EAR and there is low agreement in their 

classification of a closed forest and an open forest i.e., what is an 

open forest to IES is classified by EAR as a closed forest. IES 

classified image identified 80% of pixels identified as shrubs 

agree with the identification of EAR while for EAR, 58% of its 

shrub pixels concur with IES. Figure 7 shows examples of 

disparity in the classification of EAR and IES.  

 

Selection of endmember spectra that is included in the spectral 

library is a crucial point. The effect of endmember selection 

propagates in the method. In this case, pixel purity was used to 

select endmember spectra from which three libraries were created  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and used to classify the image.  

 

EAR and IES show highest disagreement when classifying 

closed forests and open forests. This may be attributed to 

similarity of the endmember spectra between closed and open 

forest (Figure 2). Theoretically, spectra that is collected from a 

closed forest is dominated by reflectance from tree canopies and 

the reflectance from litter, bare ground and non-photosynthetic 

vegetation are minimal. Open forest spectra are influenced more 

by non-photosynthetic vegetation, litter and bare surface. The 

mapping of forest degradation by Souza (2003) relied on the 

thresholding of non-photosynthetic vegetation under 15% in 

identifying closed forests. However, as this study indicates, the 

difference between closed forest and open forest in the Northern 

 
 IES  

 
cover class closed forest crop open forest shrub Total 

Commission 

error  
E

A
R

 

closed forest 14034 98 3092 4017 21241 0.339 

crop 51 4305 179 334 4869 0.116 

open forest 12962 265 7268 6315 26810 0.729 

shrub 1038 1923 687 14569 18217 0.200 

Total 28085 6591 11226 25235 71137 
 

 Omission error 0.500 0.347 0.353 0.423   

Table 4. Confusion matrix of EAR and IES classifications 

closed forest

crop

open forest

shrub

TCC 

 

EAR 

 

IES 

 

TCC 

 

IES 

 

EAR 

 
closed forest

crop

open forest

shrub

Figure 7. Comparison of true color composite and classification of the image 

using EAR and IES libraries 
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Sierra Madre is more subtle and refinement is necessary for 

higher classification accuracy.  

 

 

5. CONCLUSION 

In this paper, MESMA was applied to identify closed forest and 

open forest canopy in a hyperspectral image. This involved 

collecting endmember spectra, optimizing the spectral library 

and analysis of concurrence between two classified images. For 

the purpose of an initial assessment, MESMA of a hyperspectral 

image generally provides suitable results of classification 

between closed and open forests. However, for establishing 

baseline conditions for eventual monitoring of degradation in 

closed forests, field training data and additional information on 

the ground conditions of the study area is necessary. Also while 

hyperspectral imagery is a rich source of data, there is also the 

trade-off with its temporal availability, cost and processing 

requirement. Such issues need to be resolved when considering 

the monitoring of forest degradation through hyperspectral 

imagery. EO-1 was decommissioned in 2017 but a line-up of  

spaceborne hyperspectral sensors are in the pipeline. The launch 

of new sensors can possibly increase the temporal availability of 

hyperspectral imaging sensors.  
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